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An accurate crime prediction and risk estimation can help improve the efficiency and
effectiveness of policing activities. However, reports have revealed that biases like racial
prejudice could exist in policing enforcement, and trained predictors may inherit them. In
this work, we study the possible reasons and countermeasures to this problem, using
records from the New York frisk and search program (NYCSF) as the dataset. Concretely,
we provide analysis on the possible origin of this phenomenon from the perspective of risk
discrepancy, and study it with the scope of selection bias. Motivated by theories in causal
inference, we propose a re-weighting approach based on propensity score to balance the
data distribution, with respect to the identified treatment: search action. Naively applying
existing re-weighting approaches in causal inference is not suitable as the weight is
passively estimated from observational data. Inspired by adversarial learning techniques,
we formulate the predictor training and re-weighting as a min-max game, so that the re-
weighting scale can be automatically learned. Specifically, the proposed approach aims to
train a model that: 1) able to balance the data distribution in the searched and un-searched
groups; 2) remain discriminative between treatment interventions. Extensive evaluations on
real-world dataset are conducted, and results validate the effectiveness of the proposed
framework.
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1 INTRODUCTION

As part of law enforcement, policing is initially expected to protect citizens, fight crime, andmaintain
community safety effectively. However, latent race prejudice of decision makers could adjust it
towards unfair directions and impair its efficiency. As one example, the New York City police
department launched Stop-and-Frisk (NYCSF) program, which is a policing practice of temporarily
detaining, questioning, stopping civilians, and searching drivers on the street for weapons and other
contraband. Such a program aims to provide communities with great potential to reduce crime in
advance and alleviate social conflicts. However, an analysis Gelman et al. (2007) in NYCSF revealed
that the rate of innocent people being stopped and searched is disproportionately high for those that
were black or Latino. It can be seen from this case that racial bias poses great obstacles for efficient
policing and resource allocation. This motivates us to 1) monitor and shape stop-and-frisk practices
through data analysis and understand how the racial prejudge influence the policing system; 2)
develop a debiasing solution for NYCSF program, which not only accounts for such bias, but also
eases the burden on the police system and mitigates ethical conflict.
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Previous works Meares (2014); Tyler et al. (2014) on NYCSF
program mainly discuss the existence of biases, e.g., race, age,
geographic distribution Gelman et al. (2007) and evaluate its
social impact in a data analysis way. To obtain an effective
countermeasure, it is promising to adopt fairness methodology
Locatello et al. (2019); Zafar M. B. et al. (2017); Viswesvaran and
Ones (2004); Hashimoto et al. (2018) from the machine learning
community into this specific task. The main idea is to define
sensitive attributes first, like race in this case, and then enforce
fairness across racial groups. Recently, Khademi et al. (2019)
introduces a matching-based causal fairness method and enforces
predicted crime rate to be the same across race populations.
However, this assumption may be too presumptuous since crime
rates among race populations are different in the real-world
scenario. The prompted fairness will inevitably damage the
community’s safety. This observation inspires us to think: how
should we understand the bias in NYCSF programs and how can
we mitigate such bias without making unrealistic assumptions?

To identify the racial prejudice of polices, we conduct a series
of data analysis experiments, and found that it can be modeled in
the form of selection bias. Concretely, we separate each racial
population into multiple groups using multiple different criteria,
and compare the criminal rate in each group. From the result, we
found that 1) the black race sample has the lowest criminal rate
which contradicts the stereotype image of most people Gelman
et al. (2007), 2) racial distribution of the observed searched group
is quite different from that of the un-searched group,We visualize
the results in Figure 1A. These interesting observations motivate
us to study the bias embedded in the ‘search’ action. Taking one
more step, we calculate the search rate of each race in the whole
population, and show it in Figure 1B. It is clear that black race is
overwhelmingly searched compared to other groups, hence

inducing a lower criminal rate. From analyzing these statistics,
one mechanism from which the bias in NYCSF program
originates can be exposed: police stop and search suspicious
passengers based on their own judgement, in which racial
prejudices could lie, and cause the selection bias problem.
Hence in this task, racial prejudice can be estimated through
modeling the distribution of ‘search’ action, which in turn can be
used to alleviate the bias.

Based on previous analysis, in this paper, we study a debiasing
crime prediction task for the NYCSF program, and attribute the
bias as a selection bias. This problem is under-explored in the
NYCSF program, which poses two main challenges: 1) Lacking
theoretical analysis. Why is the supervised predictor biased when
training on observational data? Is there any theoretical insight
that can help us understand this problem and then provide
guidance to mitigate selection bias? 2) Lacking unbiased data.
The biased training data lacks important signals about what the
unbiased data looks like. How can we model such unbiased data
distribution and design our loss function?

To answer the first question, We formulate our problem from
an empirical risk minimization (ERM) perspective. The bias can
be formulated as the risk discrepancy between the empirical risk
and the true risk, which can be solved in a re-weighting
formulation. To better understand the meaning of discrepancy,
inspired by counterfactual modeling Pearl et al. (2009); Pearl
(2010) and causal inference Kallus (2020); Hernán and Robins
(2010); Khademi et al. (2019), we hypothesize the counterfactual
distributionWu et al. (2019a) of each driver, and then show that a
supervised estimator can be unbiased only when selected
probability, i.e., the searched probability of drivers by the
police, is known and fixed. To sum up, selection bias accounts
to risk discrepancy. This conclusion can also provide us with an

FIGURE 1 | Statistical analysis on NYCSF dataset. Figure (A) shows the black racial population has the lowest criminal rate than other race populations in both
searched/un-searched groups. Figure (B) shows the black is overwhelmingly searched. Selective enforcement makes more black people searched by police while most
of them are innocent.
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insight to solve the second challenge. The insight is that a better
design of selection mechanism modeling that helps us to estimate
the unbiased distribution from observational data may help
address this problem.

