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Often thought of as higher-order entities, events have recently become important subjects
of research in the computational sciences, including within complex systems and natural
language processing (NLP). One such application is event link prediction. Given an input
event, event link prediction is the problem of retrieving a relevant set of events, similar to the
problem of retrieving relevant documents on the Web in response to keyword queries.
Since geopolitical events have complex semantics, it is an open question as to how to best
model and represent events within the framework of event link prediction. In this paper, we
formalize the problem and discuss how established representation learning algorithms
from the machine learning community could potentially be applied to it. We then conduct a
detailed empirical study on the Global Terrorism Database (GTD) using a set of metrics
inspired by the information retrieval community. Our results show that, while there is
considerable signal in both network-theoretic and text-centric models of the problem,
classic text-only models such as bag-of-words prove surprisingly difficult to outperform.
Our results establish both a baseline for event link prediction on GTD, and currently
outstanding challenges for the research community to tackle in this space.

Keywords: event representations, representation learning, geopolitical event link prediction, word embeddings,
multi-partite networks

1 INTRODUCTION

In recent years, there has been an increasing focus on representing, reasoning over and doing
inference on, events Lorenzini et al. (2021), Battistelli et al. (2013). Unlike ordinary named entities,
events are complex data structures, embodied by artifacts such as triggers, actors, locations,
descriptions, and spatiotemporal cues. In the case of events with geopolitical consequences, such
as terrorist attacks, assassinations, or bombings, automatically and accurately predicting links
between events is an important research application that can be used to populate and enrich
geopolitical, sparse (and proprietarily gathered) knowledge bases with global scope. Figure 1
provides a simplified illustration, based on real data, of a linked set of events.

For such inferential tasks, Representation Learning (RL), an important sub-area of deep learning
research, has emerged as extremely influential in both graph- and text-centric communities. In the
general case, latent space embeddings (dense, real-valued vectors) are learned on graphs with simple
structures, or [in the case of text embedding algorithms like GloVe and word2vec Pennington et al.
(2014); Mikolov et al. (2013)] on word or character sequences. On the other hand, structured event
data contains rich structure and semantics that can be exploited to learn better representations.

As one important event-centric application, consider geopolitical forecasting, which continues to
be an important and relevant problem, especially for policy institutes, think tanks, analysts and
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pollsters Tetlock (2017), Tetlock (1992). The problem is also
known to be difficult, although the geographic region and
complexity involved in making a forecast for an IFP
(individual forecasting problem) can make some forecasts
more challenging than others Tetlock (2014). One of the
critical tasks of forecasting is to distinguish relevant material
from the irrelevant. This is especially true at the level of events
e.g., when one is trying to forecast political instability in Nigeria, it
is helpful to consider “prototypical political instability” events like
riots or protests, and retrieve both recent such events, as well as
links to other events that have a connection to the prototypical
event Esser and Strömbäck (2013), Zinken (2003).

Obtaining and reasoning over such contextual and
background knowledge is ever more important also because
(arguably) it is becoming harder to make accurate forecasts,
even for events that are being globally scrutinized and studied.
In 2016, several incidents occurred globally that went against the
predictions of famous (i.e., traditionally accurate) polls1,
including the outcomes of Brexit and the 2016 US Presidential
Election. While these examples may arguably be described as
representing extremes [“Black Swan” incidents Nassim (2007)],

consistently making correct forecasts is a valued skill that several
individuals (and by extension, organizations) have been known to
possess Tetlock and Gardner (2016). A key differentiator between
successful (on average) forecasters and ordinary forecasters is the
ability to consider contextual and linked information when
researching the forecasting problem. Events, such as COVID-
19 and the US Capitol Hill riots following the Presidential 2020
election, only serve to highlight the severity and suddenness of
Black Swan events.

We also note that while, on the surface, tasks like event link
prediction may sound similar to link prediction as studied in
social networks, the complex structure of an event makes the
former much more difficult and ill-defined. This is also true for
other event-centric problems like event resolution Kejriwal et al.
(2018b), event extraction (in the natural language processing
community) and event co-referencing Ng (2017), Lu and Ng
(2017), for which special techniques have now been developed, as
well as situational awareness and visualization Kejriwal et al.
(2018a), Kejriwal and Zhou (2019).

