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In this community review report, we discuss applications and techniques for fast

machine learning (ML) in science—the concept of integrating powerful ML methods

into the real-time experimental data processing loop to accelerate scientific discovery.

The material for the report builds on two workshops held by the Fast ML for

Science community and covers three main areas: applications for fast ML across a

number of scientific domains; techniques for training and implementing performant

and resource-efficient ML algorithms; and computing architectures, platforms, and

technologies for deploying these algorithms. We also present overlapping challenges

across the multiple scientific domains where common solutions can be found. This

community report is intended to give plenty of examples and inspiration for scientific

discovery through integrated and accelerated ML solutions. This is followed by a

high-level overview and organization of technical advances, including an abundance of

pointers to source material, which can enable these breakthroughs.
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OVERVIEW

Machine learning (ML) is making a huge impact on our
society and daily lives through advancements in computer
vision, natural language processing, and autonomous vehicles,
among others. ML is also powering scientific advances which
can lead to future paradigm shifts in a broad range of
domains, including particle physics, plasma physics, astronomy,
neuroscience, chemistry, material science, and biomedical
engineering. Scientific discoveries come from groundbreaking
ideas and the capability to validate those ideas by testing nature
at new scales-finer and more precise temporal and spatial
resolution. This is leading to an explosion of data that must be
interpreted, and ML is proving a powerful approach. The more
efficiently we can test our hypotheses, the faster we can achieve
discovery. To fully unleash the power of ML and accelerate
discoveries, it is necessary to embed it into our scientific process,
into our instruments and detectors.

It is in this spirit that the Fast Machine Learning for Science
community1 has been built. Two workshops have also been
organized through this growing community and are the source
for this report. The community brings together an extremely
wide-ranging group of domain experts who would rarely interact
as a whole. One of the underlying benefits of ML is the portability
and general applicability of the techniques that can enable
experts from seemingly unrelated domains to find a common
language. Scientists and engineers from particle physicists to
networking experts and biomedical engineers are represented
and can interact with experts in fundamental ML techniques and
compute systems architects.

This report aims to summarize the progress in the community
to understand how our scientific challenges overlap and where
there are potential commonalities in data representations,
ML approaches, and technology, including hardware and
software platforms. Therefore, the content of the report

includes the following: descriptions of a number of different

scientific domains including existing work and applications

for embeddedML; potential overlaps across scientific domains

in data representation or system constraints; and an overview

of state-of-the-art techniques for efficient machine learning

and compute platforms, both cutting-edge and speculative

technologies.

Necessarily, such a broad scope of topics cannot be
comprehensive. For the scientific domains, we note that the
contributions are examples of how ML methods are currently
being or planned to be deployed. We hope that giving a glimpse
into specific applications will inspire readers to find more novel
use-cases and potential overlaps. The summaries of state-of-the-
art techniques we provide relate to rapidly developing fields and,
as such, may become out of date relatively quickly. The goal is
to give non-experts an overview and taxonomy of the different
techniques and a starting point for further investigation. To be
succinct, we rely heavily on providing references to studies and
other overviews while describing most modern methods.

1fastmachinelearning.org

We hope the reader finds this report both instructive and
motivational. Feedback and input to this report, and to the larger
community, are welcome and appreciated.

1. INTRODUCTION

In pursuit of scientific advancement across many domains,
experiments are becoming exceedingly sophisticated in order to
probe physical systems at increasingly smaller spatial resolutions
and shorter timescales. These order of magnitude advancements
have lead to explosions in both data volumes and richness leaving
domain scientists to develop novel methods to handle growing
data processing needs.

Simultaneously, machine learning (ML), or the use of
algorithms that can learn directly from data, is leading to
rapid advancements across many scientific domains (Carleo
et al., 2019). Recent advancements have demonstrated that
deep learning (DL) architectures based on structured deep
neural networks are versatile and capable of solving a broad
range of complex problems. The proliferation of large datasets
like ImageNet (Russakovsky et al., 2015), computing, and DL
software has led to the exploration of many different DL
approaches each with their own advantages.

In this review paper, we will focus on the fusion of ML
and experimental design to solve critical scientific problems
by accelerating and improving data processing and real-time
decision-making. We will discuss the myriad of scientific
problems that require fast ML, and we will outline unifying
themes across these domains that can lead to general solutions.
Furthermore, we will review the current technology needed
to make ML algorithms run fast, and we will present critical
technological problems that, if solved, could lead to major
scientific advancements. An important requirement for such
advancements in science is the need for openness. It is vital for
experts from domains that do not often interact to come together
to develop transferable solutions and work together to develop
open-source solutions.

Much of the advancements within ML over the past
few years have originated from the use of heterogeneous
computing hardware. In particular, the use of graphics processing
units (GPUs) has enabled the development of large DL
algorithms (Raina et al., 2009; Cireşan et al., 2010; Krizhevsky
et al., 2012). The ability to train large artificial intelligence (AI)
algorithms on large datasets has enabled algorithms that are
capable of performing sophisticated tasks. In parallel with these
developments, new types of DL algorithms have emerged that
aim to reduce the number of operations so as to enable fast and
efficient AI algorithms (Box 1).

This paper is a review of the second annual Fast Machine
Learning conference (University, 2020) and will build on the
materials presented at this conference. It brings together experts
from multiple scientific domains ranging from particle physicists
to material scientists to health monitoring researchers with
machine learning experts and computer systems architects.
Figure 1 illustrates the spirit of the workshop series on which this
paper is inspired and the topics covered in subsequent sections.
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BOX 1 | Fast machine learning in science.

Within this review paper, we refer to the concept of Fast Machine Learning

in Science as the integration of ML into the experimental data processing

infrastructure to enable and accelerate scientific discovery. Fusing powerful

ML techniques with experimental design decreases the “time to science"

and can range from embedding real-time feature extraction to be as close

as possible to the sensor all the way to large-scale ML acceleration across

distributed grid computing datacenters. The overarching theme is to lower

the barrier to advanced ML techniques and implementations to make

large strides in experimental capabilities across many seemingly different

scientific applications. Efficient solutions require collaboration between

domain experts, machine learning researchers, and computer architecture

designers.

FIGURE 1 | The concept behind this review paper is to find the confluence of

domain-specific challenges, machine learning, and experiment and computer

system architectures to accelerate science discovery.

As ML tools have become more sophisticated, much of the
focus has turned to building very large algorithms that solve
complicated problems, such as language translation and voice
recognition. However, in the wake of these developments, a broad
range of scientific applications have emerged that can benefit
greatly from the rapid developments underway. Furthermore,
these applications have diversified as people have to come to
realize how to adapt their scientific approach so as to take
advantage of the benefits originating from the AI revolution. This
can include the capability of AI to classify events in real time,
such as the identification of a collision of particles or a merger of
gravitational waves. It can also include systems control, such as
the response control from feedback mechanisms in plasmas and
particle accelerators. The latency, bandwidth, and throughput
restrictions and the reasons for such restrictions differ within
each system. However, in all cases, accelerating ML is a driver in
the design goal.

The design of low latency algorithms differs from other
AI implementations in that we must tailor specific processing

hardware to the task at hand to increase the overall algorithm
performance. In particular, certain processor cores have been
configured for optimized sparse matrix multiplications. Others
have been optimized to maximize the total amount of
compute. Processor design, and the design of algorithms
around processors, often referred to as hardware ML co-design,
is the focus of the work in this review. For example, in
some cases, ultra-low latency inference times are needed to
perform scientific measurements. One must efficiently design the
algorithm to optimally utilize the hardware constraints available
while preserving the algorithm performance within desired
experimental requirements. This is the essence of hardware
ML co-design.

The contents of this review are laid out as follows. In the
Section 2, we will explore a broad range of scientific problems
where Fast ML can act as a disruptive technology to the status
quo and lead to a significant change in how we process data.
Domain experts from seemingly different domains are examined.
In Section 3, we describe data representations and experimental
platform choices are common to many types of experiments.
We will connect how Fast ML solutions can be generalized to
low latency, highly resource-efficient, and domain-specific deep
learning inference for many scientific applications. Finally in
Section 4, to achieve this requires optimized hardware ML co-
design from the algorithm design to the system architecture.
We provide an overview of state-of-the-art techniques to train
neural networks optimized for both performance and speed,
survey various compute architectures to meet the needs of the
experimental design and outline software solutions that optimize
and enable the hardware deployment.

The goal of this paper is to bring together scientific
opportunities, common solutions, and state-of-the-art
technology into one single narrative.We hope this can contribute
to accelerating the deployment of potentially transformative ML
solutions to a broad range of scientific fields going forward.

2. EXEMPLARS OF DOMAIN
APPLICATIONS

As scientific ecosystems grow rapidly in their speed and scale,
new paradigms for data processing and reduction need to be
integrated into system-level design. In this section, we explore
requirements for accelerated and sophisticated data processing.
Implementations of fast machine learning can appear greatly
varied across domains and architectures but yet can have
similar underlying data representations and needs for integrating
machine learning. We enumerate here a broad sampling of
scientific domains across seemingly unrelated tasks including
their existing techniques and future needs. This will then lead to
the next section where we discuss overlaps and common tasks.

We note here that this section has an emphasis on challenges
addressed with deep learning techniques being proposed to
address increasingly complex datasets in scientific applications,
while sometimes referring to other classic ML algorithms.
However, in all of these use-cases, there is understably a large
history of domain algorithms and other classic, “shallow”, ML
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algorithms that have been developed. For example, see discussion
of classic ML methods in Albertsson et al. (2018) and even
the use of Boosted Decision Trees in real-time electronics
systems (Gligorov and Williams, 2013). The performance and
robustness of deep learning algorithms should be compared and
understood with respect to previous methods, and similarly for
simpler vs. more complex deep learning algorithms. A full survey
of classic ML, deep learning, and domain algorithms for given
applications, though, we consider beyond the scope of this paper.

In this section, we first have a detailed description of examples
of Fast ML techniques being deployed at experiments for the
Large Hadron Collider. Much rapid development has occurred
for these experiments recently and gives an exemplar for how
broad advancements can be made across various aspects of
a specific domain. Then the following subsections will be
briefer but lay out key challenges and areas of existing and
potential applications of Fast ML across a number of other
scientific domains.

2.1. Large Hadron Collider
The Large Hadron Collider (LHC) at CERN is the world’s largest
and highest-energy particle accelerator, where collisions between
bunches of protons occur every 25 ns. To study the products
of these collisions, several detectors are located along the ring
at interaction points. The aim of these detectors is to measure
the properties of the Higgs boson (Aad et al., 2012; Chatrchyan
et al., 2012) with high precision and to search for new physics
phenomena beyond the standard model of particle physics. Due
to the extremely high frequency of 40 MHz at which proton
bunches collide, the high multiplicity of secondary particles,
and the large number of sensors, the detectors have to process
and store data at enormous rates. For the two multipurpose
experiments, CMS and ATLAS (Aad, 2008), comprised of tens
of millions of readout channels, these rates are of the order of 100
Tb/s. Processing and storing this data presents severe challenges
that are among the most critical for the execution of the LHC
physics program.

The approach implemented by the detectors for data
processing consists of an online processing stage, where the event
is selected from a buffer and analyzed in real time, and an offline
processing stage, in which data have been written to disk and
are more thoroughly analyzed with sophisticated algorithms. The
online processing system, called the trigger, reduces the data
rate to a manageable level of 10Gb/s to be recorded for offline
processing. The trigger is typically divided into multiple tiers.
Due to the limited size of the on-detector buffers, the first tier
(Level-1 or L1) utilizes FPGAs and ASICs capable of executing
the filtering process with a maximum latency of O(1) µs. At the
second stage, the high-level trigger (HLT), data are processed on
a CPU-based computing farm located at the experimental site
with a latency of up to 100 ms. Finally, the complete offline event
processing is performed on a globally distributed CPU-based
computing grid.

Maintaining the capabilities of this system will become even
more challenging in the near future. In 2027, the LHC will
be upgraded to the so-called High-Luminosity LHC (HL-LHC)
where each collision will produce 5–7 times more particles,

ultimately resulting in a total amount of accumulated data that
will be one order of magnitude higher than achieved with the
present accelerator. At the same time, the particle detectors
will be made larger, more granular, and capable of processing
data at ever-increasing rates. Therefore, the physics that can be
extracted from the experiments will be limited by the accuracy of
algorithms and computational resources.

Machine learning technologies offer promising solutions
and enhanced capabilities in both of these areas, thanks to
their capacity for extracting the most relevant information
from high-dimensional data and to their highly parallelizable
implementation on suitable hardware. In addition, there are
even some early investigations exploring potential applications
of machine learning using quantum computing (Wu et al., 2021).
It is expected that a new generation of algorithms, if deployed at
all stages of data-processing systems at the LHC experiments, will
play a crucial part in maintaining, and hopefully improving, the
physics performance. In the following sections, a few examples
of the application of machine learning models to physics tasks
at the LHC are reviewed, together with novel methods for
their efficient deployment in both the real-time and offline data
processing stages.

2.1.1. Event Reconstruction
The reconstruction of proton-proton collision events in the LHC
detectors involves challenging pattern recognition tasks, given
the large number [O(1, 000)] of secondary particles produced and
the high detector granularity. Specialized detector sub-systems
and algorithms are used to reconstruct the different types and
properties of particles produced in collisions. For example, the
trajectories of charged particles are reconstructed from space
point measurements in the inner silicon detectors, and the
showers arising from particles traversing the calorimeters are
reconstructed from clusters of activated sensors.

Traditional algorithms are highly tuned for physics
performance in the current LHC collision environment,
but are inherently sequential and scale poorly to the expected
HL-LHC conditions. It is thus necessary to revisit existing
reconstruction algorithms and ensure that both the physics and
computational performance will be sufficient. Deep learning
solutions are currently being explored for pattern recognition
tasks, as a significant speedup can be achieved when harnessing
heterogeneous computing and parallelizable and efficient ML
that exploits AI-dedicated hardware. In particular, modern
architectures such as graph neural networks (GNNs) are being
explored for the reconstruction of particle trajectories, showers
in the calorimeter as well as of the final individual particles
in the event. Much of the following work has been conducted
using the TrackML dataset (Calafiura et al., 2018), which
simulates a generalized detector under HL-LHC-like pileup
conditions. Quantifying the performance of these GNNs in
actual experimental data is an ongoing point of study.

For reconstructing showers in calorimeters, GNNs have
been found to predict the properties of the original incident
particle with high accuracy starting from individual energy
deposits. The work in Gray et al. (2020) proposes a graph
formulation of pooling to dynamically learn the most important
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relationships between data via an intermediate clustering, and
therefore removing the need for a predetermined graph structure.
When applied to the CMS electromagnetic calorimeter, with
single detector hits as inputs to predict the energy of the
original incident particle, a 10% improvement is found over the
traditional boosted decision tree (BDT) based approach.