Inspired by causal inference Pearl (2010), we resort to
counterfactual modeling to solve the second challenge.
Regarding searched/unsearched action as a treatment/
control intervention Wu et al. (2019a) respectively, the
core idea in causal inference is to create a pseudo
population where the distributions of the treated group
and control group are similar. So the outcome is
independent with treatment conditional on the
confounder. Confounder is race prejudged here which
introduces selective enforcement. In causal inference,
inverse propensity weighting (IPW) Austin (2011) is a
classical re-weighting method for its simplicity and
effectiveness. Propensity score represents the probability
that a driver is searched by the police. However, applying
this idea into the NYCSF program is not a trivial problem.
First, the propensity score in IPW is fixed and partially
observed from observational data. As reported, the police
enforcement way is correlative with spatial information and
also depends on intractable randomness, e.g., burst events,
weather circumstance. It is essential to consider unknown
factors into the propensity score estimation. Second, two
dilemmas make the implementation challenging. 1) We
assume the driver’s criminal results should not be changed
if the driver is searched or would not be searched. To achieve
this goal, it is desirable to balance treatment groups with
control groups w.r.t. the distributions of confounder
representations. 2) Data distribution in treated and control
groups should be distinguishable. Intuitively, professional
experience makes policies to search for potential criminal
drivers.

In response to the above problem, we propose an adversarial
based re-weighting method to mitigate selection bias for NYCSF
crime prediction tasks. To consider unknown factors into
propensity score estimation, we do not calculate the value
from observational data directly. We first formulate the
counterfactual distribution estimation problem, e.g., ‘what
would the criminal results be if the driver has (not) been
searched?’ To learn a fair data representation, we restrict the
crime label from being changed when we generate the
corresponding counterfactual counterpart. Consequently, we
obtain a variant of the propensity score estimator which
considers uncertainty. Considering the two conflicting
properties inherent in debasing NYCSF task, we formulate the
two desired data of handling selection bias as a minimax game. In
this game, we train a base player to improve the crime
classification accuracy. At this time, the re-weighting
framework balances the distribution between treated and
control groups. The weighting function is regarded as an
adversary, which confuses the treatment discriminator. Our
contribution are listed as follows:

• We study a fair and effective policing problem from a novel
selection bias perspective in the NYCSF task. We provide

detailed theoretical analysis to show inconsistency issues of
supervised learning on observational data. To the best of our
knowledge, we are the first to analyze this problem
empirically and theoretically.

• Inspired by the inverse propensity weighting method (IPW)
in causal inference, We propose a simple deferred re-
balancing optimization procedure to apply re-weighting
more effectively. The proposed counterfactual re-
weighting method connects theoretical results in causal
inference with crime prediction to improve the
estimation efficiency. Different from fixed propensity
score estimation in IPW, the proposed re-weighting score
considers unknown factors with a learning function.

• Accordingly, to both balance the data distribution in the
treated and control group andmake the learned distribution
distinguishable, we shift the re-weighting objective into a
minimax game.

• We conduct extensive experiments on the realistic NYCSF
dataset to validate the effectiveness of our method.
Compared to the baselines, the proposed method
improves crime rate efficiency. Besides, it can mitigate
racial prejudice from an exposure bias perspective, taking
into account both efficiency and fairness.

2 RELATED WORKS

Fairness These laws typically evaluate the fairness Calmon et al.
(2017); Kamiran and Calders (2009); Agarwal et al. (2018); Zafar
B. et al. (2017); Louizos et al. (2015) of a decision making process
using two distinct notions Zafar M. B. et al. (2017): disparate
treatment Krieger and Fiske (2006); Locatello et al. (2019) and
disparate impact. Feldman et al. (2015); Hashimoto et al. (2018)
Disparate treatment refers to intentional discrimination, where
people in a protected class are deliberately treated differently.
Disparate impact refers to discrimination that is unintentional.
The procedures are the same for everyone, but people in a
protected class are negatively affected. While disparate impact
discrimination is not always illegal. These two definitions,
however, are too abstract for the purpose of computation. As
a result, there is no consensus on the mathematical formulations
of fairness.

In general, there has been an increasing line of work to address
fairness in machine leaning models, most of them can be
categorised into three groups: 1) individual fairness Biega et al.
(2018); Kang et al. (2020) 2) group fairness Srivastava et al.
(2019); Fleurbaey (1995) 3) causality based fairness. Kallus
(2020). Individual fairness expects similar individuals to have
similar outcomes. It’s not easy to find a suitable distance metric.
Group fairness notions require the algorithm treat different
groups equally. The most commonly used group fairness
notions include demographic parity Andreev et al. (2002),
equal opportunity Arneson (1989), equalized odds Hardt et al.
(2016) and calibration Pleiss et al. (2017). However, they only use
sensitive attributes and outcome as meaningful features. The
above two notions all based on passive observed data. To
provide a possible way to interpret the causes of bias,
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causality-based fairness notions Kusner et al. (2017) are defined
based on different types of causal effects, such as total effect on
interventions Funk et al. (2011), direct/indirect discrimination
path-specific effects Chiappa (2019), and counterfactual fairness
on counterfactual effects Garg et al. (2019); Xu et al. (2019).
Identifiability Avin et al. (2005) is a critical barrier for the
causality-based fairness to be applied to real applications. Wu
et al. (2019b) develop a constrained optimization problem for
bounding the PC fairness, which is motivated by the method
proposed in Balke and Pearl (1994) for bounding confounded
causal effects. It is also hard to reach a consensus in terms of what
the causal graph should look like and it is even harder to decide
which features to use even if we have such a graph.

