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Machine learning (ML) models are developed on a learning dataset covering

only a small part of the data of interest. If model predictions are accurate

for the learning dataset but fail for unseen data then generalization error is

considered high. This problem manifests itself within all major sub-fields of

ML but is especially relevant in medical applications. Clinical data structures,

patient cohorts, and clinical protocols may be highly biased among hospitals

such that sampling of representative learning datasets to learn ML models

remains a challenge. As ML models exhibit poor predictive performance

over data ranges sparsely or not covered by the learning dataset, in this

study, we propose a novel method to assess their generalization capability

among di�erent hospitals based on the convex hull (CH) overlap between

multivariate datasets. To reduce dimensionality e�ects, we used a two-step

approach. First, CH analysis was applied to find mean CH coverage between

each of the two datasets, resulting in an upper bound of the prediction

range. Second, 4 types of ML models were trained to classify the origin of

a dataset (i.e., from which hospital) and to estimate di�erences in datasets

with respect to underlying distributions. To demonstrate the applicability of
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our method, we used 4 critical-care patient datasets from di�erent hospitals

in Germany and USA. We estimated the similarity of these populations and

investigated whether ML models developed on one dataset can be reliably

applied to another one. We show that the strongest drop in performance was

associated with the poor intersection of convex hulls in the corresponding

hospitals’ datasets and with a high performance of ML methods for dataset

discrimination. Hence, we suggest the application of our pipeline as a first tool

to assess the transferability of trainedmodels.We emphasize that datasets from

di�erent hospitals represent heterogeneous data sources, and the transfer

from one database to another should be performed with utmost care to avoid

implications during real-world applications of the developed models. Further

research is needed to develop methods for the adaptation of ML models

to new hospitals. In addition, more work should be aimed at the creation

of gold-standard datasets that are large and diverse with data from varied

application sites.

KEYWORDS

dataset-bias, data pooling, ARDS, convex hull (CH), generalization error

Introduction

Driven by giant leaps in compute performance, the

availability of huge datasets, and new algorithms for the training

of deep neural networks (DNN), Machine Learning (ML)

has seen a renaissance during the last 10 years. Today, ML

approaches help us discover patterns in large swaths of data,

predominantly on an automated or semi-automated basis. They

have revolutionized how we process images, video, and text.

The primary advantage of ML when compared to traditional

modeling approaches for the input-output behavior of complex

systems is the unbiased learning from data without a priori

knowledge about the system to be learned (black-box modeling

approach). Mathematically, ML algorithms are designed as

universal machines mapping a high dimensional input space

onto a low dimensional output space up to an order of

error without restrictions. The algorithms enable unrestricted

learning by a modeling strategy with a priori unrestricted

complexity of the model, e.g., expressed by the unrestricted

number of parameters to be adapted to the data. For large

classes of functions, ML algorithms, e.g., neural networks,

provide superior approximation performance compared to

all linear series expansions (Barron and Klusowski, 2018).

Recently, the equivalence of DNN learning with wavelet-based

approximations indicated the superior performance of DNN for

Abbreviations: ARDS, Acute respiratory distress syndrome; CH, Convex

hull; ICU, Intensive care unit; FiO2, Fraction of inspired oxygen;

MV, Mechanical ventilation; PaO2, Arterial partial pressure of oxygen;

PEEP, Positive end-expiratory pressure; ROC AUC, Area under receiver

operating characteristic curve.

applications with close association with image recognition and

time-series analysis (Mallat, 2016).

Data-driven models, such as ML methods, aim to represent

systems solely from available measurement data. Hence, a

critical conceptual issue of such models is their limited

performance in the case of extrapolation into data regions

sparsely covered by the data samples used for learning the

model. These models handle test data better if they come from

the same dataset used for training and generalize worse on the

data obtained from other sources (Torralba and Efros, 2011;

AlBadawy et al., 2018; Pooch et al., 2019). Model performance

drops if data used to train and test a model come from different

distributions. This difference is referred to as a domain shift

(Pooch et al., 2019). Unless strong assumptions are posed on

the learned function, data-driven models, not depending on the

output to be predicted, can only be valid in regions where they

have sufficiently dense coverage of training data points, which

is referred to as the validity domain (Courrieu, 1994). This can

be approximated by the convex hull spanned by the data, which

represents an upper bound of the validity domain for any ML

application. The convex hull (CH) of a set of data points is

defined as the smallest polytope with dimensionality equal to

the number of attributes containing the points in such a way

that every straight line connecting a pair of points lies inside

the polytope (Graham, 1972; Shesu et al., 2021). One approach

to estimate the ability of a model to generalize is to consider

the CH of the points used in a training set. Generalization

tends to fail with the increase in the distance of a new point

to the CH of the training set (Zhou and Shi, 2009). Therefore,

the coverage of the CH of a test set by the CH of a training

set represents an upper bound for the generalization ability of
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any ML-based model. In the case of learning from different

populations, the mutual coverage of the convex hulls can serve

as a measure for the sufficient similarity of heterogeneous

populations enabling the first estimate for the reliability of the

generalization of ML models. Hence, one possible approach to

examine different populations for homogeneity concerning the

predictive performance of ML models is to perform a convex

hull analysis of the available data to be used for training and

prediction, respectively (Ostrouchov and Samatova, 2005; Zhou

and Shi, 2009).