GNNs have been explored for a similar calorimeter
reconstruction task for the high-granularity calorimeters
that will replace the current design for HL-LHC. The task will
become even more challenging as such detectors will feature
irregular sensor structure and shape (e.g., hexagonal sensor
cells for CMS CMS Collaboration, 2017), high occupancy, and
an unprecedented number of sensors. For this application,
architectures such as EDGECONV (Wang et al., 2018b) and
GRAVNET/GARNET (Qasim et al., 2019) have shown promising
performance in the determination of the properties of single
showers, yielding excellent energy resolution and high noise
rejection (Ju et al., 2020). While these preliminary studies
were focused on scenarios with low particle multiplicities,
the scalability of the clustering performance to more realistic
collision scenarios is still a subject of active development.

GNNs have also been extensively studied for charged
particle tracking (the task of identifying and reconstructing
the trajectories of individual particles in the detector) (Farrell
et al., 2018; Tsaris et al., 2018; Duarte and Vlimant, 2020; Ju
et al., 2020). The first approaches to this problem typically
utilized edge-classification GNNs in a three-step process: graphs
are constructed by algorithmically constructing edges between
tracker hits in a point cloud, the graphs are processed through
a GNN to predict edge weights (true edges that are part of true
particle trajectories should be highly weighted and false edges
should be lowly rated), and finally, the selected edges are grouped
together to generate high-weight sub-graphs which form full
track candidates, as shown in Figure 2.

There have been several studies building upon and optimizing
this initial framework. The ExaTrkX collaboration has
demonstrated performance improvements by incorporating
a recurrent GNN structure (Ju et al., 2020) and re-embedding
graphs prior to training the GNNs (Choma et al., 2020).
Other work has shown that using an Interaction Network
architecture (Battaglia et al., 2016) can substantially reduce the
number of learnable parameters in the GNN (DeZoort et al.,
2021); the authors also provide comprehensive comparisons
between different graph construction and track building
algorithms. Recent work has also explored alternate approaches
that combine graph building, GNN inference, and track
construction into a single algorithm that is trainable end-to-end;
in particular, instance segmentation architectures have generated
promising results (Thais and DeZoort, 2021).

Finally, a novel approach based on GNNs (Pata et al.,
2021) has been proposed as an alternative solution to the so-
called particle-flow algorithm that is used by LHC experiments
to optimally reconstruct each individual particle produced in
a collision by combining information from the calorimeters
and the tracking detectors (Sirunyan et al., 2017). The new
GNN algorithm is found to offer comparable performance for
charged and neutral hadrons to the existing reconstruction

algorithm. At the same time, the inference time is found to
scale approximately linearly with the particle multiplicity, which
is promising for its ability to maintain computing costs within
budget for the HL-LHC. Further improvements to this original
approach are currently under study, including an event-based
loss, such as the object condensation approach. Second, a
complete assessment of the physics performance remains to be
evaluated, including reconstruction of rare particles and other
corners of the phase space. Finally, it remains to be understood
how to optimize and coherently interface this with the ML-based
approach proposed for tasks downstream and upstream in the
particle-level reconstruction.

2.1.2. Event Simulation
The extraction of results from LHC data relies on a detailed and
precise simulation of the physics of proton-proton collisions and
of the response of the detector. In fact, the collected data are
typically compared to a referencemodel, representing the current
knowledge, in order to either confirm or disprove it. Numerical
models, based on Monte Carlo (MC) methods, are used to
simulate the interaction between elementary particles andmatter,
while the Geant4 toolkit is employed to simulate the detectors.
These simulations are generally very CPU intensive and require
roughly half of the experiment’s computing resources, with this
fraction expected to increase significantly for the HL-LHC.

Novel computational methods based on ML are being
explored so as to perform precise modeling from particle
interactions to detector readouts and response while maintaining
feasible computing budgets for HL-LHC. In particular, numerous
works have focused on the usage of generative adversarial
networks or other state-of-the-art generative models to replace
computationally intensive fragments of MC simulation, such as
modeling of electromagnetic showers (de Oliveira et al., 2017;
Paganini et al., 2018a,b), reconstruction of jet images (Musella
and Pandolfi, 2018) or matrix element calculations (Bendavid,
2017). In addition, the usage of ML generative models on
end-to-end analysis-specific fast simulations have also been
investigated in the context of Drell-Yan (Hashemi et al.,
2019), dijet (Di Sipio et al., 2019), and W+jets (Chen et al.,
2020) production. These case-by-case proposals serve as proof-
of-principle examples for complementary data augmentation
strategy for LHC experiments.

2.1.3. Heterogeneous Computing
State-of-the-art deep learning models are being explored for
the compute-intensive reconstruction of each collision event
at the LHC. However, their efficient deployment within the
experiments’ computing paradigms is still a challenge, despite the
potential speed-up when the inference is executed on suitable
AI-dedicated hardware. In order to gain from a parallelizable
ML-based translation of traditional and mostly sequential
algorithms, a heterogeneous computing architecture needs to be
implemented in the experiment infrastructure. For this reason,
comprehensive exploration of the use of CPU+GPU (Krupa
et al., 2020) and CPU+FPGA (Duarte et al., 2019; Rankin
et al., 2020) heterogeneous architectures was made to achieve
the desired acceleration of deep learning inference within the
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FIGURE 2 | High-level overview of the stages in a GNN-based tracking pipeline. Only a subset of the typical edge weights are shown for illustration purposes. (A)

Graph construction, (B) edge classification, and (C) track construction.

data processing workflow of LHC experiments. These works
demonstrated that the acceleration of machine learning inference
“as a service” represents a heterogeneous computing solution for
LHC experiments that potentially requires minimal modification
to the current computing model.

In this approach, the ML algorithms are transferred to a
co-processor on an independent (local or remote) server by
reconfiguring the CPU node to communicate with it through
asynchronous and non-blocking inference requests. With the
inference task offloaded on demand to the server, the CPU can
be dedicated to performing other necessary tasks within the
event. As one server can serve many CPUs, this approach has
the advantage of increasing the hardware cost-effectiveness to
achieve the same throughput when comparing it to a direct-
connection paradigm. It also facilitates the integration and
scalability of different types of co-processor devices, where the
best one is chosen for each task.

Finally, existing open-source frameworks that have been
optimized for fast DL on several different types of hardware
can be exploited for a quick adaptation to LHC computing.
In particular, one could use the Nvidia Triton Inference Server
within a custom framework, so-called Services for Optimized
Network Inference on Co-processors (SONIC), to enable remote
gRPC calls to either GPUs or FPGAs within the experimental
software, which then only has to handle the input and output
conversion between event data format and inference server
format. The integration of this approach within the CMS
reconstruction software has been shown to lead to a significant
overall reduction in the computing demands both at the HLT
and offline.

2.1.4. Real-Time Analysis at 40 MHz
Bringing deep learning algorithms to the Level-1 hardware
trigger is an extremely challenging task due to the strict
latency requirement and the resource constraints imposed by the
system. Depending on which part of the system an algorithm
is designed to run on, a latency down to O(10) ns might
be required. With O(100) processors running large-capacity
FPGAs, processing thousands of algorithms in parallel, dedicated
FPGA-implementations are needed to make ML algorithms as

resource-efficient and fast as possible. To facilitate the design
process and subsequent deployment of highly parallel, highly
compressed ML algorithms on FPGAs, dedicated open-source
libraries have been developed: hls4ml and Conifer. The
former, hls4ml, provides conversion tools for deep neural
networks, while Conifer aids the deployment of Boosted
Decision Trees (BDTs) on FPGAs. Both libraries, as well as
example LHC applications, will be described in the following.

The hls4ml library (Duarte et al., 2018; Coelho et al., 2020;
Loncar et al., 2020; Aarrestad et al., 2021) converts pre-trained
ML models into ultra low-latency FPGA or ASIC firmware with
little overhead required. Integration with the Google QKeras
library (Coelho, 2019) allows users to design aggressively
quantized deep neural networks and train them quantization-
aware (Coelho et al., 2020) down to 1 or 2 bits for weights
and activations (Loncar et al., 2020). This step results in highly
resource-efficient equivalents of the original model, sacrificing
little to no accuracy in the process. The goal of this joint package
is to provide a simple two-step approach going from a pre-
trained floating point model to FPGA firmware. The hls4ml
library currently provides support for several commonly used
neural network layers like fully connected, convolutional, batch
normalization, pooling, as well as several activation functions.
These implementations are already sufficient to provide support
for the most common architectures envisioned for deployment
at L1.

Some first examples of machine learning models designed
for the L1 trigger are based on fully connected layers, and
they are proposed for tasks such as the reconstruction and
calibration of final objects or lower-level inputs like trajectories,
vertices, and calorimeter clusters (CERN, 2020). One example
of a convolutional NN (CNN) architecture targeting the L1
trigger is a dedicated algorithm for the identification of long-
lived particles (Alimena et al., 2020). Here, an attempt is made
to efficiently identify showers from displaced particles in a high-
granularity forward calorimeter. The algorithm is demonstrated
to be highly efficient down to low energies while operating at
a low trigger rate. Traditionally, cut-based selection algorithms
have been used for these purposes, in order to meet the limited
latency- and resource budget. However, with the advent of
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tools like hls4ml and QKeras, ML alternatives are being
explored to improve the sensitivity to such physics processes
while maintaining latency and resources in the available budget.

More recently, (variational) auto-encoders (VAEs or AEs)
are being considered for the detection of “anomalous” collision
events, i.e., events that are not produced by standard physics
processes but that could be due instead to unexpected processes
not yet explored at colliders. Such algorithms have been proposed
for both the incoming LHC run starting in 2022 as well as for the
future high-luminosity runs where more granular information
will be available. The common approach uses global information
about the event, including a subset of individual produced
particles or final objects such as jets as well as energy sums. The
algorithm trained on these inputs is then used to classify the
event as anomalous if surpassing a threshold on the degree of
anomaly (typically the loss function), ultimately decided upon the
available bandwidth. Deploying a typical variational autoencoder
is impossible in the L1-trigger since the bottleneck layer involves
Gaussian random sampling. The explored solution is therefore to
only deploy the encoder part of the network and do inference
directly from the latent dimension. Another possibility is to
deploy a simple auto-encoder with the same architecture and do
inference computing the difference between output and input.
However, this would require buffering a copy of the input for the
duration it takes the auto-encoder to process the input. For this
reason, the two methods are being considered and compared in
terms of accuracy over a range of new physics processes, as well
as latency and resources. Finally, another interesting aspect of the
hls4ml tool is the capability for users to easily add custom layers
that might serve a specific task not captured by themost common
layers supported in the library. One example of this is compressed
distance-weighted graph networks (Iiyama et al., 2021), where a
graph network block called a GarNet layer takes as input a set of
V vertices, each of which has Fin features, and returns the same
set of vertices with Fout features. To keep the dimensionality of
the problem at a manageable level, the input features of each
vertex are encoded and aggregated at S aggregators. Message-
passing is only performed between vertices and a limited set of
aggregators, and not between all vertices, significantly reducing
the network size. In Iiyama et al. (2021), an example task of
pion and electron identification and energy regression in a 3D
calorimeter is studied. A total inference latency of O(100) ns is
reported, satisfying the L1 requirement of O(1) µs latency. The
critical resource is digital signal processing (DSP) units, where
29% of the DSPs are in use by the algorithm. This can be further
reduced by taking advantage of quantization-aware training with
QKeras. Another example of a GNN architecture implemented
on FPGA hardware using hls4ml is presented in Heintz et al.
(2020). This work shows that a compressed GNN can be deployed
on FPGA hardware within the latency and resources required by
L1 trigger system for the challenging task of reconstructing the
trajectory of charged particles.

In many cases, the task to be performed is simple enough that
a boosted decision tree (BDT) architecture suffices to solve the
problem. As of today, BDTs are still the most commonly used
ML algorithm for LHC experiments. To simplify the deployment
of these, the library Conifer (Summers et al., 2020) has

been developed. In Conifer, the BDT implementation targets
extreme low latency inference by executing all trees, and all
decisions within each tree, in parallel. BDTs and random forests
can be converted from scikit-learn (Pedregosa et al., 2011),
XGBoost (Chen and Guestrin, 2016), and TMVA (Therhaag
and Team, 2012), with support for more BDT training libraries
planned. For a large part of the field, though, the frameworks that
are currently supported are the most widely used.

There are several ongoing projects at LHC which plan to
deploy BDTs in the Level-1 trigger using Conifer. One example
is a BDT designed to provide an estimate of the track quality, by
learning to identify tracks that are reconstructed in error, and do
not originate from a real particle (Savard, 2020).

While the accuracy and resource usage are similar between a
BDT and a DNN, the latency is significantly reduced for a BDT
architecture. The algorithm is planned to be implemented in the
CMS Experiment for the data-taking period beginning in 2022.

Rather than relying on open source libraries such as hls4ml
or Conifer, which are based on high-level synthesis tools
from FPGA vendors, other approaches are being considered
based directly on hardware description languages, such as
VHDL (Nottbeck et al., 2019; Fritzsche, 2020). One example
is the application of ML for the real-time signal processing of
the ATLAS Liquid Argon calorimeter (ATL, 1996). It has been
shown that with upgraded capabilities for the HL-LHC collision
environment the conventional signal processing, which applies
an optimal filtering algorithm (Cleland and Stern, 1994), will
lose its performance due to the increase of overlapping signals.
More sophisticated DL methods have been found to be more
suitable to cope with these challenges being able to maintain
high signal detection efficiency and energy reconstruction. More
specifically, studies based on simulation (Madysa, 2019) of
dilated convolutional neural networks showed promising results.
An implementation of this architecture for FPGA is designed
using VHDL (Fritzsche, 2020) to meet the strict requirements
on latency and resources required by the L1 trigger system.
The firmware runs with a multiple of the bunch crossing
frequency to reuse hardware resources by implementing time-
division multiplexing while using pipeline stages, the maximum
frequency can be increased. Furthermore, DSPs are chained up
to perform the MAC operation in between two layers efficiently.
In this way, a core frequency of more than 480 MHz could be
reached, corresponding to 12 times the bunch crossing frequency.

2.1.5. Bringing ML to Detector Front-End
While LHC detectors grow in complexity to meet the challenging
conditions of higher-luminosity environments, growing data
rates prohibit transmission of full event images off-detector
for analysis by conventional FPGA-based trigger systems. As
a consequence, event data must be compressed on-detector
in low-power, radiation-hard ASICs while sacrificing minimal
physics information.

Traditionally this has been accomplished by simple
algorithms, such as grouping nearby sensors together so
that only these summed “super-cells” are transmitted, sacrificing
the fine segmentation of the detector. Recently, an autoencoder-
based approach has been proposed, relying instead on a set of
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machine-learned radiation patterns to more efficiently encode
the complete calorimeter image via a CNN. Targeting the
CMS high-granularity endcap calorimeter (HGCal) (CMS
Collaboration, 2017) at the HL-LHC, the algorithm aims to
achieve higher-fidelity electromagnetic and hadronic showers,
critical for accurate particle identification.

The on-detector environment (the ECON-T concentrator
ASIC; CMS Collaboration, 2017) demands a highly-efficient
CNN implementation; a compact design should be thoroughly
optimized for limited-precision calculations via quantization-
aware training tools (Coelho et al., 2021). Further, to automate
the design, optimization, and validation of the complex NN
circuit, HLS-based tool flows (Duarte et al., 2018) may be
adapted to target the ASIC form factor. Finally, as the front-end
ASIC cannot be completely reprogrammed in the manner of an
FPGA, a mature NN design is required from the time of initial
fabrication. However, adaptability to changing run conditions
and experimental priorities over the lifetime of the experiment
motivate the implementation of all NN weights as configurable
registers accessible via the chip’s slow-control interface.