Propensity Scoring in causal inference Biases caused by
confounders Greenland and Robins (2009) have been
extensively studied in the causal inference Pearl (2010)
domain, and one most popular direction addressing it is
utilizing the propensity score Austin (2011). Propensity score-
based methods re-weight samples from different treatment
groups, to balance the distribution. After re-weighting using
propensity score, the distribution of observation will be similar
across treatment groups. One classical propensity scoring
methods is Inverse Propensity Weighting (IPW) Austin
(2011), in which the weighting score is equal to the inverse of
the probability of receiving the treatment.

Our approach also follows this line of work. However, the
directly computed propensity score in existing approaches may
be suboptimal, as the assumption of equality across groups is too
presumptuous for this task. This observation motivates our
design of introducing an adversarial module.

3 STOP-AND-FRISK BY NYPD

In this section, we will first introduce the working mechanism of
the Stop-and-Frisk program, and then introduce the collected
data provided by the New York City Police Department (NYPD).

3.1 NYCSF Program
NYPD launched the Stop-and-Frisk program for recording and
analyzing police officer’s regular enforcement practice. In the
Stop-and-Frisk program, there are generally three types of actors:
1) the official police, who can stop a person and check whether
there are weapons or drugs carried by the suspect, with filling out
a form recording the details; 2) the suspect, who is subjected to the
stops; and 3) the environment,in which the stops occur, including
location illustration and time records. After an individual is
stopped, officers may conduct a frisk (i.e., a quick pat-down of
the person’s outer clothing) if they reasonably suspect the
individual is armed and dangerous; officers may additionally
conduct a search if they have probable cause of criminal
activity. An officer may decide to make an arrest or issue a
summons, all of which is recorded on the UF-250 form.
Responses are subsequently standardized, compiled and
released annually to the public.

Table.1 shows the description of the NYCSF dataset. The
NYCSF dataset contains a variety of heterogeneous information

about all entities. Entities of each type include various
information in the form of unstructured data, such as text,
and structured data, such as geo-spatial, numerical, categorical,
and ordinal data.

In this paper, we mainly discuss the bias introduced by subject
races, hence we view race as the sensitive attributes. This form
records various aspects of the stop, including demographic
characteristics of the suspect, the time and location of the
stop, the suspected crime and the rationale for the stop (e.g.,
whether the suspect was wearing clothing common in the
commission of a crime). One notable limitation of this dataset
is that no demographic or other identifying information is
available about officers. The forms were filled out by hand and
manually entered into an NYCSF database until 2017, when the
forms became electronic. The NYCSF reports NYCSF data in two
ways: a summary report released quarterly and a complete
database released annually to the public.

3.2 Constructed Features
For the NYCSF program, we collect features from characteristic
information and environment information perspectives, and
highlight the key aspects of the data on Table 1.

3.2.1 Characteristic Information
The subject features can be grouped into four categories: suspect
demographic characteristics, suspect physical and motion profile,
police profiles. We regard the subject race as sensitive attributes
which will be discouraged in the realistic world. We also regard
other demographic characteristics like suspect description,
suspect hair color, suspect eye color, body build type as
sensitive relevant attributes.

3.2.2 Environment Features
The environment features can be grouped into two groups:
primary stop circumstance, like furtive movement, actions of
violent crime; additional stop circumstance, e.g., stop street name,
time of day.

These features are very heterogeneous, including both
numerical, categorical data and also text. For consistency, we
represent all features as numerics or numerical vectors Ren et al.
(2018). Specifically, for the categorical data with less than 8
dimensions, such office rank, office explained stop flag, we
adopt the one-hot encoding, i.e., converting a categorical
variable within categories into a binary vector, in which only
the value in the corresponding category is set to one and the other
values are set to zero. For categorical data with more than 8
dimensions, such as geo-spatial data, i.e., location precinct, City,
we use the count encoding, i.e., replacing the variables by the
respective count frequencies of the variables in the dataset. For
text data, such as street name, suspect description, we adopt glove
Pennington et al. (2014) to convert text into vector embedding
and use the means of embedding to represent the semantic
information. Since location information has high
correspondence with subject race Gelman et al. (2007) and
can leakage subject information, we assume street name, GPS
coordinates, location type and precinct as sensitive relevant
attributes.
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4 PRELIMINARY

In this section, we present notations used in this work, and
formally define the stop-and-frisk crime prediction problem.

4.1 Problem Formulation
We first set up the notations. Consider we have a crime prediction
system with a driver’s feature set xs ∈ S and a police set xp ∈ P in
the current environment xe ∈ E. Let xs represent subject
information, like driver profile and behavior information; xp
represents a corresponding police officer for each driver, and
xe represents environment information. We set x �
[xs, xp, xe] ∈ Rd to concatenate heterogeneous data, where d is
the number of feature dimensions. Each driver has a binary label t
∈ {1, 0} to denote whether the driver is searched by the police or
not. In the following, to keep consistency, we set t � 1 as treatment
and t � 0 as control. The associated labels y ∈ {0, one} are from the
observational label space Y to represent the crime results.
Formally, the collected history recording data Dn can be noted
as a set of triples {(xi, ti, yi)}1#i#|Dn| generated from an unknown
distribution pu(x, t, y) over driver’s feature-treatment-crime label
space X × T × Y. The goal of our crime prediction framework is to
learn a parametric function fθ: X × T → Y from the available
historical recording Dn to minimize the following true risk:

L(fθ) � EPu(x,t,y)[δ(fθ(x, t), y))], (1)

where we denote δ(fθ(x, t), y) as the error function of the
predicted output score with fθ(xi, ti) with the ground-
truth label y. Pu(x, t, y) denotes the ideal unbiased data
distribution. To be specific, bias refers to selection bias
here, which means the searching actions are based on the
police judgement.