However, even if the convex hulls of training and test

sets intersect to a large extent, there might be differences in

the underlying distributions of some parameters. For instance,

when data of one dataset lay in a region which shows a low

density of samples in the other dataset. An extreme example

is a dataset consisting of two clusters of data apart from each

other; the convex hull envelopes all dataset values, including

the space between them. If the majority of samples of the

second dataset fall inside the gap area between the two clusters,

the generalization capacity of a model will be impaired, as

there is not enough training data in that region. Although the

intersection values are high, in this case, it does not allow us to

judge the generalization ability of the trained model. Therefore,

the CH analysis provides necessary, but not sufficient conditions

for a proper generalization of ML models.

Consequently, a second step in the analysis is needed to

investigate datasets for diverging underlying distributions. If

there are no such differences, two datasets form a homogeneous

population and are indistinguishable, otherwise, it would be

possible to differentiate the datasets. Therefore, if ML classifiers

can identify the origin of a drawn sample with high accuracy,

we postulate that there are diverging underlying distributions

of parameters forming different areas with a high density

of samples in two datasets. Thus, training an ML model in

one dataset and applying it in the other one would mean

interpolation into areas sparsely covered by training data

and could impair the generalization of respective models.

However, ML methods do not provide the direction of impaired

generalization (i.e., model trained on one dataset and applied in

the other one and vice versa).

In contrast, CH analysis provides a model-agnostic a priori

data assessment and more importantly direction of impaired

generalization. The CH of one dataset may completely cover

the CH of the other dataset, meaning no restrictions for

generalization from the CH perspective. However, in the

opposite case (the second dataset covering the first one) the CH

coverage may be modest suggesting generalization issues once

models developed in the second dataset will be applied to the first

dataset. Furthermore, the CH analysis proposed in this paper is

computationally inexpensive and is an order of magnitude faster

than ML methods. Therefore, we suggest an application of the

CH method for universal generalization assessment supported

by the application of ML methods to reveal the scope of

differences in underlying distributions. Combining the results

of these 2 methods, one receives a complete vision of potential

generalization issues.

In medicine, the application of ML promises to provide

solutions for unmet needs in clinical practice which have

partly been hampered by a missing mechanistic understanding

of the underlying processes. Medical applications, like an

early diagnosis of rare or complex diseases, optimization

of therapeutic strategies or the surveillance of patients, and

resource planning are expected to benefit from the advantages

of ML significantly (Komorowski et al., 2018; Miotto et al.,

2018; Shillan et al., 2019; Ghassemi et al., 2020). However,

despite promising results for image-analysis-based medical

applications or time-series monitoring (Arcadu et al., 2019;

Tomasev et al., 2019), the superiority of DNN when compared

to traditional approaches has not been proven yet (Chen et al.,

2019). Moreover, it has been demonstrated that the design and

integration of complex data analytics workflows play a key role

in the performance of ML algorithms in biomedical applications

(Schatzle et al., 2020). The realization of the promises of ML

in medicine requires further innovations in a huge variety of

challenges, ranging from data availability and learning strategies

up to the integration of a priori knowledge into ML setup

(Frohlich et al., 2018).

A highly crucial issue of ML application in medicine arises,

when a model developed and trained on high-quality data of

one hospital and showing good predictive performance, does

not deliver adequate performance when applied to data of other

hospitals. Hidden biases between hospitals could be caused by

different admission strategies, guidelines for treatment, patients’

baseline values, protocols on settings of medical support devices,

or definitions of cut-off values (Kelliny et al., 2008). As an

example, in 2019, Yan et al. built a simple data-driven model

from electronic health records of 485 patients infected with

SARS-CoV2 in the region of Wuhan, China (Yan et al., 2020).

The authors claimed that their model could predict the outcome

for patients with >90% accuracy using the values of three

laboratory parameters only. However, the model failed to deliver

the same high accuracy on patient datasets from hospitals in

France, the USA, and the Netherlands (Barish et al., 2021;

Dupuis et al., 2021; Quanjel et al., 2021).