In this paper, we address the research problem of what features
make for good event representations, both when text summaries
are available, or unavailable. We propose and consider several
models of events, including models that just use a short text
description, a combination of text and locations, paths in a multi-
layer semantic network, or in the most general case, novel models

FIGURE 1 | Illustrations of three geopolitical event fragments that are linked.

1Two examples being Nate Silver’s FiveThirtyEight, and the New York Times’s
forecasting interface.
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that rely on various statistical-semantic cues in both text- and
graph-theoretic frameworks. Using both classic methods, such as
cosine similarity applied on bag-of-words vectors, as well as deep
embedding methods, we study and contrast these representations
by conducting a full set of event link prediction experiments on
the Global Terrorism Database (GTD) LaFree and Dugan (2007).
Our goal here is not to present novel algorithms but to introduce
and present a rigorousmethodology (including data and evaluation
metrics) for studying event link prediction as a fundamental
application area in multi-relational networks and complex systems.

Using various metrics inspired by the information retrieval and
traditional link prediction communities Liben-Nowell and Kleinberg
(2007), we quantify the most salient aspects in learning good event
representations, especially when a combination of structured and
unstructured information sets may be available. To the best of our
knowledge, this is the first such study to rigorously model, formalize
and quantify event representation learning.

2 PROBLEM DESCRIPTION

We begin by first defining and scoping the notion of an event as
assumed by this article. If events were completely arbitrary, it
would be sufficient to assume an event ontology (EO), and declare
instances defined in terms of certain classes (event types and sub-
types) in the EO to be “events”. In the real world, however, events,
despite exhibiting heterogeneity across sources, domains and
datasets, do obey some near-universal restrictions. First, events
are generally typed, whether automatically or not. For example,
the Global Terrorism Database (GTD) LaFree and Dugan (2007)
describes terrorism events, as the name suggests, while datasets
like the Armed Conflict Location and Event Data Project
(ACLED)2 or Political Instability Task Force (PITF)3 contain a
mix of events that are useful to geopolitical analysts. A good
example of an ontology describing many event types, and that has
been extensively used in the real world, is Conflict and Mediation
Event Observations (CAMEO)4.

Second, a commonality between databases that describe
geopolitical events is some notion of space and time. Although
the granularity can differ (e.g., some highly proprietary event
datasets may be associated with very precise geo-coordinates,
while many others contain coarser information, like region and
country names), some spatial and temporal information is almost
always included. Third, depending on the event type, some
structured information could be encoded using a highly
controlled vocabulary. In ACLED, very specific (and
consistent) terminology is used to indicate event modalities
like riots or protests, for example, while in GTD (as we later
describe), information like the attack type and target type obey a
controlled vocabulary that is given by a codebook.

At the same time, events that have different modalities or
provenance can also be very heterogeneous. Thus, it is important

to be flexible in an event formalism to accommodate the ‘quirks’
of individual datasets. With this caveat in mind, we can use the
three observations above to define a geopolitical event E in the
following way. Given an event ontologyO, a geolocation ontology
G and a temporal ontology T, a geopolitical event E may be
defined as an instance of O with a spatiotemporal span < g, t> ,
with g and t being instances of G and T respectively. A good
example of G is the GeoNames ontology Wick (2006), which is
widely used in spatial sciences and geography. However, G can
also be an ontology that is extremely fine-grained such as the
underlying ontology behind systems like Google Maps and
OpenStreetMap (OSM) Haklay and Weber (2008). In contrast,
temporal ontologies are usually simple, although sophisticated
options have been proposed in the literature Hobbs and Pan (2006).