Since the true risk is not accessible, the learning is conducted
on the historical recordings Dn ∼ Pn(x, t, y) by optimizing the
following empirical risk:

L(fθ) � 1
|Dn| ∑

|Dn |

i�1
δ(fθ(xi, ti), yi), (2)

Based on the law of large numbers, the PAC theory Auer
et al. (1995) states that empirical risk minimization can
approximate the real risk if we have sufficient training
data. With training instances sampled from random trials,
the large amount of collected data can approximate the real
data distribution for the reason of missing at random Shpitser
(2016). However, as we mentioned above, because of the
police selective enforcement, selection bias is demonstrated
in this stop-and-frisk program.

TABLE 1 | Summary of key information recorded on the UF-250 Stop-and-Frisk form.

Feature level Category Feature type Feature Description

Character
Information

Suspect Demographic
Characteristic

relevant sensitive
features

Race Category: ‘BLACK HISPANIC′, ‘WHITE’,‘ASIAN ‘, ‘WHITE
HISPANIC′, ‘AMERICAN INDIAN′

Hair Color A brief report of hair color
Sex Sex of suspect: male and female
Age Age of all suspects: from 6 to 99
Weight/Height Weight/Height of Suspect
Body build Thin, heavy or medium of the suspect
suspect other
description

first glance description about the subject

Event Varying Stopped Way Frisked, Searched or Not
Mental Activity Suspect’s Reflection when they are stopped, like complain, calm,

nerves
Weapon found Whether found weapon if suspect is searched/frisked
Drug Found Whether found drug if suspect is searched/frisked
Criminal Label generally, we regard arrested and summon as guilty
initiated stop The way to chasing the suspect who in the car: radio run, call or

others
Work Status Whether In Uniform

Police Profile others Official Rank Official Rank, e.g., PBM, Non
others Official explained

stop flag
Whether the police explain the reason for the stop, yes or no

others Official uniform flag
stop

if the police are in uniform when the stop happened, yes or no

Environment
Information

Primary Stop Circumstance(s) Location Varying Witness Report Brief summarization Of Witness
Witness Report Brief Summarization Of Witness
Inside Or Outside Openness Of This case

Event Varying Stop Duration Minutes Exact Stop Duration Time
Location Circumstance(s) Static GPS Coordinates GPS of the stopped by location

Precinct Precinct of location
Location Type Public Housing, public Transit
Stop Location Street
Name

Corresponds With Precinct
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5 SELECTION BIASES IN STOP AND FRISK
PROGRAM

In this section, we first show the origin of selection bias in stop-
and-frisk program. Then, the influence of biased training data on
supervised models is analyzed. Motivated by these results, we
propose to address this bias issue from the selection bias
perspective, and present annotations depicting the problem in
the end.

Selection bias. This issue happens as police are free to select
drivers and check whether they hold weapons or drugs, and these
selections are latently influenced by prior prejudices, which could
be unfair towards some groups. We illustrate this phenomenon in
Figure 1. (a), from which it can be seen that the selective
enforcement makes the observational criminal race population
fail to represent the real criminal distribution across racial groups.
Selective bias can be easily understood from a risk discrepancy
perspective–it skews the observational distribution pn(x, t, y)
from an ideal uniform selection enforcement pu(x, t, y).

Biased training on observational data. In the previous part, we
have conducted a data analysis to demonstrate that race prejudice
is a confounder in stop-and-frisk program, which lies behind the
police selective enforcement. In the following part, we first
provide a theoretical analysis to show the inconsistency issue
of supervised models trained on a dataset with selection biases.
This issue further motivate us to answer the question: can
theoretical analysis provide us with several guidelines on how
to alleviate the biases?

Given observational data x ∈Dn, we let p
1(t) � p(Y � 1, x, T � t)

and p−1(t) � p(Y � − 1, x, T � t), t ∈ {0, 1} represent the joint
distribution of positive and negative criminal result under either
treatment intervention. A supervised model fθ is biased when
training on observational data under unknown selection
mechanism p(t|x).

Lϕ(fθ, p
(1), p(−1))

� ∑
t∈{0,1}

ϕ(f(x, t; θ))p(1)(t) + ϕ(−f(x, t; θ))p(−1)(t), (3)

We replace f(x, t; θ) with α for simplicity, then:

infLϕ(fθ, p
(1), p(−1))

� ∑
t∈{0,1}

inf
α
{ϕ(α)p(1)(t) + ϕ(−α)p(−1)(t)}

� ∑
t∈{0,1}

p(1)(t) inf
α

ϕ(α) + ϕ(−α)p
(−1)(t)
p(1)(t){ },

(4)

Set Δ(μ) � − inf α(ϕ(α) + ϕ(− α · μ)). As Δ(μ) is a convex and
continue function of μ, we can obtain:

infLϕ(fθ, p
(1), p(−1)) � ∑

t∈{0,1}
p(1)(t)Δ p(−1)(t)

p(1)(t)( ). (5)

It is clear that Eq. (5) is the f-divergence induced by Δ, where
DΔ(P(1)‖P(−1)) � ∫f( dP(1)

dP(−1))dP(−1) which measures the
difference between two probability distributions P(1) and P(−1).
To sum up, the optimal fθ can only be achieved by solving Eq. (5),

where P(1) and P(−1) should be known. It can be seen as a specific
form of f-divergence. It is obvious that when P(t|X) is unknown,
the optimal f p depends on P(t|X) will not be recovered. The
traditional supervised method can only serve as a biased
estimator, since they assume selection bias as 1 for all samples.