2.2. High Intensity Accelerator Experiments
2.2.1. ML-Based Trigger System at the Belle II

Experiment
Context: The Belle II experiment in Japan (Abe et al., 2010;
Altmannshofer et al., 2019) is engaged in the search for physics
phenomena that cannot be explained by the Standard Model.
Electrons and positrons are accelerated at the SuperKEKB
particle accelerator to collide at the interaction point located
inside of the Belle II detector. The resulting decay products
are continually measured by the detector’s heterogeneous sensor
composition. The resulting data is then stored offline for detailed
analysis.

Challenges: Due to the increasing luminosity (target
luminosity is 8 × 1035cm−2s−1) most of the recorded data
is from unwanted but unavoidable background reactions, rather
than electron-positron annihilation at the interaction point. Not
only is storing all the data inefficient due to the high background
rates, but it is also not feasible to build an infrastructure that
stores all the generated data. A multilevel trigger system is used
as a solution to decide online which recorded events are to be
stored.

Existing and Planned Work: The Neural Network z-Vertex
Trigger (NNT) described used at Belle II is a deadtime-free level
1 (L1) trigger that identifies particles by estimating their origin
along the beampipe. For the whole L1 trigger process, from data
readout to the decision, a real-time 5µs time budget is given to
avoid dead-time (Lai et al., 2020b). Due to the time cost of data
pre-processing and transmission, the NNT needs to provide a
decision within 300 ns processing time.

The task of the NNT is to estimate the origin of a particle track
so that it can be decided whether it originates from the interaction
point or not. For this purpose, a multilayer perceptron (MLP)
implemented on a Xilinx Virtex 6 XC6VHX380T FPGA is used.
The MLP consists of three layers with 27 input neurons, 81
hidden layer neurons and two output neurons. Data from the
Belle II’s central drift chamber (CDC) is used for this task, since

it is dedicated to the detection of particle tracks. Before being
processed by the network, the raw detector data is first combined
into a 2D track based on so-called track segments, which are
groupings of adjacent active sense wires. The output of the NNT
delivers the origin of the track in z, along the beampipe, as well as
the polar angle θ . With the help of the z-vertex, the downstream
global decision logic (GDL) can decide whether a track is from
the interaction point or not. In addition, the particle momentum
can be detected using the polar angle θ (Baehr et al., 2019).

The networks used in the NNT are trained offline. The first
networks were trained with plain simulated data because no
experimental data were available. For more recent networks,
reconstructed tracks from the experimental data are used.
For the training the iRPROP algorithm is used which is an
extension of the RPROP backpropagation algorithm. Current
results show a good correlation between the NNT tracks and
reconstructed tracks. Since the event rate and the background
noise are currently still tolerable, the z-cut, i.e., the allowed
estimated origin of a track origin in order to be kept, is
chosen at±40 cm.With increasing luminosity and the associated
increasing background, this z-cut can be tightened. Since the new
Virtex Ultrascale based universal trigger board (UT4) is available
for the NNT this year, an extension of the data preprocessing
is planned. This will be done by a 3D Hough transformation
for further efficiency increases. It has already been shown in
simulation that a more accurate resolution and larger solid angle
coverage can be achieved (Skambraks et al., 2020).

2.2.2. Mu2e
Context: The Mu2e experiment at Fermilab (Bartoszek et al.,
2014) will search for the charged lepton flavor violating process
of neutrino-less µ → e coherent conversion in the field of
an aluminum nucleus. About 7 · 1017 muons, provided by a
dedicated muon beamline in construction at Fermilab, will be
stopped in 3 years in the aluminum target. The corresponding
single event sensitivity will be 2.5 · 10−17. To detect the signal e−

(p = 105MeV), Mu2e uses a detector system made of a straw-
tube tracker and a crystal electromagnetic calorimeter (Pezzullo,
2017).

Challenges: The trigger system is based on detector Read Out
Controllers (ROCs) which stream out continuously the data,
zero-suppressed, to the Data Transfer Controller units (DTCs).
The proton pulses are delivered at a rate of about 600 kHz and
a duty cycle of about 30% (0.4 s out of 1.4 s of the booster-ring
delivery period). Each proton pulse is considered a single event,
with the data from each event then grouped at a single server
using a 10 Gbps Ethernet switch. Then, the online reconstruction
of the events starts and makes a trigger decision. The trigger
system needs to satisfy the following requirements: (1) provide
efficiency better than 90% for the signals; (2) keep the trigger
rate below a few kHz – equivalent to 7 Pb/year; (3) achieve
a processing time < 5 ms/event. Our main physics triggers
use the information of the reconstructed tracks to make the
final decision.

Existing and Planned Work: The current strategy is
to perform the helix pattern recognition and the track
reconstruction with the CPUs of the DAQ servers, but so
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far this design showed limitations in matching the required
timing performance (Pezzullo, 2020). Another idea that the
collaboration started exploring is to perform the early stage of
the track reconstruction on the ROC and DTC FPGA using
the High Level Synthesis tool (HLS) and the hls4ml (Pierini
et al., 2020) package. The Mu2e helix pattern-recognition
algorithms (Pezzullo, 2020) are a natural fit for these tools
for several reasons: they use neural-networks to clean up the
recorded straw-hits from hits by low-momentum electrons
(p < 10MeV) and they perform large combinatorics calculations
when reconstructing the helicoidal electron trajectory. This
R&D is particularly important for the design of the trigger
system of the planned upgrade of Mu2e (Abusalma et al., 2018),
where we expect to: (i) increase the beam intensity by at least
a factor of 10, (ii) increase the duty cycle to at least 90%, and
(iii) increase the number of detector’s channels to cope with the
increased occupancy.

2.3. Materials Discovery
2.3.1. Materials Synthesis
Context: Advances in electronics, transportation, healthcare, and
buildings require the synthesis of materials with controlled
synthesis-structure-property relationships. To achieve
application-specific performance metrics, it is common to
design and engineer materials with highly ordered structures.
This directive has led to a boom in non-equilibrium materials
synthesis techniques. Most exciting are additive synthesis and
manufacturing techniques, for example, 3d-printing (Visser
et al., 2015; Parekh et al., 2016; Zarek et al., 2016; Ligon et al.,
2017; Wang et al., 2020c) and thin film deposition (Richter, 1990;
Chrisey and Hubler, 1994; Kelly and Arnell, 2000; Yoshino et al.,
2000; Park and Sudarshan, 2001; George, 2010; Marvel et al.,
2013), where complex nanoscale architectures of materials can
be fabricated. To glean insight into synthesis dynamics, there has
been a trend to include in situ diagnostics to observe synthesis
dynamics (Egelhoff and Jacob, 1989; Thomas, 1999; Langereis
et al., 2007; Ojeda-G-P et al., 2017). There is less emphasis
on automating the downstream analysis to turn data into
actionable information that can detect anomalies in synthesis,
guide experimentation, or enable closed-loop control. Part of
the challenge with automating analysis pipelines for in situ
diagnostics is the highly variable nature and multimodality of the
measurements and the sensors. A system might measure many
time-resolved state variables (time-series) at various locations
(e.g., temperature, pressure, energy, flow rate, etc.) (Hansen et al.,
1999). Additionally, it is common to measure time-resolved
spectroscopic signals (spectrograms) that provide, for instance,
information about the dynamics of the chemistry and energetic
distributions of the materials being synthesized (Dauchot et al.,
1995; Aubriet et al., 2002; Cooks and Yan, 2018; Termopoli et al.,
2019). Furthermore, there are a growing number of techniques
that leverage high-speed temporally-resolved imaging to observe
synthesis dynamics (Trigub et al., 2017; Ojeda-G-P et al., 2018).

Challenges: Experimental synthesis tools and in situ diagnostic
instrumentation are generally semi-custom instruments
provided by commercial vendors. Many of these vendors rely
on proprietary software to differentiate their products from

their competition. In turn, the closed-nature of these tools and
even data schemas makes it hard to utilize these tools fully.
The varied nature and suppliers for sensors compounds this
challenge. Integration and synchronization of multiple sensing
modalities require a custom software solution. However, there is
a catch-22 because the software does not yet exist. Researchers
cannot be ensured that the development of analysis pipelines
will contribute to their ultimate goal to discover new materials
or synthesize materials with increased fecundity. Furthermore,
there are significant workforce challenges as most curriculums
emphasize Edisonian rather than computational methods in the
design of synthesis. There is an urgent need for multilingual
trainees fluent in typically disparate fields.

Existing and Planned Work: Recently, the materials science
community has started to embracemachine learning to accelerate
scientific discovery (Ramprasad et al., 2017; Butler et al., 2018;
Schmidt et al., 2019). However, there have been growing pains.
The ability to create highly overparameterized models to solve
problems with limited data provides a false sense of efficacy
without the generalization required for science.Machine learning
model architectures designed for natural time-series and images
are ill-posed for physical processes governed by equations.
In this regard, there is a growing body of work to embed
physics in machine learning models, which serve as the ultimate
regularizers. For instance, rotational (Kalinin et al., 2020; Oxley
et al., 2020) and Euclidean equivariance (Smidt, 2020; Smidt et al.,
2021) has been built into the model architectures, andmethods to
learn sparse representations of underlying governing equations
have been developed (Champion et al., 2019; de Silva et al., 2020;
Kaheman et al., 2020).

Another challenge is that real systems have system-specific
discrepancies that need to be compensated (Kaheman et al.,
2019). For example, a precursor from a different batch might
have a slightly different viscosity that needs to be considered.
There is an urgent need to develop these foundational methods
for materials synthesis. Complementing these foundational
studies, there has been a growing body of literature emphasizing
post-mortem machine-learning-based analysis of in situ
spectroscopies (Trejo et al., 2019; Provence et al., 2020). As
these concepts become more mature, there will be an increasing
emphasis on codesign of synthesis systems, machine learning
methods, and hardware for on-the-fly analysis and control. This
effort toward self-driving laboratories is already underway in
wet-chemical synthesis where there are minimal dynamics, and
thus, latencies are not a factor (Langner et al., 2020; MacLeod
et al., 2020). Future efforts will undoubtedly focus on controlling
dynamic synthesis processes where millisecond-to-nanosecond
latencies are required.

2.3.2. Scanning Probe Microscopy
Context: Touch is the first sense humans develop. Since the
atomic force microscope’s (AFM) invention in 1985 (Binnig et al.,
1986), humans have been able to “feel”İ surfaces with atomic
level resolution with pN sensitivity. AFMs rely on bringing an
atomically sharp tip mounted on a cantilever into contact with
a surface. By scanning this tip nanometer-to-atomically resolved
images can be constructed by measuring the angular deflection
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of a laser bounced off the cantilever. This detection mechanism
provides high-precision sub-angstrommeasures of displacement.

By adding functionality to the probe (e.g., electrical
conductivity Benstetter et al., 2009, resistive heaters King,
2005, single-molecule probes Oberhauser et al., 2002, and N-V
centers Ariyaratne et al., 2018), scanning probe microscopy
(SPM) can measure nanoscale functional properties, including
electrical conductivity (Gómez-Navarro et al., 2005; Seidel et al.,
2010), piezoresponse (Jesse and Kalinin, 2011), electrochemical
response (Jesse et al., 2012), magnetic force (Kazakova et al.,
2019), magnetometry (Casola et al., 2018), and much more.
These techniques have been expanded to include dynamics
measurements during a tip-induced perturbation that drives a
structural transformation. These methods have led to a boom in
new AFM techniques, including fast-force microscopy (Benaglia
et al., 2018), current-voltage spectroscopies (Holstad et al., 2020),
band-excitation-based spectroscopies (Jesse et al., 2018), and
full-acquisition mode spectroscopies (Somnath et al., 2015).
What has emerged is a data deluge where these techniques are
either underutilized or under-analyzed.

Challenges: The key practical challenge is that it takes on
days-to-weeks to analyze data from a single measurement
properly. As a result, experimentalists have little information
on how to design their experiments. There is even minimal
feedback on whether the experiments have artifacts (e.g., tip
damage) that would render the results unusable. The number
of costly failed experiments is a strong deterrent to conducting
advanced scanning probe spectroscopies and developing even
more sophisticated imaging techniques. There is a significant
challenge in both the acceleration and automation of analysis
pipelines.

Existing and Planned Work: In materials science, scanning
probe microscopy has quickly adopted machine learning.
Techniques for linear and nonlinear spectral unmixing provide
rapid visualization and extraction of information from these
datasets to discover and unravel physical mechanisms (Collins
et al., 2020a,b; Ziatdinov et al., 2020; Kalinin et al., 2021). The
ease of applying these techniques has led to justified concerns
about the overinterpretation of results and overextension of
linear models (Griffin et al., 2020) to highly nonlinear systems.
More recently, long-short term memory autoencoders were
controlled to have non-negative and sparse latent spaces for
spectral unmixing. By traversing the learned latent space, it has
been possible to draw complex structure-property relationships
(Agar et al., 2019; Holstad et al., 2020). There are significant
opportunities to accelerate the computational pipeline such that
information can be extracted on practically relevant time scales
by the experimentalist on the microscope.

Due to the high velocity of data, up to GB/s, with sample
rates of 100,000 spectra, extracting even cursory information
will require the confluence of data-driven models, physics-
informed machine learning, and AI hardware. As a tangible
example, in band-excitation piezoresponse force microscopy,
the frequency-dependent cantilever response is measured at
rates up to 2,000 spectra-per-second. Extracting the parameters
from these measurements requires fitting the response to
an empirical model. Using least-squares fitting throughput is

limited to ∼ 50-fits/core-minute, but neural networks provide
an opportunity to accelerate analysis and better handle noisy
data (Borodinov et al., 2019). There is an opportunity to deploy
neural networks on GPU or FPGA hardware accelerators to
approximate and accelerate this pipeline by orders of magnitude.

2.4. Fermilab Accelerator Controls
Context: The Fermi National Accelerator Laboratory (Fermilab)
is dedicated to investigating matter, energy, space, and time
(Fermilab, 2021). For over 50 years, Fermilab’s primary tool
for probing the most elementary nature of matter has been
its vast accelerator complex. Spanning a number of miles of
tunnels, the accelerator complex is actually multiple accelerators
and beam transport lines each representing different accelerator
techniques and eras of accelerator technologies. In its long
history, Fermilab’s accelerator complex has had to adapt to
the mission, asking more of the accelerators than they were
designed for and often for purposes they were never intended.
This often resulted in layering new controls on top of existing
antiquated hardware. Until recently, accelerator controls focused
mainly on providing tools and data to the machine operators
and experts for tuning and optimization. Having recognized
the future inadequacies of the current control system and the
promise of new technologies such asML, the Fermilab accelerator
control system will be largely overhauled in the coming years as
part of the Accelerator Controls Operations Research Network
(ACORN) project (Fermilab, 2021).