We note that, while this description abstracts the full scope of
event databases (which can contain tens, if not hundreds, of fields
in their schemas), it does not abstract away the fact that events are
complex data structures that can contain a combination of free
text, structured elements (such as date and location) and elements
from controlled vocabularies (such as attack types for terrorist
events). Unlike natural language text, or RDF graphs, it is not
clear how to model, and learn representations for, events in a way
that makes them amenable to advanced machine learning-centric
analytics like link prediction, event classification or anomaly
detection5. In keeping with established terminology, the
learned representation of an event intuitively corresponds to a
“feature vector” that can be used in (either supervised or
unsupervised) machine learning systems for various
classification and clustering problems.

With the advent of deep learning and embedding methods,
modeling and representation have become linked. Intuitively,
modeling an event (for the purposes described above) defines
which information sets of an event are relevant, and what the
relationships are between these information sets. We consider
some models and information sets in a subsequent section. The
representation learning is the application of an algorithm
(whether developed from scratch, or from the literature, like
word2vec) on a modeled set of events. In Natural Language
Processing (NLP) terminology, modeling determines the
definition of a context6, while representation learning uses the
context to embed events into a vector space, which is usually (but
not always, as we explain later) dense and real-valued.

3 MATERIALS AND METHODS

3.1 Global Terrorism Database (GTD)
Before describing the models, we start by describing an important
dataset called Global Terrorism Database (GTD) that contains

2https://acleddata.com/
3https://dss.princeton.edu/catalog/resource1507
4http://eventdata.parusanalytics.com/data.dir/cameo.html

5Although in this article, we primarily focus on link prediction as the primary
use case.
6In much of the NLP work, this statement is obvious enough that it is never stated
explicitly: e.g., word2vec assumes that the document corpus is a large set of word
‘sequences’, with the skip-gram model used for representation learning, while the
‘bag-of-words’ approach models each document as a multi-set of words, with
vector weights derived using the famous tf-idf formula.
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thousands of structured terrorism events spanning the globe,
typed according to an expansive schema. As described on the
project page7, GTD is an “open-source database including
information on terrorist events around the world from 1970

through 2016 (with annual updates planned for the future).
Unlike many other event databases, the GTD includes
systematic data on domestic as well as international terrorist
incidents that have occurred during this time period and now
includes more than 170,000 cases”.

Because GTD is relatively clean, it allows us to quantify many
of the (subsequently discussed) models without being concerned
about bias being caused by specific kinds of noise that are usually
non-random and caused by imperfect information extraction
algorithms (that are still active areas of research). The dataset
profile is provided in Table 1, categorized by attack types
(Table 2). The profile shows that GTD is quite diverse, and
spans multiple world regions and countries, a range of target
types, and covers events that are fairly recent, allowing us to
relevantly extend the conclusions drawn in this article to modern-
day events.

As with any study and set of experiments, it is important to
keep in mind the limitations of GTD, including data coverage.
Currently, it is unknown if GTD is biased toward events of a
specific type (whether involving a specific attack type, target type,
geographical region, number of individuals involved, and so on),
since published research on event databases and their analysis
continues to be sparse. We do not claim that GTD is perfect; our
goal in using it is to ensure that, caveats notwithstanding, we are
able to conduct sufficiently controlled experiments and draw
suitable conclusions. Future work will attempt to add more
degrees of freedom to these studies.

3.1.1 Link Prediction Ground Truth
GTD includes a column that states the event IDs linked with a
given event ID. More than one event ID can be linked to a given
event ID. In this ground truth, we found that the number of
reference events8 was 10,259 i.e., most of the events in GTD are
isolated and are not linked with any other (at least to the extent
that it is currently known). The average number of linked events
per reference event was found to be 5.204 and the number of
ordered linked event pairs is 53,392. A frequency distribution is
illustrated in Figure 2. By ordered, we mean that a linked pair
(event1, event2) is considered distinct from (event2, event1). There

TABLE 1 | A profile of GTD events, categorized by attack types. The number in the first column is an attack type code; see Table 2 for the codebook.