In this work, we developed a pipeline for the comparison

of populations and assessment of an ML model’s generalization

ability. First, we applied our CH analysis to find CH coverage

values between datasets. Second, 4 types of ML models were

trained to classify from which hospital a patient’s sample

originated. The performance of these models was assessed to

judge, which datasets differ the most in terms of underlying

data distributions. We applied our pipeline to 4 critical-care

patient datasets of different origins: three datasets from German

hospitals generated within the SMITH project (Marx et al., 2021)

and the American “Medical Information Mart for Intensive

Care” III (later referred to as MIMIC) dataset (Johnson et al.,
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TABLE 1 Clinical characteristics of the analyzed patient cohorts in four hospitals under consideration.

Hosp A Hosp B Hosp C MIMIC

Total number of patients, n (%) 13,067 (100) 2,976 (100) 1,368 (100) 7,683 (100)

Age, years (mean± SD) 67.3± 14.5 67.3± 13.8 68.7± 13.0 64.1± 15.5

Male gender, n (%) 8,529 (65.3) 1,957 (65.8) 961 (70.2) 4,416 (57.5)

Length of stay ICU, days (mean± SD) 17.3± 19.4 21.2± 20.1 18.7± 18.1 13.5± 12.4

Mortality, n (%) 3,742 (28.6) 828 (27.8) 608 (44.4) 1,277 (16.6)

2016). First, the pipeline was applied to every pair of hospitals

to find mean CH coverages and performances of ML models

for classification for a data source. Second, we investigated

the applicability of the developed pipeline using the example

of acute respiratory distress syndrome (ARDS)—a potentially

life-threatening condition leading to respiratory insufficiency

with possible multi-organ failure and fatal outcomes (Cochi

et al., 2016; Raymondos et al., 2017). We showed that drops

in the performance of models developed for the classification

of ARDS on the first day in the Intensive Care Unit (ICU)

were attributed to the poor intersection of convex hulls and

to the large differences in underlying data distributions of

corresponding hospitals.

Methods

Data

Three German hospitals (later referred to as Hosp A, Hosp

B, and Hosp C) provided retrospective, fully anonymized data

of ICU patients within the context of the use case “Algorithmic

surveillance of ICU patients with acute respiratory distress

syndrome” (ASIC) (Marx et al., 2021) of the SMITH consortium

which is part of the German Medical Informatics Initiative.

The ASIC project was approved by the independent Ethics

Committee (EC) at the RWTH Aachen Faculty of Medicine

(local EC reference number: EK 102/19). Patient inclusion

criteria were age above 18 years and a cumulative duration of

mechanical ventilation for at least 24 h. In addition, MIMIC

was used as an independent dataset with different geographical

origins. To identify the duration of invasive mechanical

ventilation (MV) of patients from this dataset, a special MIMIC

view was used1 Each patient’s data included routinely charted

ICU parameters collected over the whole ICU stay. The full list

of parameters is given in Supplementary List S1. Data from all

4 sites were brought to the same units of measurement and

were checked for consistency. The final number of patients in

corresponding hospitals is given in Table 1.

1 https://github.com/MIT-LCP/mimic-code/blob/

62102b08040ac5db96af7922db8d7832ce30a813/etc/ventilation-

durations.sql

Data for further analysis were prepared in the following way:

first, the median values of routinely charted ICU parameters

collected over the first day of ICU stay were extracted as features

for the analysis. Features with values missing in more than 30%

of patients were omitted. We considered features, that were

present in all 4 hospitals after the data feature omission step. The

final list of features (21 features overall) used in the analysis can

be found in Supplementary List S2. Missing values of features

were filled with the hospital-wide median value for that feature.

Use case example: Classification for
ARDS on the first day of treatment in ICU

To demonstrate the applicability of the developed pipeline,

we considered the following typical use case of the application of

ML models in healthcare: classification for a critical condition

based on the first-day data. We used the presence of ARDS

on the first day in the ICU as an endpoint for classification.

The criteria for the diagnosis of an ARDS episode are defined

in the Berlin criteria (ARDS Definition Task Force et al.,

2012). However, in our use case scenario, only the criteria for

oxygenation were taken into account. To be able to assess these

criteria, only patients having parameters of MV [positive end-

expiratory pressure (PEEP), a fraction of inspiratory oxygen

(FiO2)] and blood gas analysis measurements [partial pressure

of oxygen (PaO2)] during the first 24 h were selected.

ARDS patients were chosen based on ICD-10 codes (J80),

where available. In the MIMIC database, ICD-9 coding system

was used, which does not contain a specific code for ARDS.

Therefore, the ARDS label was assigned to patients having

ICD-9 codes for pulmonary insufficiency or respiratory failure

(Reynolds et al., 1998): 5,185, 51,851, 51,852, 51,853, and 51,882.

ARDS onset time was defined as a time point when the Horowitz

index drops below 300 for the first time and stays below this

threshold for at least 24 h. To ensure that information on the

ARDS/non-ARDS status of patients is present in the data, only

first-day ARDS patients were chosen as a case group. The

Control group comprised all non-ARDS patients and patients

with ARDS onset later than on the first day. A total number

of day1-ARDS/non-ARDS patients in corresponding hospitals

is given in Table 2.