Challenges: The accelerator complex brings unique challenges
for machine learning. Particle accelerators are immensely
complicated machines, each consisting of many thousands of
variable components and even larger data sources. Their large
size and differing types, resolution, and frequency of data mean
collecting and synchronizing data is difficult. Also, as one might
imagine, control and regulation of beams that travel at near light
speeds is always a challenge. Maintaining and upgrading the
accelerator complex controls is costly. For this reason, much of
the accelerator complex is a mixture of obsolete, new and cutting
edge hardware.

Existing and Planned Work: Traditional accelerator controls
have focused on grouping like elements so that particular
aspects of the beam can be tuned independently. However,
many elements are not always completely separable. Magnets,
for example, often have higher-order fields that affect the beam
in different ways than is the primary intent. Machine learning
has made it finally possible to combine previously believed to
be unrelated readings and beam control elements into new novel
control and regulation schemes.

One such novel regulation project is underway for the Booster
Gradient Magnet Power Supply (GMPS). GMPS controls the
primary trajectory of the beam in the Booster (OPE, 2021). The
project hopes to increase the regulation precision of GMPS ten-
fold. When complete, GMPS would be the first FPGA online
ML-model-based regulation system in the Fermilab accelerator
complex (John et al., 2021). The promise of ML for accelerator
controls is so apparent to the Department of Energy that a call
for accelerator controls using ML was made to the national labs
(DOE, 2020). Of the two proposals submitted by Fermilab and
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approved by the DOE is the Real-time Edge AI for Distributed
Systems (READS) project. READS is actually two projects. The
first READS project will create a complimentary ML regulation
system for slow extraction from the Delivery Ring to the future
Mu2e experiment (Bartoszek et al., 2015). The second READS
project will tackle a long-standing problem with de-blending
beam losses in the Main Injector (MI) enclosure. The MI
enclosure houses two accelerators, the MI and the Recycler.
During normal operation, high intensity beams exist in both
machines. One to use ML to help regulate slow spill in the
Delivery ring to Mu2e, and another to develop a real-time online
model to de-blend losses coming from the Recycler and Main
Injector accelerators which share an enclosure. Both READS
projects will make use of FPGA online ML models for inference
and will collect data at low latencies from distributed systems
around the accelerator complex (Seiya et al., 2021).

2.5. Neutrino and Direct Dark Matter
Experiments
2.5.1. Accelerator Neutrino Experiments
Context: Accelerator neutrino experiments detect neutrinos with
energies ranging from a few tens of MeV up to about 20GeV.
The detectors can be anywhere from tens of meters away from
the neutrino production source, to as far as away as 1,500 km. For
experiments with longer baselines it is common for experiments
to consist of both a near (∼1 km baseline) and a more distant far
detector (100’s km baseline). Accelerator neutrino experiments
focused on long-baseline oscillations use highly pure muon
neutrino beams, produced by pion decays in flight. By using
a system of magnetic horns it is possible to produce either a
neutrino, or antineutrino beam. This ability is particularly useful
for CP-violation measurements. Other experiments use pions
decaying at rest, which produce both muon and electron flavors.

The primary research goal of many accelerator neutrino
experiments is to perform neutrino oscillation measurements;
the process by which neutrinos created in one flavor state are
observed interacting as different flavor states after traveling a
given distance. Often this takes the form of measuring electron
neutrino appearance andmuon neutrino disappearance. The rate
of oscillation is energy-dependent, and so highly accurate energy
estimation is essential. Another key research goal for accelerator
neutrinos is to measure neutrino cross-sections, which in
addition to accurate energy estimation requires the identification
of the particles produced by the neutrino interaction.

Challenges:Accelerator neutrino experiments employ a variety
of detector technologies. These range from scintillator detectors
such as NOvA (Ayres et al., 2007) (liquid), MINOS (Ambats
et al., 1998) (solid), and MINERvA (MIN, 2006) (solid), to water
Cherenkov detectors such as T2K (Abe et al., 2011), and finally
liquid argon time projection chambers such as MicroBooNE
(Fleming, 2012), ICARUS (Amerio et al., 2004), and DUNE
(Abi et al., 2020a). Pion decay-at-rest experiments (COHERENT
Akimov et al., 2015, JSNS2 Ajimura et al., 2017) use yet different
technologies (liquid and solid scintillators, as well as solid-state
detectors). The individual challenges and solutions are unique to
each experiment, though common themes do emerge.

Neutrino interactions are fairly uncommon due to their low
cross-section. Some experiments can see as few as one neutrino
interaction per day. This, combined with many detectors being
close to the surface, means that analyses have to be highly efficient
whilst achieving excellent background rejection. This is true both
in online data taking and offline data analysis.

As experiments typically have very good temporal and/or
spatial resolution it is often fairly trivial to isolate entire neutrino
interactions. This means that it is then possible to use image
recognition tools such as CNNs to perform classification tasks.
As a result, many experiments initially utilized variants of
GoogLeNet, though many are now transitioning to use GNNs
and networks better able to identify sparse images.

Existing and Planned Work: As discussed in Section 2.5.2,
DUNE will use machine learning in its triggering framework
to handle its immense data rates and to identify candidate
interactions, for both traditional neutrino oscillation
measurements and for candidate solar and supernova events.
Accelerator neutrino experiments have successfully implemented
machine learning techniques for a number of years, the first
such example being in 2017 (Adamson et al., 2017), where the
network increased the effective exposure of the analysis by 30%.
Networks aimed at performing event classification are common
across many experiments, with DUNE having recently published
a network capable of exceeding its design sensitivity on simulated
data and which includes outputs that count the numbers of final
state particles from the interaction (Abi et al., 2020a).

Experiments are becoming increasingly cognizant of the
dangers of networks learning features of the training data
beyond what is intended. For this reason, it is essential to
carefully construct training datasets such that this risk is reduced.
However, it is not possible to correct or quantify bias which is
not yet known; therefore the MINERvA experiment has explored
the use of a domain adversarial neural network (Perdue et al.,
2018) to reduce unknown biases from differences in simulated
and real data. The network features a gradient reversal layer in
the domain network (trained on data), thus discouraging the
classification network (trained on simulation) to learn from any
features that behave differently between the two domains. Amore
robust exploration of the machine learning applied to accelerator
neutrino experiments can be found here in Psihas et al. (2020).

2.5.2. Neutrino Astrophysics
Context: Neutrino astrophysics spans a wide range of energies,
with neutrinos emitted from both steady-state and transient
sources with energies from less than MeV to EeV scale.
Observations of astrophysical neutrinos are valuable both for the
understanding of neutrino sources and for probing fundamental
physics. Neutrino detectors designed for observing these tend to
be huge scale (kilotons to megatons). Existing detectors involve a
diverse range of materials and technologies for particle detection;
they include Cherenkov radiation detectors in water and ice,
liquid scintillator detectors and, liquid argon time projection
chambers.

Astrophysical neutrinos are one kind of messenger
contributing to the thriving field of multimessenger astronomy,
in which signals from neutrinos, charged particles, gravitational
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waves, and photons spanning the electromagnetic spectrum
are observed in coincidence. This field has had some recent
spectacular successes (Abbott et al., 2017a; Aartsen et al., 2018;
Graham et al., 2020). For multimessenger transient astronomy,
time is of the essence for sharing data and locating sources.
Directional information from the neutrinos is critically valuable,
to allow prompt location of the source by other messengers.

Potential interesting transient astrophysical sources include
sources of ultra-high energy neutrinos, as well as nearby stellar
core collapses. Neutrinos in the multi-GeV and higher range are
emitted from distant cosmic sources, including kilonovae and
blazars, and cubic-km-scale water-based Cherenkov detectors
such as IceCube at the South Pole can produce fast alerts from
single neutrino observations.

Core-collapse supernovae are another promising use case for
fast machine learning. These are copious sources of few tens
of MeV-scale neutrinos, which are emitted in a burst lasting a
few tens of seconds (Scholberg, 2012; Mirizzi et al., 2016). The
neutrinos are prompt after core collapse (as will be gravitational
waves) but observable electromagnetic radiation will not emerge
for anywhere from tens to 106 s, depending on the nature of the
progenitor and its envelope (Kistler et al., 2013). Low-latency
information is therefore immensely valuable. Core-collapse
supernovae are rare events within the distance range observable
by current and near-future neutrino detectors. They occur only
every several decades, which makes prompt and robust detection
especially important. The SuperNova Early Warning System
(Antonioli et al., 2004; Al Kharusi et al., 2020) aims to provide
a prompt alert from a coincidence of burst detections. However,
pointing information from neutrinos is relatively difficult to
extract promptly. Detectors with the capability for prompt
pointing thanks to the anisotropy of neutrino interactions (i.e.,
the interaction products that remember where the neutrino came
from) offer the best prospects, but these need to be able to
select neutrino events from background and reconstruct their
directions with very low latency.

Presupernova neutrinos are another interesting possibility. In
the final stages of stellar burning, one expects a characteristic
uptick in neutrino luminosity and average energy, producing
observable events in detectors for nearby progenitors. This could
give a warning of hours or perhaps days before core collapse for
the nearest progenitors. For this case, fast selection of neutrino-
like events and reconstruction of their directional information for
background reduction is needed.

Challenges: The challenges, in general, are fast selection and
reconstruction of neutrino event (interaction) information. The
specifics of the problem depend on the particular detector
technology, but in general, the charged particle products of
a neutrino interaction will have a distinctive topology or
other signature and must be selected from a background of
cosmic rays, radiologicals, or detector noise. Taking as an
example a liquid argon time projection chamber like the Deep
Underground Neutrino Experiment (DUNE), neutrino-induced
charged particles produce charge and light signals in liquid argon.
Supernova neutrino interactions appear as small (tens of cm
spatial scale) stubs and blips (Abi, 2020; Abi et al., 2020b).
The recorded neutrino event information from the burst can

be used to reconstruct the supernova direction to ∼5–10◦ for
core collapse at 10 kpc distance (Abi, 2020; Roeth, A. J., 2020).
The neutrino events need to be selected from a background of
radioactivity and cosmogenics, as well as detector noise, requiring
background reduction of many orders of magnitude. Total data
rate amounts to ∼40 Tb/s. The detector must take data for a
decade or more at this rate, with near-continuous uptime.

For steady-state signals such as solar neutrinos, triggering
on individual events in the presence of large backgrounds is
a challenge that can be addressed with machine learning. For
burst signals, the triggering is a different problem: the general
strategy is to read out all information on every channel within
a tens-of-seconds time window, for the case of a triggered
burst. This leads to the subsequent problem of sifting the
signal events and reconstructing sufficient information on a very
short timescale to point back to the supernova. The required
timescale is minutes, or preferably seconds. Both the event-
by-event triggering and fast directional reconstruction can be
addressed with fast machine learning.

Existing and Planned Work: There are a number of
existing efforts toward the use of machine learning for particle
reconstruction in neutrino detectors including water Cherenkov,
scintillator, and liquid argon detectors. These overlap to some
extent with the efforts described in Section 2.5.1. Efforts directed
specifically toward real-time event selection and reconstruction
are ramping up. Some examples of ongoing efforts can be found
in Abi et al. (2020a),Acciarri et al. (2020), Psihas et al. (2020),
Abratenko et al. (2020), Wang et al. (2020a), Drielsma et al.
(2021), and Qian et al. (2021).

2.5.3. Direct Detection Dark Matter Experiments
Context: Direct dark matter (DM) search experiments take
advantage of the vastly abundant DM in the universe and are
searching for direct interactions of DMparticles with the detector
target material. The various target materials can be separated
into two main categories, crystals and liquid noble gases, though
other material types are subject to ongoing detector R&D efforts
(Alexander et al., 2016; Schumann, 2019).

One of the most prominent particle DM candidates is the
WIMP (weakly interacting massive particle), a thermal, cold DM
candidate with an expectedmass and coupling to StandardModel
particles at the weak scale (Jungman et al., 1996). However,
decades of intensive searches both at direct DM and at collider
experiments have not yet been able to discover2 the vanillaWIMP
while excluding most of the parameter space of the simplest
WIMP hypothesis (Schumann, 2019). This instance has lead to
a shift in paradigm for thermal DM toward increasingly lower
masses well below 1GeV (and thus the weak scale) (Boehm and
Fayet, 2004) and as low as a few keV, i.e., the warm DM limit
(Weinberg et al., 2015). Thermal sub-GeV DM is also referred
to as light dark matter (LDM). Other DM candidates that are
being considered include non-thermal, bosonic candidates like

2The DAMA/NaI and subsequent DAMA/LIBRA experiment, claim the direct
observation of DM particles in the galactic halo (Bernabei et al., 2013), but the
results are in tension with negative results from similar experiments (Schumann,
2019).
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dark photons, axions and axion-light particles (ALPs) (Holdom,
1986; Svrcek and Witten, 2006; Peccei, 2008).

The most common interactions direct DM experiments are
trying to observe are thermal DM scattering off either a nucleus
or an electron and the absorption of dark bosons under the
emission of an electron. The corresponding signatures are either
nuclear recoil or electron recoil signatures.

Challenges: In all mentioned interactions, and independent of
the target material, a lower DM mass means a smaller energy
deposition in the detector and thus a signal amplitude closer
to the baseline noise. Typically, the baseline noise has non-
Gaussian contributions that can fire a simple amplitude-over-
threshold trigger even if the duration of the amplitude above
threshold is taken into account. The closer the trigger threshold
is to the baseline, the higher the rate of these spurious events. In
experiments which cannot read out raw data continuously and
which have constraints on the data throughput, the hardware-
level trigger threshold has thus to be high enough to significantly
suppress accidental noise triggers.

In the hunt for increasingly lower DMmasses, however, an as-
low-as-possible trigger threshold is highly desirable, calling for a
more sophisticated and extremely efficient event classification at
the hardware trigger level. Particle-induced events have a known,
and generally constant, pulse-shape while non-physical noise
“events" (e.g., induced by the electronics) generally have a varying
pulse-shape which is not necessarily predictable. A promising
approach in such a scenario is the use of machine learning
techniques for most efficient noise event rejection in real-time
allowing to lower the hardware-level trigger threshold, and thus
the low mass reach in most to all direct DM searches, while
remaining within the raw data read-out limitations imposed by
the experimental set-up.

Existing and Planned Work: Machine learning is already
applied by various direct DM search experiments (Simola et al.,
2019; Khosa et al., 2020; Szydagis et al., 2021), especially in
the context of offline data analyses. However, it is not yet used
to its full potential within the direct DM search community.
Activities in this regard are still ramping up but with increasing
interest, efforts, and commitment. Typical offline applications
to date are the reconstruction of the energy or position of an
event and the classification of events (e.g., signal against noise
or single-scattering against multiple-scattering). In parallel R&D
has started on real-time event classification within the FPGA-
level trigger architecture of the SuperCDMS experiment (Agnese
et al., 2017) with the long-term goal of lowering the trigger
threshold notably closer to the baseline noise without triggering
on spurious events. While these efforts are being conducted
within the context of SuperCDMS the goal is a modular trigger
solution for easier adaption to other experiments.