Attack type Num. events Num. unique
regions

Num. unique
countries

Num. unique
target types

Date range

0 41 9 21 4 2013/01/21- 2016/12/01
1 3,478 11 79 18 2013/01/01- 2016/12/31
2 12,856 12 98 21 2013/01/01- 2016/12/31
3 29,683 12 101 21 2013/01/01- 2016/12/31
4 144 9 28 15 2013/02/06- 2016/12/23
5 205 10 39 18 2013/01/16- 2016/12/23
6 4,239 10 62 20 2013/01/01- 2016/12/31
7 2,675 12 89 22 2013/01/01- 2016/12/28
8 251 10 41 13 2013/01/08- 2016/12/26
9 2,791 9 55 19 2013/01/10- 2016/12/31

TABLE 2 | Attack type codebook employed in GTD.

Attack type code Description

0 Description unavailable
1 Assassination
2 Armed Assault
3 Bombing/Explosion
4 Hijacking
5 Hostage Taking (Barricade Incident)
6 Hostage Taking (Kidnapping)
7 Facility/Infrastructure Attack
8 Unarmed Assault
9 Unknown

FIGURE 2 | GTD link prediction ground-truth frequency plot.

7http://www.start.umd.edu/gtd/ 8Events for which at one link was available.
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is a reason for this methodology. Usually, in event retrieval
scenarios, analysts have an event in mind already and are
executing a more-like-this task whereby the goal is to retrieve
linked events from a database of events. As we describe later,
given such a reference event, the correct way to evaluate a
retrieval system is to produce a ranked list of candidate events
and then quantify the performance of the ranking using
information retrieval metrics. Because the rankings are with
respect to a reference event, and can be asymmetric (it is
possible for event1 to be ranked high when event2 is the
reference vector, but not the other way around), it is
appropriate to consider pairs to be ordered rather than
unordered.

3.2 Models
Given the event definition in Section 2, we explore in this section
the information sets that are expected to be useful for
representation learning, especially as applied to a downstream
task like link prediction. One reason to consider several possible
information sets is that there is a natural tradeoff between
including more information in the model, which could lead to
richer and finer-grained representations, but that may not
generalize as well (especially if some of the information is
missing in some records). On the other hand, a model that is
too coarse (e.g., that only considers the region in which the event
takes place) will likely not be able to distinguish between
sufficiently many events and will have poor retrieval
performance.

Given that events are usually accompanied by text descriptions
in databases such as GTD, the simplest possible information set is
text. A text-centric model can be constructed by simply taking the
description (also called the ‘summary’ in GTD) and not assuming
or using any other structure.

At the other extreme is a model that only takes the graph
structure into account. We refer to such a model as amulti-partite

semantic network (MPSN) model, illustrated in Figure 3.
Assuming the model is represented as an edge-list, each event
is represented using an “event ID” vertex, with edges linking the
vertex to any other vertices that characterize the event. An
important point to note here is that the different “semantic
layers” in the network must form a closed set i.e., the vertices
must be pre-specified in advance. This implies that we know the
regions, attack types (and so on) that are in our domain.
Constructing multi-partite semantic networks over open sets
of nodes is not a well-defined problem at the present moment
for the purposes of specifying and learning representations on a
network.

However, although the text-based and MPSN have their
respective advantages, one could presumably aim to take
advantage of both. On the one hand, it is difficult to frame the
text as a graph without losing its natural language structure, and
to frame the graph as text. On the other hand, representation
learning (and downstream link prediction) can accept
heterogeneous information sets as input. Keeping this in mind,
and with a view towards simplicity in the modeling stage, we
model an event with both semantic and text information sets as
E � < ET, EN >, where ET and EN are the text-centric (expressed
simply as a string) and MPSN (expressed as a sub-graph of a
network such as the one in Figure 3) representations of the event.
We refer to each component of the tuple above as an event facet.

One can even generalize the notion above, where an event has
multiple facets, and each facet captures a unique combination of
information sets. For example, we described earlier how multiple
text-centric and MPSNs are possible. Rather than pick one or the
other, one could consider “bags” of models by including each
model as an event facet. Whether it is worthwhile to do so would
depend both on how the representation learning processes this
data. We provide a brief set of results exploring such “hybrid”
models in Section 5.