So far we have done statistical analysis on the NYPD
dataset and find the criminal rate is heavily correlated with
stop and frisk rates as well as spatial information. Since it is
not suitable to force group fairness on crime prediction since
data analysis demonstrates that each racial population indeed
has different criminal rates, we propose to address this issue
from the selection bias perspective–that criminal rates are
subjective, the probability that each race is exposed to police.
Estimators would be biased if we do not take selection bias
into consideration during its design. In the next section, we
will propose our solution to this problem.

Before introducing our solution, we first give the annotations
used to show the selection bias. We define y(t � 1) to be the crime
label if the driver would be searched by the police. Conversely, we
denote y(t � 0) as the unsearched outcome in the counterfactual
world. The pair (y(0), y(1)) is the potential outcomes notation in
the Rubin causal model, where selection enforcement is a
“treatment” and a crime result of the associated driver is an
“outcome.”

Our goal is to train a supervised model fθ(xi, ti) which takes the
instance feature xi and treatment indicator ti as input. We use
shorthand fθ(xi, ti) to denote the output score and the loss with
respect to yi is given by Lϕ(fθ(xi, ti), yi). We use p(ti|x\xo) to denote
the propensity score, e.g., the probability that the current driver is
under the status of treatment (searched) or control (unsearched)
based on driver profile and environment information.

6 A GENERAL DEBIASING FRAMEWORK

Previous analysis shows that selection biases exist behind police
enforcement, and account for the risk discrepancy. In this section,
we first propose to address it via a general debiasing framework,
then discuss how to formulate it inside the causal inference theory
so that it can be solved with tools from that domain. In the end,
we show the formalized formulation and talk about the
optimization process. We illustrate our framework in Figure 2.

6.1 A Debiasing Empirical Risk
Data analysis has demonstrated that racial prejudice is a
confounder in the NYCSF program, and causes the police
selective enforcement. Motivated by it, our goal is to
approximate an ideal while unknown distribution pu given
observational data pn. To deal with it, a general method is to
training sample and obtain a re-weighted empirical risk function:

L̂(fθ|w) � 1
|Dn| ∑

|Dn|

i�1
wi · δ(fθ(xi, ti), yi), (6)

where the weighting parameter wi is properly specified,
i.e., wi � pu(xi,ti,yi)

pn(xi,yi,ti), measuring the discrepancy between
selection bias eliminating data and observational data
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distribution. Such empirical risk is an unbiased estimation of the
true risk.

As we mentioned above, selection bias arises from the fact
that we only have one observational data, e.g., the polices stop
and search the current data, while we known its
counterfactual outcome, ‘what will the crime result be if
the current driver is not searched by the police.’ To be
general, we denote the counterfactual distribution as pc(x,
t, y(t)). It is intuitive that the ideal data distribution is the
combination of observational pn and counterfactual data pc,
i.e., pu � pn + pc. Since we make the assumption that whether
the driver is searched or not, his crime results should not be
changed. Consequently, we make the corresponding
counterfactual definition:

Definition (driver-based Counterfactual outcome.) Given
driver’s feature x, his criminal label y, and treatment t. We
assume his potential outcome as y(t), which denotes the
expected criminal label with treatment t enforced. Concretely,
we assume the label should not be changed, i.e., y(t) � y.

Assumption. (positivity). Given driver’s feature x, we assume the
propensity score p(t|x) > 0. That is every driver has a positive
probability to be searched by polices. This assumption is also
consistent with the overlap assumption in causal inference.

In the following, we introduce how to model the
counterfactual distribution pc based on the observational data
distribution pn.

6.2 Counterfactual Outcome Estimation
As we mentioned above, the re-weighted empirical risk function
is an unbiased estimation of the true risk which approximates an
ideal but unknown distribution, i.e., observational distribution pn
and counterfactual distribution pc. To better estimate the
weighting score, we estimate the counterfactual outcome
distribution in this section, and connect its formulation with
re-weighting method.

In a realistic world, we only observe y for either t � 1 or t � 0,
and the corresponding counterfactual outcome is never observed,
which connects causal inference with a missing data mechanism.
With re-weighting techniques, the criminal results distribution in
both observational and counterfactual world can be represented
as :

pα(Y(t), T|X)

� p(Y(t)|T � t, X) · p(T � t|X) · pα(T|Y(t), X)
pα(T � t|Y(t), X)),

(7)

where pα(T|Y(t),X)
pα(T�t|Y(t),X)) counters the missing ratio in the observational

distribution pn. To be specific, we set T as t, which makes
intervention equal to observational treatment. In this case, Eq.
(7) can be represented as:

pα(Y(t), T � t|X)

� p(Y(t)|T � t, X) · p(T � t|X) · pα(T � t|Y(t), X)
pα(T � t|Y(t), X))

� p(Y(t), T � t|X),

(8)

In which pα(Y(t), T|X) can be estimated from observational
data. In this way, empirical risk would be equivalent to the true
risk. To connect Eq. (7)with a counterfactual outcome, we set T �
1 − t and make the intervention to be the opposite action in the
realistic world.

pα(Y(t), T � 1 − t|X)

� p(Y(t), T � t|X) · p(T � t|X) · pα(T � 1 − t|Y(t), X)
pα(T � t|Y(t), X)) .