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2022.603429
https://github.com/MIT-LCP/mimic-code/blob/62102b08040ac5db96af7922db8d7832ce30a813/etc/ventilation-durations.sql
https://github.com/MIT-LCP/mimic-code/blob/62102b08040ac5db96af7922db8d7832ce30a813/etc/ventilation-durations.sql
https://github.com/MIT-LCP/mimic-code/blob/62102b08040ac5db96af7922db8d7832ce30a813/etc/ventilation-durations.sql
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Sharafutdinov et al. 10.3389/fdata.2022.603429

TABLE 2 Number of day 1 non-ARDS/ARDS patients in hospitals.

Hospital Non-ARDS ARDS (%)

Hosp A 9,471 639 (6.3)

Hosp B 1,123 86 (7.1)

Hosp C 924 88 (8.7)

MIMIC 4,555 237 (4.9)

In this use case, we evaluated how a ML model trained in

one hospital behaves in terms of performance if it is applied in

another hospital. A Random Forest Classifier was trained in each

of the four hospitals separately to classify ARDS and non-ARDS

patients and tested in the other unseen hospitals. Performance

in all datasets was assessed with ROC AUC.

Convex hull analysis

CH coverage for a new dataset was defined as the ratio of

data points of a new dataset that lay inside of the CH of the

initial dataset in the pair. An example of CH intersections for

hospitals (Hosp B, Hosp C) and for the pair of features, arterial

oxygen saturation (SaO2) and arterial bicarbonate, is shown in

Figure 1. It should be noted that CH coverage is not a symmetric

measure, i.e., CH coverage of Hosp A by Hosp B can differ

from CH coverage of Hosp B by Hosp A. CH coverage for

each feature combination was assessed in 2 dimensions, i.e., for

each combination of pair of features the coverage of CH of one

hospital was calculated for all other hospitals. For instance, if

hospitals Hosp A and Hosp B were considered, for each pair of

features, CH coverage of Hosp A by Hosp B and CH coverage

of Hosp B by Hosp A were calculated. CH coverages were

assessed using bootstrapping of underlying data (100 times). The

equation for a CH coverage for a Hosp A by Hosp for a pair of

features (featurei , featurej), where i and j denote feature indeces,

is given by:

CHcov

(

featurei, featurej
)

=

∑

k∈HospA1

[(

featurei
k
, feature

j
k

)

∈ CHij
(

Hosp B
)

]

∑

k∈HospA1
(1)

where CHij(Hosp B) corresponds to the CH of the dataset of

Hosp B in 2 dimensions (featurei, featurej).

In higher dimensions intersections of CHs identified from

datasets of sizes, which are usually available in single hospitals,

tend to shrink even for datasets drawn from the same

distribution due to the curse of dimensionality. Hence, we tested

overlapping data by means of the overlaps of projections onto

subspaces spanned by all combinations of 2 features. In case

of overlapping CHs, the CHs of all projections will overlap as

well. The opposite holds only in the case of homogeneous data

distributions within the box in full data space spanned by the

intersection of all projections. We assume that this is the case for

real-world data available in healthcare and our approach delivers

an acceptable approximation for the estimation of translational

predictivity for practical use.

CH coverage for a feature was calculated as the median CH

coverage value of all feature pairs that contain this feature:

CHcov

(

featurej
)

= med
(

CHcov

(

featurei, featurej
)

, . . . ,

CHcov

(

featuren, featurej
))

. (2)

Next, the distribution of CH coverages for all features was

computed. Finally, mean CH coverages for each pair of hospitals

were calculated as the mean CH coverage among all features:

CHcov
(

HospA byHosp B
)

=

∑

i∈n CHcov
(

featurei
)

n
(3)

where n is the number of features. Additionally, we specified

the value of the first quartile minus 1.5∗interquartile range of

the distribution as a threshold for low-coverage features. A low-

coverage feature was defined as a feature with a CH coverage

value that lies below the threshold. Such features were identified

for each pair of datasets.

To eliminate the influence of noisy data on the CH analysis,

a density-based data clustering algorithmDBSCAN2 was applied

to the data. Before each run of the CH algorithm, outliers were

removed using the DBSCAN method.

Machine learning method for
classification of a dataset, including an
algorithm to derive important features to
di�erentiate two datasets

The prepared dataset was split into the train (80%) and

test (20%) sets. The classification task was to distinguish

patients between two hospitals. Four classifiers, namely Logistic

Regression (LR), Random Forest (RF), Support Vector Machine

(SVM), and AdaBoost (ADA) were used. Since the target label

(hospital source identifier) was imbalanced, the “class weight”

hyperparameter for LR, RF, and SVM was set to the “balanced”

option. An optimal set of model hyperparameters were found

using grid search with stratified 5-fold cross-validation on

the train set. A ROC AUC score was used to evaluate the

performance of the chosen model. Predictions on the test

set were evaluated with ROC AUC, precision, recall, and F1

score metrics.