3.3 Representation Learning on Models
Over the last decade, neural network models like skip-gram and
continuous bag of words (CBOW) have been used with great
effect9 to embed sequences and structured data (like graphs) into
a dense, real-valued vector space Mikolov et al. (2013). The
vectors can be used as features for link prediction. An
important question arises as to how to embed each of the
event models described in the previous section. For text-only
models, an appropriate neural text embedding such as the
word2vec, or even classic methods like the “bag-of-words”, or
term-frequency inverse document frequencymodel (TF-IDF) can
be applied. For graph-only models such as the MPSN, a node
embedding representation learning model such as DeepWalk or
node2vec can be applied Perozzi et al. (2014), Grover and

FIGURE 3 | Events modeled as nodes in a multi-partite semantic
network (MPSN). We only consider events that have at least one piece of
information associated with it (besides an event ID).

9Even more recently, so-called transformer-based neural networks such as BERT
and GPT-3 Devlin et al. (2018), Brown et al. (2020) have also been used with great
effect in NLP tasks. Their application to graph applications and event link
prediction remains untested, and they are expensive to fine-tune (requiring
supervision). We leave their exploration for this problem domain for future
research.
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Leskovec (2016). In other cases, such as the hybrid models, it is
not clear what the best way to proceed is e.g., one could
independently embed the text and graph components and
concatenate the feature vectors, or train some kind of joint
model. We detail these possibilities next, with more details on
“hybrid” models and results in Section 5.

First, concerning the text-centric models, two such models can
be considered. In the first model, an event E was simply
represented by its description or “summary” field. In the
second model, arbitrary string field values (which have non-
numeric primitive types, thereby precluding the use of dates and
integers that may cause noise in such representations) can be
“concatenated” together to form a single text field. The idea is to
supplement the description where it is sparse, or not distinctive
enough between events. For either model, the final “value” for the
event is a single text string, and the event database is exactly like a
document corpus in an NLP setting.

Representation learning on such a corpus at the document
level can be achieved in two ways, one adaptive and the other
non-adaptive. The non-adaptive model is the bag-of-words model
(also called tf-idf). It has been used prolifically in information
retrieval and document classification settings over the decade, and
remains both scalable and interpretable. However, one issue with
its usage is that the dimensions of the tf-idf vectors are sparse, large
and not able to easily generalize to unseen words, or even words
with similar meaning. Statistically, these issues were not
problematic when the corpus was extremely large, such as
search engines can often avail of.

More recently, however, adaptive models such as word
embeddings have achieved scale, while addressing the
dimensionality and sparsity issues, and thereby achieving
better performance without necessarily requiring more data.
Specifically, the adaptive model “learns” representations of
individual words using a neural network like skip-gram. A
second model is the continuous bag of words (CBOW) model,
but it has typically found to be outperformed by skip-gram. Formore
details on CBOW, and also other representation learning methods,
we refer the reader to an earlier paper on word2vec Mikolov et al.
(2013). Our text embedding relies on a more recent version of
word2vec called fastText or “bag-of-tricks embedding” that was
released openly by Facebook AI research and is able to more
gracefully handle misspelled and unusual words Joulin et al. (2016).

Concerning representation learning on the MPSN model, we
note that it is more complex than the text, but can be embedded
using a graph embedding algorithm. Most graph embedding
algorithms are technically designed for uni-partite or uni-type
graphs, as is often observed for social networks where every entity
is (for testing purposes) an individual, and every link is akin to a
friendship (or follower/followee) link. While one could (in
theory) devise complex schemes from scratch for multi-partite
graphs, a consensus on such representation learning models has
yet to emerge in the machine learning community. Therefore, for
the purposes of the empirical study and methodology in this
paper, we “treat” the MPSN as an ordinary, undirected network.
In turn, this implies that all nodes (and not just event_id nodes in
the event partition) will get embedded by the algorithm; however,
only event_id node embeddings will get used during the ranking

phase. For the embedding algorithm itself, we use DeepWalk
Perozzi et al. (2014), although algorithms like node2vec Grover
and Leskovec (2016) could also be considered by future
researchers to obtain potential performance increases.