(9)

Specifically, we set t � 1 in Eq. (9) and pα(Y(1), T � 0|X)
represents the joint distribution that the driver is not searched by
the police if he were searched. Since p(Y(t), T � t|X) and p(T � t|X)
can be estimated from observational data, our goal on generate
counterfactual outcome is to approximate pα(T�t|Y(t),X))

pα(T�1−t|Y(t),X)
including unknown factors Y(t). To ensure simplicity, we
replace the term pα(T�t|Y(t),X))

pα(T�1−t|Y(t),X) with a learnable function of
gα(T|X, Y(t)). Reminding our goal in Eq. (6), we minimize the
real learned risk L̂:

J(θ, α)dmin L̂(θ, α)

� min
1

|Dn| ∑
|Dn|

i�1
gα(T|X,Y(t)) · δ(fθ(xi, ti), yi).

(10)

Since we do not have ground truth for gα(T|X, Y(t)) as
supervised signals. To make Eq.(10) tractable, using definition
1, i.e., y(t) � y, we approximate gα(T|X, Y(t)) to gα(T|X, Y), which
is a variant of inverse propensity score Austin (2011).

The NYCSF program can be taken as an example to illustrate
the implication of gα(T|X, Y). There are two dilemmas to
understand selective enforcement pα(T|X), where T ∈ {0, 1}.
On the one hand, it is desirable to balance the distributions
between the treated and the controlled groups, which can satisfy
the unconfounded assumption in causal inference Hernán and
Robins (2010):

y(1), y(0) v t|x. (11)

Given the latent feature representation hi, the representation
balancing methods design a distance measurement metric, e.g.,
f-divergence, to minimize the representation between P(h|x; t � 1)
and P(h|x; t � 0). As a consequence, the outcome is independent
with treatment given the input data.

On the other hand, in the NYCSF platform, data distribution
in the treated and control group should be different: criminal
drivers should have a higher probability to be stopped and
searched by police. In this way, the data distribution should be
indicative to its treatment prediction, i.e., P(h|x; t � 1) and P(h|x;
t � 0) should contain distinguish feature representation and
should not be similar with each other.

With this in mind, we assume gα(T|X, Y) holding the following
two properties:

• Selective Enforcement Equality. As a adjustment weight,
gα(T|X, Y) is expected to balance treatment groups with
control groups w.r.t, the distributions of confounder
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representations, e.g., race prejudge. Hence the crime results
are independent with the selective enforcement.

• Selective Enforcement Disparity. At the same time, driver
distributions under treatment and control are desired to be
different, which is indicative of selective enforcement.

Since the aforementioned considerations contradict each
other, we introduce an adversarial re-weight method for a
better risk minimization.

6.3 Adversarial Reweighted Method
Concretely, we introduce an auxiliary gα to both approximate
selection-bias eliminated data distribution and make the
learned distribution distinguishable to its treatment. There
are many variants of generative models that meet the two
requirements Creswell et al. (2018). Inspired by existing
works Xu et al. (2020); Hashimoto et al. (2018), we design
a min-max game to solve the above problem. Here we regard
the prediction model as a player and the weighting function
as an adversary for simplicity. We can formulate our fairness
objective as:

J(θf, θy, αt)dmin
θf,θy

max
αt

L̂(θf, θy, αt)
� min

θf,θy
max
αt

Exi ∼ Dngα(fθ(x), y; α) · δ(fθ(xi, ti), yi)
� min

θf,θy
max
αt

L̂(θf, θy)/L̂(θf, αt). (12)

To derive a concrete algorithm we need to specify how the
players and adversary training parameters θf, θy, and αt. At the
saddle point, the feature mapping parameters θf both minimizes
crime classification loss as well as maximizes treatment prediction
loss. For parameters θy and αt, they both penalize the crime
prediction loss and treatment loss.

Observe that there is no constraint on gα in Eq. (12), which
makes the formulation ill-posed. Based on our Positivity
assumption in causal inference, i.e, p(t|x) > 0, it is clear
that gα needs to satisfy the positivity assumption: gα > 0.
Besides, to prevent exploding gradients, it is important to
normalize the weights across the dataset (or in the current
training batch). In principle, we perform a normalization step
that rescales the value of the adversary weighting component.
Specifically, we make:

wα � 1 +N · gα(t|x, y)
∑N

i�1gα(t|x, y)
. (13)

where N is current batch sizes. Finally, we present the objective
function of the proposed minimax game in two stages:

(θ̂f, θ̂y) � arg min J(θf, θy, α̂t) (14)

α̂t � argmax J(θ̂f, θ̂y, αt). (15)

Without loss of generality, we treat the objective in Eq. (12) as
two component of leaner and adversary: argminθ̂f,θ̂yJ(θf, θy, α̂t)
and argmaxα̂tJ(θ̂f, θ̂y, αt). To handle the adversarial training, we
adopt the optimization setup where the learner and adversary
take turns to update their model. A more detailed training
optimization can be found in Goodfellow et al. (2014).

7 EXPERIMENT

In this section, we first briefly describe the dataset, baselines and
evaluation metrics. Then we evaluate our proposed method on
the top of baselines to show its desirable performance on both the
fairness and efficiency metric. Our experiments aim to answer the
following research questions:

• RQ1: Can the proposed method be more robust and
effective than the standard re-weighting approach, like
the inverse propensity weighting method (IPW)?

• RQ2: Can the proposed method mitigate ethical conflicts in
the NYCSF program as well as improve efficiency?

• RQ3: Are learned weights meaningful and why is our
proposed method effective?

• RQ4: Is our method sensitive to the sensitive group size?