2 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

DBSCAN.html
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FIGURE 1

Example of CH intersection for the pair of hospitals (Hosp A, Hosp B) and the pair of features: SaO2 and bicarbonate. Some data points are

filtered out by the DBSCAN method prior to the construction of the CH.

ML methods were trained twice. First, all features were

used to train ML models. Second, features with low CH

coverage were omitted from the analysis and ML models were

retrained. This allowed judging, whether the discriminating

ability of ML models was predominantly caused by different

CHs of underlying data or by differences in underlying data

distributions of corresponding hospitals.

Python 3 modules used in this study and
system requirements

In this study, the SciPy Python 3 spatial library with

the Quickhull algorithm and the Delaunay class (Virtanen

et al., 2020) was used for CH analysis. And the Scikit-

learn implementations of ML classification methods

(Pedregosa et al., 2011) were svm.SVC, linear_model.

LogisticRegression, ensemble.RandomForestClassifier and

ensemble.AdaBoostClassifier. CH and ML analysis was

performed on the computational cluster of the RWTH Aachen

University using 1 node with 40 cores, 2.66 GHz, 4 GB RAM.

The longest runtime for the CH analysis was 16min. The

runtime for the ML script comprised 24 h. Analysis was tested

as well on the 2018 quadcore laptop i7-8565U CPU @ 1.80 GHz

× 8. It could be run as it is on most modern CPUs with minimal

RAM usage. No GPU is required.

CH and ML methods used in this study are available as a

python package “chgen”. Example scripts on how to use this

package are available in the repository: https://git.rwth-aachen.

de/jrc-combine/chgen.

Results

Application of CH analysis to each pair of
hospitals

Figure 2 shows the mean CH coverage for each pair of

hospitals. For each German hospital, minimum coverage was

found when data of the corresponding hospital were covering
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the MIMIC dataset (last column in Figure 2). However, that was

not the case for the opposite situation. Maximum mean CH

coverage was found for cases when MIMIC data covers data

from German hospitals (last row in Figure 2).

Features with low CH coverage values were identified for

each pair of hospitals. These features are shown in Table 3.

The table is not symmetric since features with low coverage

values when the first hospital’s data cloud is covering the second

one may be different from features in the opposite coverage

situation. Results of the mean CH coverage are accompanied

by the number of features with low CH coverage in each

case of the datasets’ comparison. For each German hospital, a

maximum number of such features was found when data of

German hospitals were covering the MIMIC dataset (3 or 2

features correspondingly, last column in Table 3). CH coverages

for all features in the case of MIMIC coverage are given in

Supplementary Table S1.

Application of ML routines for
classification of the hospital

Results of the application of ML routines to classify

the hospital for every pair of hospitals are shown in

Supplementary Figure S1A. Results of the ADA method are

shown, as it gained the highest performance in terms of ROC

AUC in all cases. In each pair of hospitals, the hospital where

the patient samples were derived from could be almost perfectly

classified (ROC AUC ≥ 0.94). The best separation was obtained

between the MIMIC cohort and German hospitals. German

hospitals looked more alike to classifiers. The worst separation

was observed between Hosp B and Hosp C.

After the exclusion of the features with low CH coverage

values, and retraining with the best-performing ML classifiers,

the largest ROC AUCs were still observed between the MIMIC

cohort and German hospitals (see Supplementary Figure S1B).

Use case example: Classification for
ARDS on the first day of treatment in ICU

The results of the classification task are shown in Figure 3.

Diagonal cells represent the performance of a specialized

model which was trained and tested in the same hospital.

The performance of specialized models strongly differed among

hospitals under consideration, with the lowest ROC AUC of

0.79 in MIMIC and the highest of 0.94 in Hosp B. To test the

generalization ability of developed models, they were tested on

other unseen datasets, i.e., other hospitals (non-diagonal cells).

If the population of the new hospital is similar to or more

homogeneous than the one of the original hospitals concerning

the condition under consideration, the performance of the

model will stay on a similar level or can be even higher than

in the original hospital. However, if the population differs

from the original one, performance will be impaired. For each

specialized model trained in German hospitals the largest drop

in performance was observed when the respective model was

applied in the MIMIC dataset with the strongest drop of 0.26

for a model trained in Hosp B. Overall, models developed

in Germany, showed impaired performance compared to the

specialized MIMIC model. The opposite was not the case, as the

MIMICmodel showed similar performance in German hospitals

to the performance in the original cohort.

Discussion

“Internal” model performance on structurally similar,

previously unseen data, gathered from the same source used

for model training, can be contrasted with “external” model

performance on new, previously unseen data from other sources.