An important point to note about all methods presented thus
far is that they work in an unsupervised fashion i.e., no “training”
links need to be observed for the system to predict them during
test time. Initially, therefore, no two event_ids in the network are
directly linked, thoughmany have indirect links (e.g., if they share
a location). The reason that unsupervised link prediction between
events is important was mentioned earlier, namely, geopolitical
events such as terrorist attacks tend to be special, irregular and
“black swan” events by definition Nassim (2007), and it is not
practical to assume that a machine (especially, deep) learning
system can be trained on a sparse set of events and still be
expected to generalize well. Although investigating the issue of
transfer learning (as applicable to this task) is a promising
direction Zhuang et al. (2020), it is beyond the scope of this
current work and we leave it for future research to pursue.

3.4 Quality Evaluation Metrics
We consider several metrics that are regularly employed both in
the link prediction as well as in the knowledge graph embeddings
literature. These metrics include Hits@10, Precision@k, Recall@k,
and Mean Rank. These metrics are defined more completely
below, but a common aspect of the metrics is that they are used to
evaluate mechanisms that take an event as input, and output a
ranked list of events as output. When events are represented as
vectors, cosine similarity is used to generate the rankings. Namely,
given an input (event) vector ein, the ranked listEout� [e1, . . ., e|E|−1] is
generated10 by computing the cosine similarity between ein and each
event vector in E − ein, where E is the set of all events. The ranked list
obeys the rule cosineSim(e1, ein) ≥. . .≥ cosineSim(e|E|−1, ein). However,
for some metrics (Hits@10 and Mean Rank) it is standard to ‘filter’
the set E for a linked event pair (in the ground truth) (ein, ei) by
removing from E all events except ei that are also linked with ein. This
ensures that the ideal rank for ei (given ein as input) should always be
1, since there is no danger that another ‘relevant’ entry is above it in
the ranked list. We now define the metrics:

Hits@10: Given an event ein as input, and a (with-held)
ground-truth linked pair (ein, ei), the Hits@10 metric measures
whether ei is in the top-10. It is important to note that Hits@10 is
evaluated independently for each pair of events linked in the
ground truth. As we noted in the example above, an event can be
linked with more than one event, which necessitates removing
true positives (except the true positive that is in the pair) from the
full set of events before evaluating the ranking.

Mean Reciprocal Rank (MRR): TheMRR is the reciprocal of the
rank at which ei occurs. UnlikeHits@10, it can be non-zero if ei is not
in the top-10 though it declines very quickly. MRR is evaluated in a
similar way to Hits@10 in that the event set has to be filtered prior to
ranking for a given input event and a withheld linked pair of events.
Because of the event filtering, the optimal MRR is always 1.

10The index of the last event in the ranked list if |E| − 1 because the input event is
not included in the ranked list.
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Normalized Discounted Cumulative Gain (NDCG): The MRR
has several issues, the most important of which is that it is designed
to work for only one relevant item per input, and declines quickly
the further away that relevant item is from the top of the list. The
NDCG is widely used in the information retrieval community as a
more robust measure. Unlike the previously described metrics,
NDCG does not assume that a given event is only linked to one
other event, and hence, filtering is unnecessary.

To compute the NDCG, we first have to calculate the DCG for
input event ein, defined by the following equation:

DCGein � rel1 + ∑
n

p�2

reli
log2(i + 1) (1)

Here, reli is the relevance of the i
th item in a ranked list of size n.

In our case, this is either a 1 (if the event in E − ein at that rank is
paired with ein in the GTD link prediction ground truth) or a 0.We
can compute the DCG of both the actual ranking and of an ideal
ranking (where all relevant items are ranked at the top), the latter
denoted as the IDCG (Ideal DCG). The NDCG is then given by:

NDCGein �
DCGein

IDCGein

(2)

Note that the NDCG is between 0.0 and 1.0, since the DCG is
always less than the IDCG. Similar to MRR and Hits@10, to
obtain performance over the entire set of input events in the
ground-truth, we average the NDCG obtained per input event.