7.1 The NYC Stop and Frisk (NYCSF)
Dataset
We retrieve and collect the publicly available stop, search and frisk
data from The New York Police Department website during 2018
January to 2019December. This dataset serves demographic and other
information about drivers stopped by NYC police force. Since police
enforcement is dynamically changed. To validate the robustness of
our method, we partition the each annual data into two continues
subsets, e.g., ‘NYCSF_2018F(irst)’ and ‘NYCSF_2018L(ast)’, whose
durations are half years. For each subset, we select the former 4-
month as training set, and the following 2 month as validation and
testing set respectively. We also mix the 2 year dataset as a
‘NYCSF_Mix’ dataset, then we randomly split the dataset as 7:2:
1 for training, testing and validation respectively.

For data processing, since some ‘null’ value only means ‘False’
in NYCSF stops. We carefully analyze the data, and replace
‘(null)’ with ‘F’. For the remaining data, we drop the data
records with default or wrong values. For the textual feature,
e.g., witness reports, we initialize the lookup table for textual data
with the pre-trained vectors from GloVe Pennington et al. (2014)
by setting l as 300. For numerical values, we encode categorical
variables with one-hot embedding.

7.2 Baselines and Evaluation Metrics
In this section, we mainly describe baselines and evaluation
metrics. For all the methods, we regard race as the sensitive
attribute.

1) MLP Gardner and Dorling (1998). The vanilla model using
multilayer perceptron (MLP) as the network architecture.
This is the base model which does not take fairness into
consideration. Since we take little attention on the model
architecture in this paper and to make a fair comparison, we
also use MLP as base model for other baseline.

2) IPW Austin (2011). Inverse propensity weighting (IPW) is a
general re-weighting based method in causal inference which
aims to balance the data distribution in treated and control
groups.
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3) Unawareness Grgic-Hlaca et al. (2016). Fairness through
unawareness refers to leaving out sensitive attributes, such
as driver race and other characteristics deemed sensitive and
only takes remaining features as input.

4) PRP Hardt et al. (2016). Equality of Opportunity which is
defined as an equality of the False Positive Rates across groups.

5) LFR Feng et al. (2019). LFR takes an adversarial framework to
ensure that the distributions across different sensitive groups
are similar.

6) Ours. We propose an adversarial re-weighting method. We
train a base crime prediction classifier as a player, and use a
treatment prediction classier as an adversary.

Evaluation Metric: To measure the efficiency and fairness,
following existing works in Wick et al. (2019), we adopt F-1
score as our utility metric and adopt demographic parity
(DP) Feng et al. (2019) as our fairness metrics. Unlike
accuracy which is easy to achieve high performance for
trivial predictions, F-1 shows discrepancy of class
imbalance Wick et al. (2019). We stratify the test data by
its race label, compute F1 score for each racial group and
report: 1) Macro-F1: macro average over all racial groups; 2)
Minority F-1: the lowest F1 score reported across all racial
groups. To evaluate fairness, demographic parity requires the
behavior of prediction models to be fair on different sensitive
groups. specifically, it requires the positive rate across
sensitive attributes are equal:

E(ŷ|S � i) � E(ŷ|S � j),∀i≠ j (16)

In the experiment, we report difference in demographic parity:

ΔDP � E(ŷ|S � i) � E(ŷ|S � j),∀i≠ j (17)

7.3 Performance Comparison
7.3.1 With Inverse Propensity Weighting (IPW) Method
To answer RQ1, we fix the base classifier as MLP and conduct
classification on all three datasets. To better understand if our
model is effective in mitigating selection bias, we compare our
method with vanilla MLP and IPW methods. Vanilla MLP does
not take any strategies addressing the bias problem. IPW balances
the data distribution between treated and control groups, which
can minimize weighted empirical risk and approximate unbiased
data distribution. We fix the base classifier as MLP and conduct
classification on all five datasets.

Table 2 summarizes the main result and we make the
following observations:

• The proposed model mostly achieves the best performance
regarding all evaluationmetrics. It manifests the importance
of the adversarial re-weighting framework. Besides,
selection bias in the NYCSF dataset indeed exists, hence
MLP is inferior to other methods most of the time. It is
interesting and essential to mitigate ethical conflicts in the
NYCSF program in a debasing way.

• Selection bias, i.e., police selective enforcement, is
dynamically changed with time, making it essential to

take unknown factors into consideration. It is obvious
that the prediction score over the all time variant dataset
is different. Compared with IPW, our method is more
robust since it considers unknown factors into the
formulation of a dynamic weighting score.
Meanwhile, it is effective to both balance treatment
groups with control groups and make the data
distribution distinguishable.

• IPW can improve subgroup fairness by adjusting data
distribution under both treated and control groups.
Compared with MLP, IPW assigns a propensity score
to each sample, hence the minority is over-represented
by the model–different sensitive groups have
similar probability to be represented in the front of
the police.

7.4 With Fairness Based Methods
In this section, to answer RQ2, we make a comparison with the
classical fairness based methods. To make a fair comparison, we
set the base classifier as a MLP for all the mentioned methods.
Table 3 shows the main results, and we obtain the following
observations:

• Proposed method achieves promising performance in terms
of utility and fairness across all the datasets in terms of all
time slot splitting. This result validates the assumption that
unfairness in this task is partly due to selection biases. And
our proposed method can alleviate selection for ‘stop-and-
frisk’ programs.

• Fairness based constraint can improve the group fairness.
While damaging their efficiency. It is obvious that fairness
based baselines can eliminate group gaps, while the utility
performance is lower than Ours in most of the time. This
result meets the observation that directly requiring equality
across racial groups is a too strong constraint and may
damage its utility.

TABLE 2 | Ours VS Inverse propensity score method.