ML models perform worse in external cohorts due to several

reasons such as different protocols, confounding variables, or

heterogeneous populations (Cabitza et al., 2017; Zech et al.,

2018; Martensson et al., 2020; Goncalves et al., 2021). Moreover,

medical data can be biased by a variety of factors such

as admission policies, hospital treatment protocols, country-

specific guidelines, clinician discretion, healthcare economy, etc.

Furthermore, labeling or coding criteria of a certain disease or

syndrome and treatment guidelines evolve with time (Kunze

et al., 2020). Since ML models for healthcare are predominantly

developed on retrospective data, it remains unclear how the

performance of such models is affected by the temporal

separation of the target group even within one hospital.

Similarly, model reproducibility and model transportability

have distinct objectives (Justice et al., 1999). While

reproducibility focuses on the performance of the model in the

same target population, transportability refers to performance

in different but related source populations. Nevertheless, the

closeness of this relationship between populations must be

ascertained to achieve valid results of external validation. The

performance will be poor in a sample that is too different from

the data used for development. Conversely, a test sample that

is too similar will overestimate the predictive performance

showing reproducibility rather than transportability. To address

these different aspects, an elaborate validation approach as

described by Debray et al. seems necessary. They recommend

the examination of the validation datasets in the first step

to ensure adequate relatedness using a case-mix of a dataset

and subsequent evaluation of the model with respect to the

perceived relatedness (Debray et al., 2015).

In this study, we have introduced another method

for population comparison and assessment of a model’s

generalizability. First, it estimates the similarity of the

underlying populations in terms of mean CH coverage. Second,
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FIGURE 2

CH analysis results for data from four hospitals. Mean CH coverage over all features is shown. Rows-initial population, columns-population,

whose CH is covered by the CH of the initial population.

it estimates the differences in datasets in terms of underlying

data distributions. These two tasks are accomplished by the

application of 2 methods–first the CH analysis and followed by

the ML classifiers.

During the application of the pipeline on the datasets

obtained from 4 hospitals, we found that there were significant

differences in CH coverage among pairs of hospitals. The lowest

CH coverages for each of the German hospitals were observed

when the MIMIC dataset was covered by data obtained from

the corresponding hospital. However, in the opposite case i.e.,

Hosp A/Hosp B/Hosp C covered by MIMIC, the coverages were

large. This shows that Hosp B/Hosp C and to a lesser extent

Hosp A represented a part of the data space, spanned by data of

MIMIC. In other words, data fromGerman hospitals comprised,

in greater or lesser proportions, parts of the MIMIC data cloud.

All four datasets exhibited differences in underlying data

distributions. Once trained, ML classifiers were able to

distinguish data coming from different sources with ROC AUC

larger than 0.94, suggesting nearly perfect identification of the

hospital from where the patient data originated from. After the

omission of features with low CH coverages, the performance of

retrained models dropped. However, the performance of models

distinguishing MIMIC from German hospitals was still largely

supporting the finding, that the MIMIC dataset significantly

differed from German hospitals.

To demonstrate that our pipeline can be used to assess the

generalization ability of ML models, we considered a use case

of classification for the first day of ARDS data. A specialized

model was trained for each of the four hospitals’ data. Then

it was applied to unseen hospital data and the performance of
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TABLE 3 Lists of parameters with low CH intersections for all pairs of hospitals.

Hosp A Hosp B Hosp C MIMIC

Hosp A - Tidal volume, PEEP Tidal volume PaO2 , Tidal volume, PTT

Hosp B PaO2 , Respiratory rate - Bicarbonate arterial, Respiratory rate, PTT PaO2 , Bicarbonate arterial, PTT

Hosp C FiO2 , PEEP - - PaO2 , PEEP

MIMIC FiO2 , Lactate arterial Lactate arterial Lactate arterial -

Rows-initial population, columns-population, CH of which is covered by the CH of the initial population.

FIGURE 3

Random forest classifier classification results (cross-prediction matrix) for ARDS on the first day in ICU. RF trained in each of the four hospitals

(row name) and applied in each of the four hospitals (column name). Diagonal cells represent the performance of specialized models which

were trained and tested in the same hospital. Non-diagonal cells represent the performance of such models once they are applied in other

hospitals and reflect ability of a model to generalize to the unseen population of another hospital. Twenty-one features common for all four

hospitals were used to build corresponding RF models. Performance is depicted in terms of ROC AUC.

the model on the original data was compared to those of the

new data. We observed 2 clusters of datasets, namely German

hospitals and MIMIC. Models developed for German hospitals’

data exhibited the largest drop in performance once applied

to MIMIC. That was not the case in the opposite situation,

i.e., application of the MIMIC model to German hospitals

data, where almost no drops were observed. CH analysis fully

supported these findings. First, for each of the German hospitals,

the lowest CH coverages were observed when the MIMIC

dataset was covered by data from corresponding hospitals
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suggesting the impaired performance of models developed in

German hospitals and applied in MIMIC. Second, mean CH

coverages of German datasets by MIMIC data were found close

to 1, suggesting full CH coverage and thus, the absence of

limitations for generalization.