2.6. Electron-Ion Collider
Context: The Electron-Ion Collider (EIC) will support the
exploration of nuclear physics over a wide range of center-of-
mass energies and ion species, using highly-polarized electrons
to probe highly-polarized light ions and unpolarized heavy ions.
The frontier accelerator facility will be designed and constructed
in the U.S. over the next 10 years. The requirements of the EIC

are detailed in a white paper (Accardi et al., 2016), the 2015
Nuclear Physics Long Range Plan (Aprahamian et al., 2015),
and an assessment of the science by the National Academies
of Science (National Academies of Sciences Engineering and
Medicine, 2018). The EIC’s high luminosity and highly polarized
beams will push the frontiers of particle accelerator science and
technology and will enable us to embark on a precision study of
the nucleon and the nucleus at the scale of sea quarks and gluons,
over all of the kinematic range that is relevant as described in the
EIC Yellow Report (Abdul Khalek et al., 2021).

Challenges:While the event reconstruction at the EIC is likely
easier than the same task at present LHC or RHIC hadron
machines, and much easier than for the High-Luminosity LHC,
which will start operating 2 years earlier than the EIC, possible
contributions from machine backgrounds form a challenge. The
expected gain in CPU performance in the next 10 years as
well as the possible improvement in the reconstruction software
from the use of AI and ML techniques give a considerable
margin to cope with higher event complexity that may come
by higher background rates. Software design and development
will constitute an important ingredient for the future success
of the experimental program at the EIC. Moreover, the cost
of the IT related components, from software development to
storage systems and to distributed complex e-Infrastructures can
be raised considerably if a proper understanding and planning
is not taken into account from the beginning in the design of
the EIC. The planning must include AI and ML techniques, in
particular for the compute-detector integration at the EIC, and
training in these techniques.

Existing and Planned Work: Accessing the EIC physics of
interest requires an unprecedented integration of the interaction
region (IR) and detector designs. The triggerless DAQ scheme
that is foreseen for the EIC will extend the highly integrated
IR-detector designs to analysis. A seamless data processing
from DAQ to analysis at the EIC would allow to streamline
workflows, e.g., in a combined software effort for the DAQ,
online, and offline analysis, as well as to utilize emerging software
technologies, in particular fast ML algorithms, at all levels of
data processing. This will provide an opportunity to further
optimize the physics reach of the EIC. The status and prospects
for “AI for Nuclear Physics” have been discussed in a workshop
in 2020 (Bedaque et al., 2021). Topics related to fast ML are
intelligent decisions about data storage and (near) real-time
analysis. Intelligent decisions about data storage are required
to ensure the relevant physics is captured. Fast ML algorithms
can improve the data taken through data compactification,
sophisticated triggers, and fast online analysis. At the EIC,
this could include automated alignment and calibration of the
detectors as well as automated data-quality monitoring. A (near)
real-time analysis and feedback enables quick diagnostics and
optimization of experimental setups as well as significantly faster
access to physics results.

2.7. Gravitational Waves
Context:As predicted by Einstein in 1916, gravitational waves are
fluctuations in the gravitational field which within the theory of
general relativity manifest as a change in the spacetime metric.
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These ripples in the fabric of spacetime travel at the speed
of light and are generated by changes in the mass quadruple
moment, as, for example, in the case of two merging black
holes (Abbott et al., 2016b). To detect gravitational waves,
the LIGO/Virgo/KAGRA collaborations employ a network of
kilometer-scale laser interferometers (Harry and LIGO Scientific
Collaboration, 2010; Aso et al., 2013; Acernese et al., 2014; Affeldt
et al., 2014). An interferometer consists of two perpendicular
arms; as the gravitational wave passes through the instrument, it
stretches one arm while compressing the other in an alternating
pattern dictated by the gravitational wave itself. Such length
difference is then measured from the laser interference pattern.

Gravitational waves are providing a unique way to study
fundamental physics, including testing the theory of general
relativity at the strong field regime, the speed of propagation
and polarization of gravitational waves, the state of matter at
nuclear densities, formation of black holes, effects of quantum
gravity and more. They have also opened up a completely new
window for observing the Universe and in a complementary
way to one enabled by electromagnetic and neutrino astronomy.
This includes the study of populations, including their formation
and evolution, of compact objects such as binary black holes
and neutron stars, establish the origin of gamma-ray bursts
(GRBs), measure the expansion of the Universe independently of
electromagnetic observations, and more (Abbott et al., 2017b).

Challenges: In the next observing run in 2022, LIGO, Virgo,
and KAGRA will detect an increasing number of gravitational-
wave candidates. This poses a computational challenge to the
current detection framework, which relies on matched-filtering
techniques that match parameterized waveforms (templates)
from simulations into the gravitational-wave time series data
(Sathyaprakash and Dhurandhar, 1991; Vaseghi, 2001; Abbott
et al., 2016b).Matched filtering scales poorly as the low-frequency
sensitivity of the instrument improves and the search parameter
space of the gravitational wave expands to cover spin effects and
low mass compact objects. To estimate the physical properties
of the gravitational wave, stochastic Bayesian posterior samplers,
such as Markov-chain Monte Carlo and Nested Sampling, have
been used until now. Such analysis approaches can take up hours
to days to complete (Abbott et al., 2016a). The latency introduced
by the current search and parameter estimation pipeline is non-
negligible and can hinder electromagnetic follow-ups of time-
sensitive sources like binary neutron stars, supernovae, and other,
yet unknown, systems.

Observations of gravitational-wave transients are also
susceptible to environmental and instrumental noise. Transient
noise artifacts can be misidentified as a potential source,
especially when the gravitational-wave transients have an
unknown morphology (e.g., supernovae, neutron star glitches).
Line noise in the noise spectrum of the instruments can affect the
search for continuous gravitational waves (e.g., spinning neutron
stars) and stochastic gravitational waves (e.g., astrophysical
background of gravitational waves from unresolved compact
binary systems). These noise sources are difficult to simulate,
and current noise subtraction techniques are insufficient to
remove the more complex noise sources, such as non-linear and
non-stationary ones.

Existing and Planned Work: In recent years, machine
learning algorithms have been explored in different areas of
gravitational-wave physics (Cuoco et al., 2020). CNNs have been
applied to detect and categorize compact binary coalescence
gravitational waves (Kim et al., 2015, 2020; Gabbard et al.,
2018; George and Huerta, 2018; Gebhard et al., 2019), burst
gravitational waves from core-collapse supernovae (Astone et al.,
2018; Chan et al., 2020; Iess et al., 2020), and continuous
gravitational waves (Dreissigacker et al., 2019; Beheshtipour
and Papa, 2020). Besides, recurrent neural networks (RNNs)
based autoencoders have been explored to detect gravitational
wave using an unsupervised strategy (Moreno et al., 2021).
FPGA-based RNNs are also explored to show the potential in
low-latency detection of gravitational wave (Que et al., 2021).
Applications of ML in searches of other types of gravitational
waves, such as generic burst and stochastic background, are
currently being explored. Moreover, probabilistic and generative
ML models can be used for posterior sampling in gravitational-
wave parameter estimation and achieve comparable performance
to Bayesian sampler on mock data while taking significantly less
time to complete (Shen et al., 2019; Chua and Vallisneri, 2020;
Gabbard et al., 2020). ML algorithms are also being used to
improve the gravitational-wave data quality and subtract noise.
Transient noise artifacts can be identified and categorized from
their time-frequency transforms and constant-Q transforms
(Zevin et al., 2017; Razzano and Cuoco, 2018) or through
examining hundreds of thousands of LIGO’s auxiliary channels
(Biswas et al., 2013). These auxiliary channels can also be used
to subtract quasi-periodic noise sources (e.g., spectral lines)
(Ormiston et al., 2020; Vajente et al., 2020). Although ML
algorithms have shown a lot of promise in gravitational-wave
data analysis, many of these algorithms are still at the proof-
of-concept stage and have not yet been successfully applied in
real-time analysis. Current efforts seek to create a computational
infrastructure for low-latency analysis, improve the quality of the
training data (e.g., expanding the parameter space, using a more
realistic noise model), and better quantify the performance of
these algorithms on longer stretches of data.

2.8. Biomedical Engineering
Context: We have seen an explosion of biomedical data,
such as biomedical images, genomic sequences, and protein
structures, due to the advances in high-resolution and high-
throughput biomedical devices. AI-augmented reality-based
microscopy (Chen et al., 2019) enables automatic analysis of
cellular images and real-time characterization of cells. Machine
learning is used in-silico prediction of fluorescent labels, label-
free rare cell classification, morphology characterization, and
RNA sequencing (Christiansen et al., 2018; Tang et al., 2018; Li
et al., 2020a; Siu et al., 2020; Wang et al., 2020b). For in-situ cell
sorting, real-time therapy response prediction, and augmented
reality microscope-assisted diagnosis (Nitta et al., 2018; Chen
et al., 2019; Sakellaropoulos et al., 2019), it is important to
standardize and optimize data structure in deep learning models
to increase speed and efficiency. Various machine-learning-based
algorithms for detecting hemorrhage and lesions, accelerating
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diagnosis, and enhancing medical video and image quality have
also been proposed in biopsy analysis and surgery assistance.

Challenges: A major challenge for clinical application of
ML is inadequate training and testing data. The medical data
annotation process is both time-consuming and expensive
for large image and video datasets which require expert
knowledge. The latency of trained models’ inference also
introduces computational difficulties in performing real-time
diagnosis and surgical operation. The quality of services for time-
critical healthcare requires less than 300 ms as real-time video
communication (Shukla et al., 2019). For reaching 60 frames
per second (FPS) high-quality medical video, the efficiency and
performance of a deep learning model become crucial.

Existing and Planned Work: Many changes in ML algorithms
have involved improvements to performance both in accuracy
and inference speed. Some state-of-art machine learning models
can reach a high speed for inference. For example, YOLOv3-
tiny (Adarsh et al., 2020), an object detection model commonly
used for medical imaging, can process images at over 200
FPS on a standard dataset with producing reasonable accuracy.
Currently both GPU- and FPGA-based (Chang and Sheu, 2020;
Satpathy et al., 2020; Zhang et al., 2020a), distributed networks
of wireless sensors connected to cloud ML (edge computing),
and 5G-high-speed-WiFi-based ML models are deployed in
medical AI applications (Chen et al., 2018; Morocho-Cayamcela
et al., 2019; Zhang et al., 2020c). ML models for fast diagnosis
of stroke, thrombosis, colon polyps, cancer, and epilepsy have
significantly reduced the time in lesion detection and clinical
decision (Bagheri et al., 2019; Horie et al., 2019; Lee et al., 2020;
Nafee et al., 2020; Nogueira-Rodríguez et al., 2020). Real-time AI-
assisted surgery can improve perioperative workflow, perform
video segmentation (Volkov et al., 2017), detection of surgical
instruments (Choi et al., 2017a), and visualization of tissue
deformation (Tonutti et al., 2017). High-speed ML is playing a
critical role in digital health, i.e.,, remote diagnosis, surgery, and
monitoring (Zhang et al., 2020c).

2.9. Health Monitoring
Context: Our habits and behaviors affect our health and wellness.
Unhealthy behaviors such as smoking, consuming excessive
alcohol, or medication non-adherence often has an adverse
effect on our health (Klesges et al., 1989; Baker et al., 2000;
Sokol et al., 2005; White and Hingson, 2013). Traditional
behavior monitoring approaches relied on self-reports, which
were often biased and required intense manual labor (Althubaiti,
2016). With the advent of mobile and wearable devices, it
is gradually becoming possible to monitor various human
behaviors automatically and unobtrusively. Over the years,
researchers have either developed custom wearable hardware
or have used off-the-shelf commercial devices for mobile and
wearable health (mHealth) monitoring (Ali et al., 2012; Dong
et al., 2012; Parate et al., 2014; Bi et al., 2018; Mishra et al.,
2020; Sen et al., 2020; Zhang et al., 2020b). The automatic
and unobtrusive monitoring capability of these devices makes
it possible to detect, identify and monitor behaviors, including
unhealthy behaviors in a free-living setting.

Challenges: There are various challenges associated with
monitoring habits and behaviors using wearable devices. Firstly,
these devices should be capable of monitoring unhealthy
behaviors accurately, and in real-time. The occurrence of these
unhealthy behaviors in a free-living setting is often sparse as
compared to other behaviors and thus it is important to spot
them accurately, whenever they occur. Most existing systems take
an offline ML approach of detecting these unhealthy behaviors,
where the ML algorithm identifies these behaviors well after
they have occurred. An offline approach prevents providing
interventions that can minimize unhealthy behaviors. Thus, it
is necessary to develop ML approaches that can detect these
behaviors online, and in real-time, so that interventions such
as just-in-time adaptive interventions (JITAIs) can be delivered.
Secondly, since these devices capture sensitive information, it
is necessary to ensure that an individual’s privacy is preserved.
Privacy-preserving approaches such as locally processing the
data on-device can be taken so that critical information does
not leave the device. Other approaches, such as collaborative
learning, aim to increase speed while preserving data privacy
(Idé et al., 2019). Finally, these behaviors can occur in various
heterogeneous environments and thus the health monitoring
system should be agnostic to where the behavior occurs.
Such monitoring requires developing multiple machine learning
models for diverse environments.

Existing and PlannedWork:While existing work has ventured
in various directions, there is a growing need for sensing health
biomarkers correctly and developing ML approaches that are
fast and can accurately identify these biomarkers. Researchers
have focused on developing novel sensing systems that can
sense various health behaviors and biomarkers (Holz and Wang,
2017; Bui et al., 2019; Bedri et al., 2020; Chun et al., 2020;
Echterhoff and Wang, 2020; Li et al., 2020b; Pham et al., 2020).
Historically, most of these novel sensing techniques were tested
in controlled settings, but more recently researchers are ensuring
that these systems can work seamlessly in free-living settings
as well. This often requires developing multiple ML models,
each catering to a specific context and environment. A new
trend in this field has started relying on implementing models
that can be implemented on-device and are both quick and
accurate in detecting these behaviors. In addition to providing
real-time interventions (Thomas and Bond, 2015; Nahum-Shani
et al., 2018), on-device monitoring of these behaviors can reduce
privacy concerns (Sadek et al., 2019). However, since wearable
devices themselves might not be capable of processing the data,
federated machine learning approaches are also being explored
recently by several researchers (Rieke et al., 2020).

2.10. Cosmology
Context: Cosmology is the study of the Universe’s origin (big
bang), evolution, and future (ultimate fate). The large-scale
dynamics of the universe are governed by gravity, where dark
matter plays an important role, and the accelerating expansion
rate of the universe itself, caused by the so-called dark energy.
A non-exhaustive list of cosmological probes includes type Ia
supernovae (Riess et al., 1998; Perlmutter et al., 1999; Betoule
et al., 2014; Scolnic et al., 2018; Abbott et al., 2019b), cosmic
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microwave background (Fixsen et al., 1996; Spergel et al., 2003;
Komatsu et al., 2011; Planck Collaboration et al., 2016, 2020),
large-scale structures (including baryon acoustic oscillation)
(Eisenstein et al., 2005; Percival et al., 2010; Delubac et al., 2015;
Abbott et al., 2019a), gravitational lensing (Bacon et al., 2000,
2003; Collett and Auger, 2014; Suyu et al., 2017; Heymans et al.,
2020) and 21 cm cosmology (McQuinn et al., 2007; Pritchard and
Loeb, 2012; Maartens et al., 2015; Beardsley et al., 2016).