Dataset Method Macro Minority ΔDP

F1 F1

NYCSF_Mix MLP 0.9648 0.9470 0.0723
IPW 0.9715 0.9517 0.0640
Ours 0.9922 0.9712 0.0621

NYCSF_2018F MLP 0.9930 0.9864 0.0848
IPW 0.9729 0.9367 0.1072
Ours 0.9804 0.9456 0.1039

NYCSF_2018L MLP 0.9385 0.9129 0.0946
IPW 0.9624 0.9229 0.1049
Ours 0.9729 0.9401 0.0901

NYCSF_2019F MLP 0.9221 0.8840 0.0996
IPW 0.9763 0.9481 0.0795
Ours 0.9922 0.9712 0.0629

NYCSF_2019L MLP 0.9074 0.8703 0.1142
IPW 0.9437 0.9015 0.1098
Ours 0.9874 0.9419 0.1012
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• A proper fairness notions and better model architecture
design is useful to improve utility. Compared with
‘Unawareness’ and ‘PRP’ methods, LFR achieves the best
utility performance, since LFR incorporates an adversarial
module to enforce fairness across groups.

7.5 Weight Analysis
We have provided a theoretical analysis on the proposed
adversarial re-weighting learning method. In this section, we
want to investigate RQ3, “are the learned weights really
meaningful?”, directly through visualizing the example weights
assigned by our model to four quadrants of a confusion matrix.
The result is shown in Figure 3. Each subplot visualizes the learnt
weight on x-axis and their corresponding density on y-axis. We
obtain the following observations:

• Sensitive groups are upsampled with a lower inverse
weighting score. It is clear that the density of minority
groups, like Asian, occupies more in the low score field.

• In Figures 3A,D, samples are classified correctly. It is
shown that the inverse propensity score of the ‘true
positive group’ is smaller than the ‘false negative group’.
Since most of the suspects are innocent, the model has
more uncertainty on the ‘false positive group’. Our

TABLE 3 | Ours VS fairness based methods.

Dataset Method Macro Minority ΔDP

F1 F1

NYCSF_Mix Unawareness 0.9612 0.9429 0.0718
PRP 0.9713 0.9425 0.0629
LFR 0.9837 0.9639 0.0598
Ours 0.9922 0.9712 0.0621

NYCSF_2018F Unawareness 0.9887 0.9834 0.0825
PRP 0.9701 0.9298 0.0801
LFR 0.9790 0.9334 0.0744
Ours 0.9804 0.9456 0.1039

NYCSF_2018L Unawareness 0.9311 0.9100 0.0914
PRP 0.9598 0.9234 0.0899
LFR 0.9712 0.9355 0.0832
Ours 0.9729 0.9401 0.0901

NYCSF_2019F Unawareness 0.9116 0.8813 0.0943
PRP 0.9701 0.9455 0.0701
LFR 0.9823 0.9630 0.0680
Ours 0.9922 0.9712 0.0629

NYCSF_2019L Unawareness 0.9054 0.8678 0.1125
PRP 0.9434 0.9211 0.1022
LFR 0.9652 0.9410 0.0983
Ours 0.9874 0.9419 0.1012

FIGURE 2 | Overview of our framework. We leverage the re-weighting framework to approximate an unbiased distribution. To better estimate the re-weighting
score, we estimate a counterfactual distribution in the stop and frisk program, and propose an adversarial re-weighting method. The learner aims to learn the re-
weighting score and adversary aims to train the classification model.
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proposed method make a counterfactual estimation on
what the suspect will do

• It is also obvious that misclassified groups are up-
weighted. Comparing Figure 3B,C, most of the weight
lies in the interval of [0.3,0.4]. And protected groups have
more probability in this interval than the majority, like
the black.

7.6 Sensitivity Analysis
In this section, to answer RQ4, we analyze the sensitivity of our
proposed model towards group size, to evaluate its robustness.
Selection bias indicates that different races are stopped and
searched differently. To replicate selection bias, we vary the
fraction of the black group and under-sample the data from
0.2 to 1.0 in the training set. We report the result on the original

FIGURE 4 | Classifier performance (F-1 score) and fairness as a function of the amount of black examples. For F-1, the higher, the better. For selection rate, the
lower, the better. (A) Macro-F1 (B) Demographic Parity

FIGURE 3 | Weight Analysis of our method. (A) Prediction �1 , label �1 (B) Prediction �1 , label �0 (C) Prediction �0 , label �1 (D) Prediction �0 , label �0
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test dataset and show the result in Figure 4. Results are reported
on the NYCSF_Mix dataset, with LFR as the baseline.

It is obvious that our model and LFR is robust to selection bias,
w.r.t. the number of group sizes. As the fraction of the black race
sample increases, we are forced to over-sample the black people.
While the fairness metric ΔDP for LFR keeps going up. Besides, we
can also observe that IPW is sensitive towards group size. This
verifies our assumption of incorporating unknown factors into
the formulation of propensity score estimation.

8 CONCLUSION AND FUTURE WORK

Summary. In this paper, we study the possible unfairness problem
behind law enforcement using data from policing program
NYCSF. Massive real-world data with detailed subject profile
and environment descriptions are collected and processed as the
dataset. Application Implication. Through analyzing the cause
and form of biases in it, we formulate it as a selection(exposure)
bias problem, and propose a countermeasure with the scope of
counterfactual risk minimization. As the exposure bias is involved
with unknown factors and cannot be directly measured, we
design an algorithm with adversarial re-weighting, and give a
detailed theoretical and experimental analysis. Future work. One
future direction is to include more features in the analysis, as
more behaviors and environment attribute may help learning

policing practices better. Besides, modeling the dynamics of law
enforcement is also one important topic, as it has been reported
that the police practices evolve with time from the official website.
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