Moreover, smaller drops in performance were observed

when models developed on data from Hosp B or Hosp C were

applied to data from Hosp A. This is in line with corresponding

CH coverages (Hosp A by Hosp B/Hosp C), which are in the

medium range. Interestingly, when models, developed in Hosp

A or MIMIC were applied in Hosp B or Hosp C we did not

observe any drop in performance, but even a slight increase.

It could be the case if the population of the new hospital is

similar to or more homogeneous than the one of the original

hospitals concerning the condition under consideration. In our

case, it would mean, that fewer non-ARDS patients with low

Horowitz index are present in Hosp B/C compared to Hosp

A/MIMIC. On the other hand, the necessary condition for the

proper generalization, in this case, is satisfied by the fact, that

CH coverages of Hosp B/C by Hosp A/MIMIC are among the

largest in our study. Overall, the results of cross-prediction for

ARDS were found to be in accordance with the results of the CH

analysis of corresponding datasets.

Application of ML routines for classification for a hospital

also supported the finding, which suggests that the MIMIC

data significantly differed from German datasets, as the best

separation with ROC AUCs > 0.99 was obtained between

the MIMIC cohort and German hospitals. Nearly perfect

separation was still possible after the exclusion of features

with low CH coverage. This result indicated that the MIMIC

cohort is not only less covered by German data, but exhibits

diverging underlying data distributions once compared to

German hospitals. However, while ML methods indicated, that

there were significant differences in underlying distributions

and performance of a model could be impaired, they did not

point in the direction of proper or poor generalization, i.e.,

models trained in dataset A and applied in dataset B and vice

versa. This constitutes an advantage of the CH method, as

it is originally asymmetric and allows to assessment direction

of impaired generalization. Moreover, the CH assessment

is universal and does not depend on the particular ML

classification method.

However, there could be multiple other reasons for such

strong discrepancies in models’ performance. First, some of

the features with low CH coverage (PEEP, FiO2) belong to

parameters, which are set by physicians in the ICU, thus

suggesting different treatment strategies in underlying hospitals.

Second, diverging ARDS labeling criteria (ICD-10 in Germany

vs. ICD-9 in MIMIC) might contribute to label uncertainty in

ARDS classification. Finally, the timespans of data collection

overlap only partially. MIMIC data were collected between 2001

and 2012, Hosp A data between 2009 and 2019. Data from Hosp

B and Hosp C were collected after 2012. This is relevant since

in 2012 the American European Consensus Conference (AECC)

definition of ARDS changed to the currently accepted Berlin

definition (Kunze et al., 2020).

Nevertheless, the main observation is valid regardless of

particular ARDS labeling: MIMIC data do significantly differ

from all three other hospitals in this study. Given that this

database is considered nearly a gold standard of open ICU

databases, an external validation for models developed on this

database is absolutely necessary. In the best case, a special

pipeline for the assessment of the transferability of trained

models should be included in the data preparation step before

a model development, so that generated models might exhibit

significantly better performance.

Our study has other limitations that have to be considered.

It is known that CH analysis is very sensitive to noise

in the data (Worton, 1995). To eliminate the influence of

noisy data on the convex hull analysis, a density-based data

clustering algorithm DBSCAN (Schubert et al., 2017) was

applied to the data so that during each run of the CH

algorithm, outliers were removed using the DBSCAN method.

Additionally, to increase the robustness of the CH analysis

results, each CH analysis execution was averaged over 100 runs

with bootstrapped data. Another potential weakness of our

study design is that imputation was done without taking into

account multidimensional parameter distribution. However,

this could not significantly influence the main conclusions

on differentiating parameters in this study, as we specifically

have chosen patients with charted data of the main parameters

important in the ARDS state: PaO2, FiO2, and PEEP. Another

important question is how to define cutoff values between

good and bad performance for both CH and ML analysis.

We estimated CH coverages between train and test sets for

the same hospital (see Supplementary Table S2). These can

be used as benchmarks for CH intersections for reasonable

generalization. However, these also differed among hospitals, but

here a clear correlation with the sample size of the cohort was

observed. For instance, in Hosp C, a test set of 202 patients was

covered by a train set of 810 patients. Therefore, the estimates

for proper CH coverage should also depend on the sample

size under consideration. For large datasets (Hosp A/MIMIC),

where test set sizes were comparable to the sizes of smaller

datasets in the study (Hosp C) they comprise 0.987/0.972. For

ML routines, there is no rule of thumb to define minimum

ROC AUC to judge whether hospitals cannot be distinguished.

Usually, values of ROC AUC < 0.7 are considered poor

discrimination performance.