Challenges: As astronomy is approaching the big data era with
next-generation facilities, such as the Nancy Grace Roman Space
telescope (Sanderson et al., 2019), Vera C. Rubin Observatory
(Ivezić et al., 2019), and Euclid telescope (Amiaux et al., 2012), the
uncertainty budget in the estimation of cosmological parameters
is no longer expected to be dominated by statistical uncertainties,
but rather by systematic ones; understanding such uncertainties
can lead to attaining sub-percent precision. On the other hand,
the immense stream of astronomical images will be impossible
to analyze in a standard fashion (by human interaction); new
automated methods are needed to extract valuable pieces of
cosmological data.

Existing and Future Work: Current efforts are focused on
applying ML techniques to study the influence of systematic
biases on available analysis methods (e.g., for purposes of fitting
ormodeling) or on developing newmethods to overcome present
limitations; for example CNNs can be adapted to spherical
surfaces to generate more accurate models when producing weak
lensing maps (Perraudin et al., 2019), or to remove noise from
cosmic microwave background maps (Petroff et al., 2020). In
addition, discovery and classification engines are being developed
to extract useful cosmological data from next-generation facilities
(Narayan et al., 2018; Mahabal et al., 2019; Förster et al., 2020;
Möller et al., 2020). Furthermore, ML is also being used in
cosmological simulations to test new analyses and methods and
to set the foundations for the first operation of such new facilities
(Kamdar et al., 2016; Rodríguez et al., 2018; Villaescusa-Navarro
et al., 2020). An extensive list of published ML applications in
cosmology can be found in Stein (2020).

2.11. Plasma Physics
Context: The focus of this description is on the Plasma
Physics/Fusion Energy Science domain with regard to the
major system constraints encountered for existing and expected
algorithms and data representations when dealing with the
challenge of delivering accelerated progress in AI—enabled
deep machine learning prediction and control of magnetically-
confined thermonuclear plasmas. Associated techniques have
enabled new avenues of data-driven discovery in the quest to
deliver fusion energy—identified by the 2015 CNN “Moonshots
for the twenty-first Century” televised series as one of 5
prominent grand challenges for the world today.

Challenges: An especially time-urgent and challenging
problem is the need to reliably predict and avoid large-
scale major disruptions in “tokamak systems” such as the
EUROFUSION Joint European Torus (JET) today and the
burning plasma ITER device in the near future—a ground-
breaking $25B international burning plasma experiment with
the potential capability to exceed “breakeven” fusion power

by a factor of 10 or more with “first plasma”İ targeted for
2026 in France. The associated requirement is for real-time
plasma forecasting with control capabilities operative during the
temporal evolution of the plasma state well before the arrival
of damaging disruptive events. High-level supervisory control
of many lower-level control loops via actuators (analogous to
advanced robotics operations) will be essential for ITER and
future burning plasmas to protect the facility and to avoid
operational limits (for magnets, walls, plasma position, stability,
etc.) while optimizing performance.

Existing and Planned Work: In short, an overarching goal
here involves developing realistic predictive plasma models of
disruptions integrated with a modern plasma control system
to deliver the capability to design experiments before they are
performed. The associated novel AI-enabled integrated modeling
tool would clearly be of great value for the most efficient and safe
planning of the expensive discharges in ITER and future burning
plasmas. Verification, validation, and uncertainty quantification
of associated components would include: (1) development of
predictive neural net models of the plasma and actuators that
can be extrapolated to burning plasma scales via advanced
Bayesian reinforcement learning methods that incorporate prior
information into efficient inference algorithms; (2) systematic
well-diagnosed experimental validation studies of components
in the integrated plasma forecasting models involving massive
amounts of data from major tokamak experiments worldwide
(e.g., DIII-D in the US, KSTAR & EAST in Asia, JET in
Europe, followed by JT60 SA—the large superconducting device
in Japan that will precede ITER). This would ideally lead to
a mature AI-enabled comprehensive control system for ITER
and future reactors that feature integration with full pilot-plant
system models.

At present, a key challenge is to deliver significantly
improved methods of prediction with better than 95%
predictive accuracy to provide advanced warning for disruption
avoidance/mitigation strategies to be effectively applied before
critical damage can be done to ITER. Significant advances
in the deployment of deep learning recurrent and CNNs
are well illustrated in Princeton’s Deep Learning Code—
“FRNN”—that have enabled the rapid analysis of large complex
datasets on supercomputing systems. Associated acceleration of
progress in predicting tokamak disruptions with unprecedented
accuracy and speed is described in Kates-Harbeck et al.
(2019). Included in this paper (and extensive references
cited therein) are descriptions of FES data representation
for physics features (density, temperature, current, radiation,
fluctuations, etc.) and the nature of key plasma experiments
featuring detectors/diagnostics with frame (event-based) level
of accuracy accounting for required “zero-D” (scalar) and
higher-dimension signals and real-time resolution recorded
at manageable data rates. Rough future estimates indicate
that ITER will likely require dealing with the challenge of
processing and interpreting exabytes of complex spatial and
temporal data.

Since simulation is another vital aspect of ITER data analysis,
dealing with the associated major computational expenses will
demand the introduction of advanced compressional methods.
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More generally, real-time predictions based on actual first-
principles simulations are important for providing insights
into instability properties and particle-phase space dynamics.
This motivates the development of an AI-based “surrogate
model”—for example, of the well-established HPC “gyrokinetic”
particle-in-cell simulation code GTC (Lin et al., 1998) that
would be capable of accurately simulating plasma instabilities
in real-time. Data preparation and training a surrogate model—
e.g., “SGTC”—provides a clear example of the modern task
of integration/connection between modern High Performance
Computing (HPC) predictive simulations with AI-enabled Deep
Learning/Machine Learning campaigns. These considerations
also serve to further illustrate/motivate the need to integrate HPC
and Big Data ML approaches to expedite the delivery of scientific
discovery.

As a final note, the cited paper (Kates-Harbeck et al., 2019)
represents the first adaptable predictive DL software trained
on leadership class supercomputing systems to deliver accurate
predictions for disruptions across different tokamak devices
(DIII-D in the US and JET in the UK). It features the unique
statistical capability to carry out efficient “transfer learning” via
training on a large database from one experiment (i.e., DIII-D)
and be able to accurately predict disruption onset on an unseen
device (i.e., JET). In more recent advances, the FRNN inference
engine has been deployed in a real-time plasma control system
on the DIII-D tokamak facility in San Diego, CA. As illustrated
in slides 18 through 20 of the attached invited presentation slide
deck, this opens up exciting avenues for moving from passive
disruption prediction to active real-time control with subsequent
optimization for reactor scenarios.

2.12. ML for Wireless Networking and Edge
Computing
Context:Wireless devices and services have become a crucial tool
for collecting and relaying big data in many scientific studies.
Moreover, mobility information has proven to be extremely
useful in understanding human activities and their impact on
the environment and public health. The exponential growth
of data traffic is placing significant pressure on the wireless
infrastructure. In particular, inter-cell interference causes large
variability in reliability and latency. To meet user demands for
data communication and value-added AI/ML services, wireless
providers must 1) develop more intelligent learning algorithms
for radio resource management that adapt to complicated and
ever-changing traffic and interference conditions; and 2) realize
many ML/AI computations and functionalities in edge devices to
achieve lower latency and higher communication efficiency.

Challenges: Conventional implementations of ML models,
especially deep learning algorithms, lag far behind the packet-
level dynamics for utility. Moreover, existing ML/AI services are
often performed in the cloud for efficiency at the expense of
communication overhead and higher latency. A major challenge
in the wireless networking and edge computing context is to build
a computing platform that can execute complex ML models at
relevant timescales (< 10 ms) within small cell access points.

Existing and Planned Work: Researchers have proposed a
variety of learning algorithms to perform specific radio resource
management tasks using artificial neural networks (Calabrese
et al., 2018; Challita et al., 2018; Huang et al., 2020; Zhu et al.,
2020). Some of the first proposals to train a NN to perform
transmit power control adopts supervised learning (Sun et al.,
2018; Liang et al., 2020). More recent proposals adopt deep
reinforcement learning approaches that work better with channel
and network uncertainties and require little training data a priori
(Liang et al., 2019; Zhao et al., 2019b; Meng et al., 2020; Nasir and
Guo, 2020). A number of works are focused on the convergence
of edge computing and deep learning (Chen and Ran, 2019;
Zhang et al., 2019a; Wang et al., 2020d). A specific set of work
is on federated learning where participants jointly train their
models in lieu of sending all their data to a central controller
for training purposes (Amiri and Gündüz, 2020; Niknam et al.,
2020; Ren et al., 2020; Chen et al., 2021). All of the preceding
work basically ends at the simulation stage for the lack of practical
ML/AI solutions that are fast and computationally efficient at the
same time. More specifically, the research challenge is to develop
a computing platform that can execute complex ML models
at a very fast timescale (< 10ms) and can also be equipped
in small cell access points. One project with a potentially very
high impact is to map intelligent radio resource management
algorithms (such as that of Nasir and Guo, 2020) onto an FPGA
device suitable for deployment in a large network of connected
and interfering access points. Another interesting project is to
build a federated learning system to conduct time-sensitive ML
for Internet-of-Things (IoT) devices where transferring data to
centralized computing facilities is latency-prohibitive. This opens
up entirely new possibilities for low-cost closed-loop IoT devices
in healthcare, smart buildings, agriculture, and transportation.

3. KEY AREAS OF OVERLAP

Real-time, accelerated AI inference show promises in improving
the discovery potential at current and planned scientific
instruments across the domains as detailed in Section 2. Design
of high performant specialty systems for real-time/accelerated AI
applications requires particular attention to the figure-of-merit
of the target domain’s ML algorithm. It might be dominated
by its latency per inference, computational cost (e.g., power
consumption), reliability, security, and ability to operate in
extreme environments (e.g., radiation). For instance, ML might
need to: trigger acquisition systems for rare events with ∼100 ns
latency on the Large Hadron Collider (Duarte et al., 2018);
analyze multi-channel ambulatory health monitors at kilohertz
frequencies where wireless transfer of data is not possible
due to power limitations (∼50 iPhone batteries/day for data
transfer) or security requirements; or to keep pace with materials
spectroscopy data streams on the order of terabits per second
(Hart et al., 2017). Furthermore, real-time analysis of advanced
scientific instrumentation must have an uninterrupted allocation
of computing resources and patient sensitive information
processed by wireless health devices must be secured. Such
features and characteristics create quantifiable guidelines for
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understanding distinctions and commonalities among domains
and applications. Thereby, we can coordinate efforts toward
creating fundamental design principles and tools, which may
address needs across seemingly disparate domains. Appropriate
data representation is an essential first step of the design process
as it determines the choice of NN architecture to be implemented
in real-time systems that need to meet the performance targets
outlined above. Prominent data representations of different
scientific instruments are summarized below. Other areas of
overlap across domains such as NN and hardware co-design
tools and workflows, NN complexity reduction with quantization
and pruning are also recent technology advancements in real-
time/accelerated AI and therefore are outlined in Section 4.

3.1. Data Representations
Data representation used in a particular domain influences
both the computation system and data storage. One global
classification for data representations across domains can be
considered as being into raw vs. reconstructed data. The data
representation often varies depending on the stage of the
reconstruction and the upstream steps in the data processing
pipeline. Existing applications include fully connected NNs that
often take pre-processed expert feature variables as inputs or
CNNs when the data is of image nature. On-going development
of domain knowledge-inspired NN algorithms could further take
advantage of the expert features in the accuracy and efficiency as
detailed below. To fully exploit the power of advanced NNs and
bring it closer to data creation for minimum information loss, a
more suitable representation of the raw data, e.g., as point clouds,
needs to be employed. Prominent representations for raw data
from different experimental and measurement systems are:

• Spatial Data: Used for describing physical objects in geometric
space. There are two main types, called vector and raster data.
Vector data, in turn, can be comprised of points, lines, or
polygons. Raster data refers to a grid of pixels, such as images,
but pixels can also represent other measurements such as
intensity, charge, field strength, etc.

• Point Clouds: Can be considered a type of spatial data. This
data representation is created by collating a set of spatial data,
i.e., points in a 3D space, that usually form an object in space
collectively.

• Temporal Data: Used to represent the state of a
system/experiment at a particular time. Data collected
across time, in a specific order, is classified in this manner.
Time-series data is a subset of this representation, where data
is sampled at regular time intervals. An example of time-series
data can be seen in Figure 3, for the specific case of supernova
classification.

• Spatio-Temporal Data: Measurements and observations of
a system can be collected across both the space and time
dimensions. In that case, the data can be considered spatio-
temporal.

• Multispectral Data: Used to represent outputs of multiple
sensors that capture measurements from multiple bands of
the electromagnetic spectrum. Multispectral representation is
commonly used in the context of imaging, involving sensors

FIGURE 3 | Simulated type Ia supernova light-curve and classification. Top:

calibrated flux evolution in different DES band-passes as a function of

normalized time (the first photometric measurement is set to time equals zero).

Bottom: Baseline RNN classification probability evolution with respect of time,

no host-galaxy redshift information was provided. At each photometric

measurement, classification probability is obtained. The maximum light of the

simulated supernova is shown in a gray dashed line and the simulated redshift

of the supernovae is shown on the top z = 0.466. We highlight that redshift is

not used for this classification but can improve results. Our baseline RNN

classifies this light-curve as type Ia SN with great accuracy before maximum

light, it only requires a handful of photometric epochs. (Möller and

de Boissiére, 2019).

that are sensitive to different wavelengths of light. This usually
involves in the order of a few to 10s of spectra.

• Hyperspectral Data: Used to represent measurements from
a high number of spectra, e.g., in the order of 100s. These
images collected from different narrow-band spectra are
combined into a so-called hyperspectral cube with three main
dimensions. The first two reference the 2D spatial placement
(e.g., earth’s surface) while the third dimension represents the
complete spectrum content at each “pixel” location.

In Table 1, we match these data representations to scientific
application domains and give a brief description. We highlight
the data representations which are particularly important for a
specific domain. We will give more detailed examples below.

Cost of data communication (in terms of latency) and
data storage (in terms of the cost of acquiring and managing
the physical storage resources) present important challenges.
Particularly, application domains, which require real-time
analysis and/or real-time feedback demand highly optimized data
analytics solutions. Applications that rely on hyper-spectral data
are faced with an ever-increasing rate of data input across the
electromagnetic spectrum. High-speed data reduction is required
in these domains. Applications that generate large-scale point
clouds similarly demand efficient compression on their spatial
data. Application domains that handle multi-spectral data with
limited spatial resolution require ultra-fast reconstruction in
order to enable real-time control feedback. Another challenge is
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TABLE 1 | Types of data representations and their relevance for the scientific domains discussed in this paper; XX= Particularly important for domain, X= Relevant for

domain.