We note finally that for each of the models described in the
previous section, the evaluation is on a uniform footing because
1) each method is unsupervised; 2) each method represents an
event as a vector11; 3) the ranked list (for an input event) for each
method is generated in an identical way, namely using cosine

similarity. In turn, this implies that, within the scope of the event
link prediction task, we can use the results to evaluate the power
of the representation (and where applicable, its ‘learning’ using
contexts and neural networks) itself.

4 RESULTS

Table 3 reports results for the text-centric models introduced in
Section 3.2. We consider using only the “summary” or
description field, as discussed therein, as well as the
concatenation of all text-based fields, which includes both the
summary, as well as the “location” field. Note that other fields,
such as attack type, date, and so on, are categorical or numerical.
Two important things stand out from the table. First, text-based
methods generally do quite well, as long as the summary is
included. As might be expected, using location alone leads
to very noisy results12. Second, we find that the classic tf-idf
method is difficult to outperform, with the embedding-based
method doing significantly worse no matter the experimental
setting. In other work, the embedding-based method usually
outperforms the tf-idf, although the margin depends significantly
on the dataset. It is possible that transformer-based models such as
BERT may end up outperforming the tf-idf but we leave an
evaluation of this hypothesis for future research. Overall, the
results are quite promising: an MRR of 57.88% (the best result,
using the simplest possible combination of tf-idf on the summary
field) implies that, on average, given an input event, the best method
is able to retrieve a relevant result between ranks 1 and 2. The
NDCG suggests that the performance gets even better once we
consider the unfiltered version of the dataset wherein an input event
can have multiple relevant events linked to it in the ground-truth.

Table 4 reports results for the MPSN methods. We find that
performance is significantly worse than the text-based methods;
however, as more information is included in the MPSN model,
the performance starts increasing. This suggests that the problem is
one of information scarcity, not faults with the model or
representation learning itself. It also provides some guidance on
the ‘information gap’ between the structured attributes, such as
attack type (AT) and target type (TT) compared to the text. Indeed,
in comparing the AT + TT + Country + Region results to the next
two information sets in the table, we find the critical importance of

TABLE 3 | Results of text-rich systems on the event link prediction task. Metrics are described in Section 3.4. In all cases below, the ranking is generated using the cosine
similarity function between the vectors.

Representation method Field(s) being represented MRR Hits@10 NDCG

tf-idf Summary 0.5788 0.9821 0.7482
Bag-of-tricks embeddings Summary 0.5247 0.9043 0.6883
tf-idf Summary + Location 0.5593 0.9657 0.7339
Bag-of-tricks embeddings Summary + Location 0.5149 0.8944 0.6838
tf-idf Location 0.0406 0.0659 0.1111
Bag-of-tricks embeddings Location 0.0377 0.05995 0.1017

TABLE 4 | Results of graph-based methods on the event link prediction task. The
representation learning in all cases was the DeepWalk algorithm.

Layers used MRR Hits@10 NDCG

Attack Type (AT)+Target Type (TT) 0.0054 0.0112 0.0575
AT + TT + Country + Region 0.0474 0.1375 0.2032
AT + TT + Date 0.2936 0.7428 0.5342
AT + TT + Country + Region + Date 0.3678 0.8637 0.6278

11This is also true of the tf-idf model, even though the vector is not derived using a
neural network, and for that reason (in keeping with terminology as it is commonly
used today), is not considered as an ‘embedding’.

12However, there is some signal in location clearly, since even a performance of 4%
onMRR, as the tf-idf achieves using location alone is far better than what would be
achieved through a random ranking of events in E − ein per input event ein.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7797927

Kejriwal Linking Geopolitical Events

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


the temporal component of the event. Unfortunately, many NLP
algorithms that extract events from text focus more on actors and
triggers rather than on temporal prediction. For such extractions to
have value in graph-based link prediction tasks, more attention
needs to be given to accurately populating spatiotemporal spans of
events, and on acquiring sufficiently robust descriptions, perhaps
by applying a summarization algorithm on event field reports
Nenkova and McKeown (2012).

5 DISCUSSION

Results in the previous section showed that there is obvious value
in both structured attributes, and in the text descriptions,
although the latter seems to contain more information than
the former for machine learning purposes. In Section 3.2, we
suggested the possibility of “combining” the text-centric model
with an MPSN in what was referred to as a “hybrid” model.
Herein, we briefly illustrate two separate results, one that uses a
joint model and another that uses an ensemble model.