Additionally, sample size can potentially be a factor, while

considering convex hull intersections and machine learning

results. However, there are some pieces of evidence, that this

is at least not a dominant factor for generalization differences.

First, models developed in small cohorts of Hosp B/Hosp C for

ARDS classification deliver similar performance in Hosp A, as a

specialized model of that hospital. Second, the model developed
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in Hosp A has a high generalization error in MIMIC (0.13),

but a model developed in MIMIC shows the opposite behavior

in Hosp A having a small generalization error (0.01). Third,

a model developed in the smallest Hosp C does not exhibit

any generalization error in a dataset of completely different

Hosp B. Therefore, we are of the strong opinion, that different

sample sizes in underlying hospitals cannot explain such strong

discrepancies in models’ performance in different hospitals.

Another important remark is that as the dimension of a

dataset grows, then a trained ML model will almost always

lay in the extrapolation range once applied to unseen data

(Balestriero et al., 2021). This is a consequence of the curse of

dimensionality and has to be considered in all ML applications

and especially in deep learning where models are dealing with

hundreds or thousands of features. However, ML models that

utilize continuous time series data and are applied in real

healthcare settings usually require a degree of interpretability

and therefore contain a limited number of features (Chen et al.,

2019). This was also the case in our study, where the number of

features did not exceed 30.

Conclusions

Currently, with the ever-growing number of AI and ML

models in healthcare, there is a huge challenge in the translation

of such models into clinical practice. In healthcare, new data are

often different from those used in the training of the model.

To achieve a clinical implementation, a model must be able

to perform with sufficient accuracy on previously unseen data.

Hospitals may have different policies, guidelines, or protocols,

but even within one hospital, guidelines could change over time

causing altering patients’ responses.

Therefore, the validation of developed models before a

potential application at the bedside plays a key role in translation

research. With the pipeline introduced in this study, we

contribute to the solution of this issue. Given the training data

and a retrospective dataset from a hospital, where the model is

intended to be used, we can judge the generalization ability in

another hospital. On the use case of classification for the first

day ARDS, we showed that the strongest drop in performance

is associated with the poor intersection of convex hulls of

corresponding hospitals and with differences in underlying

data distributions. Therefore, we suggest the application of

our pipeline as a first tool to assess the transferability of

trained models.

Based on our analysis of four different hospital datasets,

we conclude that datasets from different hospitals represent

heterogeneous data sources and the transfer from one database

to another should be performed with care to avoid implications

during real-world applications of the developed models. Further

research is needed to develop methods for the adaptation of

ML models to new hospitals. In addition, more work should be

aimed at the creation of gold-standard datasets that are large and

diverse with data from varied application sites.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary material, further inquiries

can be directed to the corresponding author.

Author contributions

HM, SF, KS, RP, and KN worked on data acquisition and

harmonization. KS, MS, and KN developed and implemented

CH analysis scripts. KS, JSB, and KN developed and

implemented ML routines. KS, JSB, and AS designed the

research, performed analysis, analyzed the patient data, and

developed the ARDS prediction model. SF gave medical advice

during the development of the pipeline. SF, GM, and JB

interpreted the results from a medical perspective. KS, JSB, SF,

and AS wrote the manuscript. All authors read and approved

the final manuscript.

Funding

This publication of the SMITH consortium was supported

by the German Federal Ministry of Education and Research,

Grant Nos. 01ZZ1803B, 01ZZ1803I, and 01ZZ1803M.

Acknowledgments

We would like to thank for the funding support that Moein

Einollahzadeh Samadi received as a member of the Helmholtz

School for Data Science in Life Earth and Energy (HDS-LEE).

Conflict of interest

HM is an employee of Bayer AG, Germany. HM has stock

ownership with Bayer AG, Germany.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2022.603429
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Sharafutdinov et al. 10.3389/fdata.2022.603429

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fdata.2022.603429/full#supplementary-material

SUPPLEMENTARY FIGURE S1

ROC AUC for classification for a hospital. (A): Performance of an ML

learning algorithm for classification for a hospital. (B): Performance of

an ML learning algorithm for classification for a hospital after removal of

features with low CH coverage values. Numbers in cells reflect the ROC

AUC of the classifier trained to separate between hospital 1 (row name)

and hospital 2 (column name).

SUPPLEMENTARY LIST S1

Diagnostic parameters used in this study. Overall, 54 diagnostic

parameters routinely assessed in the ICU were used in this study.

Additionally, 6 biometric parameters were used.

SUPPLEMENTARY LIST S2

List of parameters used for classification ARDS on the first day in ICU.

SUPPLEMENTARY TABLE S1

CH coverages for all features. MIMIC data covered by other hospitals.

SUPPLEMENTARY TABLE S2

CH coverage of the test set by the train set in the same hospital, where

ML models were developed.
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