Domain Spatial Point cloud Temporal Spatio- Multi/Hyper- Examples

Temporal spectral

LHC XX XX X X – Detector reconstruction

Belle-II/Mu2e XX XX – – – Track reconstruction

Material Synthesis X – X XX XX High-speed plasma imaging

Accelerator Controls X – XX – – Beam sensors

Accelerator neutrino XX XX X X – Detector reconstruction

Direct detection DM XX XX X X – Energy signatures

EIC XX XX X X – Detector reconstruction

Gravitational Waves X – XX – – Laser inference patterns

Biomedical engineering XX – – XX – Cell and tissue images

Health Monitoring X – XX X X Physiological sensor data

Cosmology XX XX XX X XX Lensing/radiation maps

Plasma Physics X – XX X – Detector actuator signals

Wireless networking – – XX – – Electromagnetic spectrum

posed by applications that rely on accurate analysis of streaming
time-series data, yet they are forced to perform under highly
limited storage and communication resources, either due to
privacy and security concerns or limitations of the associated
edge devices.

Some current efforts in developing ML solutions to data
processing front-ends focus on developing autoencoder based
compression engines (Herwig et al., 2020; Loncar et al., 2020).
ML-based dimensionality reduction for hyper-spectral data is
another direction which has drawn attention (Agar et al., 2019).
Deep learning-based approaches are investigated for image
reconstruction; the field of material sciences being one of the
most active fields in that regards (Schmidt et al., 2019).

3.1.1. Expert Feature DNNs
One straightforward approach to building powerful domain-
specific ML algorithms is to start with expert domain features
and combine them in a neural network or other multivariate
analysis technique. This embedded expertise has inherent
advantages because the input features are interpretable, and
correlations between features can yield insight into a particular
task while optimizing performance. Furthermore, depending
on the computational complexity of the domain features, the
computation efficiency of such a machine learning approach can
be greater than the direct use of raw features. However, the
downside is that, by using expert features, we rely entirely on the
informativeness of such new features.

Therefore, there is a lot of interest in automating the process
of building informative new features from raw features. In image
classification tasks, for example, a lot of progress has been made
in extracting high-level data representations through deep neural
networks DNNs (Goodfellow et al., 2016). In DNNs, layers of
neurons above the original input signal are built to ensure
that each new layer captures a more abstract representation
of the data. Each layer constructs new features by forming
nonlinear combinations of the features in the layer below. This

hierarchical approach to feature construction has been effective
in disentangling factors of variation in the data (Hinton and
Salakhutdinov, 2006; Bengio et al., 2013; Goodfellow et al., 2016),
and has been useful to construct informative and meaningful
representations. In astronomical images, for example, a DNN
starts with low-level pixel information, gradually capturing
at upper layers edges, motifs, and eventually entire objects
(e.g., galaxies) to provide a broad view of the Universe
(Dominguez Sanchez et al., 2018; Huertas-Company et al., 2018).
The same applies to other fields of science. For example, detecting
particles in large accelerators requires transforming low-level
signals into dynamic patterns that can be ascribed to specific
particles (Belayneh et al., 2020). In medical imaging, there
is a need to quickly identify abnormal tissue from low-level
pixel information by gradually capturing global tissue patterns
(Bychkov et al., 2018). The importance of transforming the initial
input data into meaningful abstract representations cannot be
overstated: it remains one of the most powerful properties of
modern neural network architectures.

Several challenges exist in the construction of increasingly
abstract representations using DNNs. One challenge is to
incorporate domain knowledge (e.g., physical constraints) into
the neural network model. This is important to address the
need for excessive amounts of data when training a DNN and
narrow the gap in representational bias between the model
and target concept. Under scarce data but abundant domain
expertise, adding domain knowledge can expedite the training
process (Xie et al., 2021), as well as improving the model
generalization performance. Another challenge is to develop
tools for model interpretability by explaining the semantics of
the representations embedded at each layer (Chakraborty et al.,
2017). This is challenging due to the distributed representation
of information in the network architecture.

Despite the lack of a formal mechanism to attain a seamless
integration between a statistical model and domain knowledge,
current approaches point to interesting directions, e.g., using
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FIGURE 4 | A 6GeV/c electron event in the ProtoDUNE detector. The x-axis shows the wire number. The y-axis shows the time tick in the unit of 0.5µs. The color

scale represents the charge deposition.

knowledge to add training data or to change the loss function
(Vo et al., 2017). Model interpretability in DNNs has seen an
upsurge in research over the past years (Chakraborty et al., 2017).
Commonly, studies look at individual units and their activation
patterns to elucidate what is learned across layers of neurons.

3.1.2. Frame-Based Images
Frame-based images are a suitable representation of the
experimental data in multiple domains such as neutrino
detection with time projection chambers in particle physics. An
example of this data representation can be seen in Figure 4 for
an electron deposition in the ProtoDUNE neutrino detector. A
spatial frame is shown by plotting the time coordinate “Tick”
and wire position in space. Recent developments in neural
network architectures exploit the sparsity of the images to
reduce the computation complexity for real-time/accelerated ML
applications. Other types of experimental data in HEP and many
other domains can also be processed to be represented as frame-
based images, although often not without information loss.

3.1.3. Point Clouds
Point cloud data representation is often used in HEP, where
multiple frames of event-based measurements collected by a
large number of detectors are combined into a data set. Across
manyHEP applications point clouds commonly help to represent
particle jets with data sizes exceeding Pb/s. More broadly,
point clouds can be used to capture any 3D space event and
interactions of moving parts in space. For CMS, remnants of
proton-proton collisions create sensors signals in a customized
and optimized detector geometry and points are illustrated
in space. Various types of scan-based imaging data can be
represented as point clouds. Other domains such as CT and
PET scanning in biomedical engineering and virtual reality
also utilize this representation for imaging. 3D scanners used
for product design, solid object modeling, architecture, and
infrastructure design leverage point clouds as well. Many of these

imaging tasks generate point clouds of sizes in the order of
several GB to TB. Domains sharing point cloud representation
(e.g., HEP and biomedical imaging) also commonly involve
spatial characteristics.

3.1.4. Multi-/Hyperspectral Data
Multispectral data is common between wireless health
monitoring and wireless communication systems. A set of
physiological sensors, often representing different modalities,
are combined into a multispectral data set for health monitoring
and intervention systems. For wireless communication, signal
interference and network traffic conditions are captured via
multispectral data. Both domains capture this data across the
time domain, so also exhibit temporal features. Furthermore, in
both domains generated data size can be considered relatively
smaller (ranging from 100s of Mb/s to 10s of Gb/s), compared
to the rest of the domains discussed in this article. Hyperspectral
data is used across many astronomy applications, medical
imaging, and electron microscopy, which is used to drive
many materials science design and discovery applications.
An example of hyperspectral data in electron microscopy
is shown in Figure 5. An electron probe is rastered over a
sample under study and diffraction patterns are captured on
a pixelated detector. The pixelated detector captures many
images as the electron probe is scanned across the sample.
Emerging multimessenger astronomy applications further
emphasize the utility of hyperspectral data representations
combining observations from a wide array of detectors and
telescopes.

3.1.5. Time-Series Data
Time-series data is common in experiments that observe
dynamically evolving systems in processes such as synthesis for
material discoveries or the temporal evolution of the plasma state
in nuclear fusion experiments. It can be a measurement of high-
speed temporally resolved imaging in material science or physics
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FIGURE 5 | Experimental 4D-STEM measurement of a dichalcogenide 2D

material. Atomic map is inferred from the data, each diffraction pattern

represents an average of 7× 7 experimental images, green STEM probes are

labeled for regions of the sample with one layer, vacuum, and two layers

(Ophus, 2019).

features (density, temperature, current, radiation, fluctuations,
etc.) or spatial features of evolving plasma state, as a function
of time. In-situ diagnostics of the time-series data can either
provide alerts to terminate an experiment early that indicates
undesired outcome in material science without performing the
entire experiment and offline analysis that is time-consuming
and computationally expensive, thus improves the experiment
operation efficiency and accelerates discoveries of material of
desired properties. In the accelerator controls at the Fermilab
Booster accelerator, for example, magnet voltages that steer
proton beams around a synchrotron are recorded at 15Hz time
samples. This study builds a digital twin which is used to simulate
the Booster data. Furthermore, to reliably predict and avoid large-
scale major disruptions in nuclear fusion experiments, real-time
analysis of the time-series data is crucial in guiding the action
needed in experimental prediction and control.

3.2. System Constraints
In this section, we present an overview of desired system
properties and constraints that are prevalent across a number
of application domains. Unique challenges are arising from
each scientific application based on sensing technology, the
physical processes, and the timescales and data rates, and
bandwidth. These system constraints result in specific choices
of data processing platforms, often with multiple compute
architectures across the data continuum, such as the choice of
FPGA-based systems vs. embedded processors, GPUs, or custom
ASICs.Table 2 summarizes several scientific application domains
along with their event rates, system latency constraints and
performance requirements, and deployment characteristics. We
broadly define platforms for integration fast machine learning
techniques into “soft,” software programmable coprocessors,

and “custom,” custom embedded computing devices. Software-
programmable systems are often preferred because they are less
complex to implement while custom embedded solutions are
required when software programmable systems cannot satisfy
experimental throughput, bandwidth, or latency constraints.
We will describe in further detail this distinction below.
Examples of these system design choices are the trigger
systems for HEP include LHC reconstruction of collision events,
the Belle-II experiment, the Mu2e experiment which deploy
custom embedded systems. Meanwhile, experiments like the
Electron-Ion Collider have data rates that may not require
custom hardware solutions and could deploy only software
programmable solutions for event reconstruction and real-time
processing experiments. One final distinction worth discussing
concerns the nature of real-time processing and the in-situ
vs. post-mortem nature of the inference and analysis tasks.
Examples that we consider in classifying tasks that have
different requirements are: data reduction which primarily
focuses on limiting data collection rates of experiments for
offline analysis; real-time processing and data analysis which is
required to extract real-time domain features of the data for
tasks like filtering/triggering; and closed-loop controls where
data processing provides direct feedback to the operation and
continuous control of an experiment. These distinctions and
their consequences on the computing systems is illustrated in
Table 3.

3.2.1. Software Programmable Coprocessors
Historically, the first attempts at addressing the computational
needs of the problems reviewed in this article have been through
software-programmable systems. CPU-based local clusters or
cloud services as well as cloud computing resources utilizing
GPU or TPU-based hardware accelerators are utilized in
different applications. One particular concept explored by the
HEP community is the GPU as a Service (GPUaaS) model
(Krupa et al., 2020). This can further be expanded into the
Machine Learning as a Service concept, similarly explored within
HEP (Kuznetsov et al., 2020). These paradigms involve the
implementation of machine learning modules to solve a set of
physics problems, which are then transferred to GPU or TPU
accelerators and accessed by the local CPU “client” of the native
experimental system.

One of the major system constraints is the computational
capacity, which can be defined in terms of a number of floating
point operations as far as neural network implementations
are concerned. Real-time machine learning methods require
an ever-increasing rate of computational capacity as it directly
impacts the latency per task. The task could be a trigger for
LHC, reconstruction of an event in accelerator experiments
or astrophysics, material synthesis, reconstruction of an image
captured by an electron microscope, etc. Extreme parallelism
would be desired to provide the highest capacity possible to
minimize latency and maximize throughput. In a processor-
based system, this can be addressed by increasing the size of
the compute cluster. Naturally, facility costs impose a limit on
the scale of these clusters. Another constraint is the available
amount of storage coupled with the cost of data movement across
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TABLE 2 | Domains and practical constraints: systems are broadly classified as soft (software-programmable computing devices: CPUs, GPUs, and TPUs) and custom

(custom embedded computing devices: FPGAs and ASICs).

Domain Event rate Latency Systems Energy-constrained

Detection and event reconstruction No

LHC and intensity frontier HEP 10s Mhz ns-ms Soft/custom

Nuclear physics 10s kHz ms Soft

Dark matter and neutrino physics 10s MHz µs Soft/custom

Image processing

Material synthesis 10s kHz ms Soft/custom

Scanning probe microscopy kHz ms Soft/custom

Electron microscopy MHz µs Soft/custom

Biomedical engineering kHz ms Soft/custom Yes (mobile settings)

Cosmology Hz s Soft

Astrophysics kHz–MHz ms-us Soft Yes (remote locations)

Signal processing

Gravitational waves kHz ms Soft

Health monitoring kHz ms Custom Yes

Communications kHz ms Soft Yes (mobile settings)

Control systems

Accelerator controls kHz ms–µs Soft/custom

Plasma physics kHz ms Soft

TABLE 3 | Classification of domains and their system requirements with respect to real-time needs.

Domain Real-time data reduction Real-time analysis Closed-loop control

Detection/Event reconstruction

LHC Yes Yes No

Nuclear physics Yes No No

Dark matter-neutrino Yes No No

Image processing

Material synthesis Yes Yes Yes

Scanning probe microscopy Yes

Electron microscopy Yes

Biomedical engineering Yes

Cosmology Yes No No

Astrophysics Yes No No

Signal processing

Gravitational waves Yes No No

Health monitoring Yes Yes Yes

Communications Yes Yes Yes

Control systems

Accelerator controls Yes Yes Yes

Plasma physics Yes Yes Yes

the memory hierarchy. In the majority of the use cases, the
latency involved with moving data from the front-end (detectors,
microscopes, sensors, etc.) dominates the total latency. One of the
prominent performance constraints is related to the utilization
and subsequent latency of the network that links the front-end
with the back-end. Current limitations on the speed of data
movement renders the CPU/GPU cluster-based systems unable
to meet the real-time requirements.

3.2.2. Custom Embedded Computing Devices
As the latency and throughput constraints are coupled with
challenging practical energy constraints, efforts have been
directed toward specialized computing systems to address the
hard real-time needs. An increasingly attractive paradigm is to
design components that are finely optimized for specific steps in
the data capture workflow. These components can be mapped
onto FPGA devices or they can be designed and manufactured
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as an application-specific integrated circuit (ASIC). In the LHC
and accelerator domains, there is a rich set of FPGA-based
demonstrations of front-end data processing systems, which
meet microsecond latencies. These systems are in charge of
tasks such as triggering, event reconstruction, and anomaly
detection. Direct and naive implementations of neural networks
to perform inference for these tasks can fail to meet the
latency requirements since they often incur significant resource
utilization. The highest achievable FPGA clock frequency and
inference latency is correlated with the resource utilization
and percentage occupancy of the device. Co-design techniques
developed for these applications particularly specialize in extreme
quantization and pruning (with an awareness of accuracy) so
that resource requirements can be controlled aggressively to
ensure inference latency targets. These optimizations push the
resource usage envelope as far as down as 10s of percent of the
FPGA device in order to meet the system constraints and yet
demonstrate implementations with high inference accuracy.

Some other applications (e.g., accelerator controls,
biomedical and health applications) impose less stringent
latency expectations, in the order of ms, where the urgency
for resource minimization is alleviated. Hence, the focus
of the system design can shift from extreme resource
economy to enhanced sophistication in the algorithms
that are being mapped to the device. Inference models
can now include deep(er) learning models coupled with
advanced video and signal processing engines, as well
as local privacy-preserving processing tasks (applicable
particularly to mobile health and networking and
communication applications).