Each of these two models accepts as input one of the structured
information sets in Table 4 and the ‘Summary’ field. The ensemble
model concatenates the bag-of-tricks embedding (which is set to
have the same dimensionality as the DeepWalk network embedding
applied on the MPSN) with the MPSN network embedding. We
then apply the cosine similarity, as earlier, except that the vector is a
concatenation of two vectors13. The jointmodel, in contrast, adds the
summary field as another “information set” layer in the MPSN
model illustrated in Figure 3. Because the field is text-based, rather
than structured, we combine its sentences with the random walks
output by DeepWalk prior to the algorithm applying the classic
word2vec on the random walks. The joint model is therefore
hierarchical: it combines the sentences in the summary field with
the random walks, thereby embedding words and vertices in a joint
setting. The results for both models are illustrated in Table 5.

We find again (analogous to the results in Table 4) that the
best results are achieved when the full information set is used,
with the ensemble model achieving an almost 4% improvement
on NDCG and MRR compared to the joint model. While both
text and graph attributes have value, combining them in a single

embedding framework clearly requires more thought, and an
independent summing (as the ensemble model achieves) may be a
safer approach in the absence of a large training dataset that could
be used to fine-tune such a model. We also find that none of the
methods, even in the hybrid setting, outperforms the classic tf-idf
using just the summary field, illustrating that, on difficult
problems like geopolitical event link prediction that are
sufficiently different from benchmark link prediction problems
often encountered in the literature, the utility of classic methods
cannot be discounted. However, there is still much work to be
done on the performance front since no method exceeds an
NDCG of 80%. Another promising line of future work is to
consider a supervised version of the problem wherein, in lieu of
using cosine similarity on embeddings in an unsupervised
framework, a classifier would be trained using a limited
quantity of provided linked events (training data), with the
embeddings as features. Such a classifier should yield better
performance than the unsupervised methods presented in this
article as initial approaches. Within the supervised learning
paradigm, metrics such as accuracy, precision, recall and F1-
Measure could also be applied to assess linking quality.

6 CONCLUSION

In this paper, we introduced and presented an empirical study on the
problemof event link prediction.We presented various viablemodels
for addressing the problem, derived from established literature on
representation learning, followed by a detailed set of results using
metrics inspired by the information retrieval community that has
previously been applied mostly toWeb retrieval and social networks.

Many questions still remain and constitute valuable opportunities
for future research. First, it is not clear if the superior performance of
text representations (even using simple bag-of-words approach) is
fundamentally because the text contains much more information
than the graph attributes do or because we have not designed or
applied a sufficiently powerful representational model. For instance,
it may very well be the case that the particular multi-partite semantic
network model that we considered for representing an event-record
is unsuitable, and a different model may prove to be more suitable.
Similar concerns may apply to the representation learning algorithm
used. Teasing apart these various effects is an empirical exercise.
Theoretically, muchwork remains to be done on understanding how
various algorithms and models in the machine learning and NLP
communities apply differently to events rather than to entities.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

TABLE 5 | Results of hybrid methods on the event link prediction task. E and J
respectively indicate whether the method is an “ensemble” or “joint” method.

Graph method E J MRR Hits@10 NDCG

AT + TT — X 0.1864 0.3761 0.2366
AT + TT + Country + Region — X 0.2077 0.4412 0.3294
AT + TT + Date — X 0.3184 0.7341 0.5530
AT + TT + Country + Region + Date — X 0.3772 0.8467 0.6282
AT + TT X — 0.0901 0.2244 0.1717
AT + TT + Country + Region X — 0.1221 0.3262 0.2827
AT + TT + Date X — 0.3786 0.8343 0.6156
AT + TT + Country + Region + Date X — 0.4168 0.9238 0.6623

13Mathematically, this is equivalent to summing the cosine similarities obtained
independently from the text embedding and graph embedding components; hence,
the model is referred to as an ensemble model.
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