For mobile and IoT-based deployment of the edge devices,
resource efficiency emerges as an important factor as it impacts
energy consumption. However, in these applications, energy
efficiency can also be achieved by alternative means. One
option would be selective powering, i.e., creating a resource-rich
full-featured baseline implementation, which still comfortably
meets latency constraints if energy was not an issue, and
introducing power gating or standby features to modulate energy
consumption during periods of low/no activity.

There are system constraints, which point the designers
to a custom ASIC solution in addition to or in place of
FPGA devices. ASICs can address extreme form factor
considerations, integration of computation with sensing
(e.g., smart photon detectors) into compact front-end
devices, tight integration with other mixed-signal or analog
functionalities, radiation hardening requirements, and ultra-low
energy budgets.

4. TECHNOLOGY STATE-OF-THE-ART

In this section, we aim to give an overview of technologies
and techniques for building fast ML algorithms. This requires
codesign: building algorithms with hardware in mind and
providing efficient platforms for programming the hardware.
Sections 4.1, 4.2 focus on neural network design and training
for efficient implementation in hardware. In Sections 4.3, 4.5, we

classify our discussion of ML hardware compute platforms into
two categories: “Conventional CMOS Hardware” and “Emerging
Beyond CMOS Hardware.” The former will address nearer-
term hardware solutions, while the latter will focus on the
speculative end of the spectrum. Meanwhile, because the area
of programming new hardware is rapidly moving, we lay out
an example of the options and challenges for one device family:
FPGAs. This is presented in Section 4.4, and from the details for
FPGAs we hope the reader also gets a sense of the fundamental
approaches for designing software for emerging hardware.

4.1. Systematic Methods for the Efficient
Deployment of ML Models
As discussed in Section 2, many ML problems in science require
low latency, often with constrained resources. However, most of
the current state-of-the-art NN models have prohibitively high
latency with a large memory footprint and energy consumption.
For this reason, practitioners have been forced to use sub-optimal
models (e.g., shallow NNs) with non-ideal accuracy to avoid this
latency problem. There is a large body of literature that has
focused on solving this problem by making NN models more
efficient (in terms of latency, memory footprint, and energy
consumption). These efforts could be broadly categorized as
follows: (i) Designing new efficient NN architectures; (ii) NN and
hardware co-design; (iii) Quantization (low precision inference);
(iv) Pruning and sparse inference; and (v) Knowledge distillation.
Here we briefly discuss each of these approaches.

Designing New Efficient NN Architectures:One line of research
has been focused on finding new NN models that are efficient
by design. A notable early work is SqueezeNet (Iandola et al.,
2016), a new NN model without any expensive Fully Connected
layers, along with a new lightweight Fire module, that resulted
in a 50× smaller model as compared to AlexNet, but with the
same accuracy. Later on, several new innovations were made
in efficient NN architecture design. One focus has been to find
efficient layers/operators. Notable works are group convolutions
(Ioannou et al., 2017), depthwise convolutions (Howard et al.,
2017), spatial separable convolutions (Mamalet and Garcia,
2012), shuffle layers (Ma et al., 2018), and shift convolutions (Wu
et al., 2018a), to name a few.

Another focus has been to find similar substitutes to
Fire module that are more efficient and result in better
accuracy/generalization. Notable works include residual
networks (He et al., 2016) (originally designed to solve issues
with vanishing gradients, but these structures are generally more
efficient than non-residual architectures), densely connected
networks (Huang et al., 2017), squeeze-and-excite modules (Hu
et al., 2018a), and inverted residual blocks (Sandler et al., 2018).

These classical techniques mostly found new architecture
modules through a manual design search. This is not scalable,
and as such recent approaches have proposed automated
methods that use neural architecture search (NAS). NASmethods
automatically find the right NN architecture for a given
constraint of model size, depth/width, and/or latency. The high-
level approach here is to train a probabilistic SuperNet that
includes all possible combinations of NN architectures within
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the prescribed constraints, but with learnable probabilities. After
this SuperNet is trained, one can sample an architecture from
its learned probability distribution. Notable works include RL
based methods (Zoph and Le, 2016), efficient NAS (Pham et al.,
2018), MNasNet (Tan et al., 2019), DARTS (Liu et al., 2018), and
Differentiable NAS (Wu et al., 2019).

NN and Hardware Co-design: Another promising line of
work has been to tailor the NN architecture for a specific
hardware platform, and/or co-design them together. This is
quite promising for configurable hardware such as FPGAs. The
importance of hardware-aware NN design is that the cost of
performing different types of operations varies for different
hardware. For example, hardware that has a dedicated cache
hierarchy can execute bandwidth bound operations much more
efficiently than hardware without a cache hierarchy. Notable
works in this area include SqueezeNext (Gholami et al., 2018),
where both the NN and the hardware accelerator were co-
designed with a manual tuning approach. More recent works
have proposed to automate hardware-aware design through
NAS. Notable works include ProxylessNAS (Cai et al., 2018),
OnceForAll (Cai et al., 2019b), FBNet (Wu et al., 2019), and
MobileNetV3 (Howard et al., 2019).

Quantization (Low Precision Inference): A common solution
is to compress NN models with quantization (Asanovic and
Morgan, 1991; Hubara et al., 2016; Rastegari et al., 2016; Zhou
et al., 2016, 2017; Cai et al., 2017, 2020b; Choi et al., 2018; Jacob
et al., 2018; Zhang et al., 2018a; Dong et al., 2019; Wang et al.,
2019c; Chin et al., 2020; Gholami et al., 2021), where low bit-
precision is used for weights/activations. A notable work here is
Deep Compression (Han et al., 2016), which used quantization
to compress the model footprint of the SqueezeNet model
discussed above, bringing its size to 500x smaller than AlexNet.
In quantization, the model size is reduced without changing the
original network architecture, and it could potentially permit
the use of low-precision matrix multiplication or convolution.
Therefore, both the memory footprint and the latency could
be improved.

The quantization methods can be broadly classified into
two categories of Post-Training Quantization (PTQ), and
Quantization-Aware Training (QAT). In PTQ, a pre-trained
model in single precision is quantized to low precision without
any fine-tuning or re-training (Banner et al., 2018; Lee et al.,
2018a; Choukroun et al., 2019; Meller et al., 2019; Nagel et al.,
2019; Zhao et al., 2019c; Cai et al., 2020b; Fang et al., 2020a,b;
Hawks et al., 2021). As such, these quantization methods are
typically very fast, and, in some cases, do not even require any
training data (Nagel et al., 2019; Cai et al., 2020b; Haroush et al.,
2020). However, PTQ often leads to high accuracy degradation,
especially for low precision quantization. To address this, some
quantization methods adopt QAT to re-train the model after
the quantization, so that the parameters can get adjusted. This
approach often results in higher accuracy, but at the cost of
longer time associated with re-training the model (Courbariaux
et al., 2015; Lin et al., 2015; Hou et al., 2016; Hubara et al.,
2016; Rastegari et al., 2016; Zhou et al., 2016, 2018a; Zhu
et al., 2016; Cai et al., 2017; Gysel et al., 2018; Huang et al.,
2021).

Another differentiator is the use of simulated quantization
(aka fake quantization), vs. integer-only quantization (Lin et al.,
2016; Jacob et al., 2018; Yao et al., 2020b; Kim et al., 2021). In
the former, the weights/activations are stored in low precision,
but they are cast to higher precision during inference. In the
latter, there is no casting involved, and the multiplication and
accumulation also happen in low precision. Using integer-only
quantization has the advantage that one can speed up inference
by using low-precision logic for multiplication and addition,
besides reducing the memory footprint of the model.

Another distinction is hardware-aware quantization. Similar
to NN architecture design, quantization can also be tailored for
specific hardware platforms. This becomes important for mixed-
precision quantization (Wu et al., 2018b; Zhou et al., 2018b; Dong
et al., 2019, 2020, 2021; Wang et al., 2019b; Shen et al., 2020; Yao
et al., 2020b). The reason is that certain operations in the NN
model may benefit more from low precision quantization than
others, based on whether they are bandwidth bound or compute-
bound. As such, as schematically illustrated in Figure 6, one
must determine the best precision setting based on the tradeoff
between the potential footprint/latency gain and the sensitivity
to accuracy degradation.

Pruning and Sparse Inference: Another approach reducing
the memory footprint and computational cost of NNs is to
apply pruning, which could be thought of as quantization to
0-bits. In pruning, neurons with small saliency (sensitivity) are
removed, which results in a sparse computational graph (LeCun
et al., 1990). Here, neurons with small saliency are those whose
removal should minimally affect the model output/loss function.
Pruning methods can be broadly categorized into unstructured
pruning (LeCun et al., 1990; Hassibi and Stork, 1993; Dong et al.,
2017; Lee et al., 2018b; Xiao et al., 2019; Park et al., 2020), and
structured pruning (Luo et al., 2017; He et al., 2018; Huang and
Wang, 2018; Lin et al., 2018; Yu et al., 2018; Zhao et al., 2019a).
Unstructured pruning removes neurons without any structure.
With this approach, one can remove most of the NN parameters
with little impact on the generalization performance of the
model. However, this approach leads to sparse matrix operations
which are hard to accelerate and are typically memory-bounded
(Buluc and Gilbert, 2008; Gale et al., 2019; Blalock et al., 2020;
Hoefler et al., 2021). This can be addressed with structured
pruning, where a group of parameters (e.g., an output channel)
is removed. However, the challenge here is that high degrees of
structured pruning often lead to significant accuracy degradation.

In both approaches, the key question is to find which
parameters to prune. A simple and popular approach is
magnitude-based pruning (Hanson and Pratt, 1988; Mozer and
Smolensky, 1988; Chauvin, 1989; Li et al., 2016b; He et al., 2017,
2019; Liu et al., 2017; Lin et al., 2020a). In this approach, the
magnitude of parameters is used as the pruning metric. The
assumption here is that small parameters are not important and
can be removed.

An important problem with magnitude-based pruning
methods is that parameters with small magnitudes can actually
be quite sensitive. It is easy to see this through a second-order
Taylor series expansion, where the perturbation is dependent
on not just the weight magnitude but also the Hessian
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FIGURE 6 | The illustration of hardware-aware quantization and pruning. A given NN model can be compressed by using low precision quantization instead of single

precision. The extreme case is to use 0-bit quantization which is equivalent to removing/pruning the corresponding neurons. The goal of compression is to find the

best bit-precision setting for quantization/pruning to reduce model footprint/latency on a target hardware with minimal generalization loss.

(LeCun et al., 1990). As such there are several works that use
second-order based pruning (LeCun et al., 1990; Hassibi and
Stork, 1993; Hassibi et al., 1993; Wang et al., 2019a; Yu et al.,
2021).

Finally, we should mention that it is possible to combine
pruning and quantization together to compress the NN model.
In fact, pruning could be viewed as quantization to 0-bits. The
recent work of Hawks et al. (2021) proposes a quantization-aware
pruning method and applies to high energy physics problems; It
reports better results than pruning or quantization alone.

Knowledge Distillation: Model distillation (Romero et al.,
2014; Hinton et al., 2015; Li et al., 2017; Mishra and Marr, 2017;
Yim et al., 2017; Polino et al., 2018; Ahn et al., 2019; Yin et al.,
2020) trains a large model and then uses it as a teacher to train a
compact model. Instead of using class labels during the training
of the student model, the key idea of model distillation is to
leverage the soft probabilities produced by the teacher, which can
guide/help the student training.

Previousmethods of knowledge distillation focus on exploring
different knowledge sources. Hinton et al. (2015), Li et al. (2017),
and Park et al. (2019) use logits (the soft probabilities) as the
source of knowledge, while Romero et al. (2014), Yim et al.
(2017), and Ahn et al. (2019) try to leverage the knowledge
from intermediate layers. The choices of teacher models are
also well studied, where You et al. (2017) and Tarvainen and
Valpola (2017) use multiple teacher models to jointly supervise
the student model, while Crowley et al. (2018) and Zhang et al.

(2019b) apply self-distillation without an extra teacher model.
Other previous efforts apply knowledge distillation with different
settings on different applications. Lopes et al. (2017), Nayak
et al. (2019), and Yin et al. (2020) study data-free knowledge
distillation, and Wang et al. (2018a) and Wang et al. (2020e)
combine knowledge distillation with GANs.

A major challenge of knowledge distillation methods is to
achieve a high compression ratio. Compared to quantization
and pruning which can usually maintain accuracy at 4×
compression, knowledge distillation methods tend to have
non-negligible accuracy degradation at those compression
levels. But these two approaches are orthogonal, and recent
works have shown that their combination can result in high
accuracy/compression (Mishra and Marr, 2017; Polino et al.,
2018; Mao et al., 2020; Yao et al., 2020b). It should be mentioned
that current distillation methods are mostly applied to classical
ML problems, and few works have looked into their application
in Science AI problems.

4.2. Systematic Neural Network Design
and Training
There is currently no analytical approach to find the right NN
architecture for a given task and training dataset. Originally,
designing the NN architecture was mostly a manual task with
intuitions that were often ad-hoc. However, in recent years there
has been a lot of innovations in automating the NN architecture
design process, which is referred to as Neural Architecture
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Search (Zoph and Le, 2016; Cai et al., 2018, 2019b; Liu et al., 2018;
Pham et al., 2018; Tan et al., 2019; Wu et al., 2019).

NAS could be viewed as a hyperparameter tuning problem,
where the hyperparameters are the design choices for a NN
architecture. This could include width, depth, types of operations,
etc. The main challenge is that the search space for the operation
types scales exponentially with the number of layers. As such,
one has to still include some high-level intuition about the NN
architecture to limit the search space.

After limiting the search space, the general NAS process is
as follows: A candidate architecture is sampled from the set
of all possible architectures and is then trained for a number
of epochs on the training dataset. The accuracy is then used
as the metric to evaluate how good that candidate architecture
is. Then based on this reward, the probability distribution of
sampling architectures is updated. This process needs to be
repeated for many different candidate architectures (sometimes
exceeding hundreds of thousands). Inherently, this leads to
another problem related to tuning the optimization hyper-
parameters for each candidate architecture. For example, if a
good architecture is sampled from the NAS but is trained with
sub-optimal hyperparamters, then the error will be high and
the NAS algorithm will reduce the likelihood of sampling that
architecture which is not the desired property.

As a result, scalability has become an integral concern for
any procedure in the presence of “big data.” One main class of
procedures for which scalability has become indispensable is in
numerical optimization algorithms, which are the core of training
methods. There is a large body of literature on designing efficient
numerical optimization/training methods (Gupta et al., 2018;
Reddi et al., 2018; Shazeer and Stern, 2018; Zhang et al., 2019c;
Ginsburg et al., 2020; Liu et al., 2020a; Ma, 2020; Park et al., 2020;
Yao et al., 2020c; Zhuang et al., 2020) as well as efficient NAS
algorithms to search for the right NN architecture (Zoph and Le,
2016; Liu et al., 2018; Pham et al., 2018; Tan et al., 2019; Wu et al.,
2019).

For the optimization, the goal is to design new methods
that require fewer iterations to converge and are more robust
to hyper-parameter tuning. One notable advancement here is
the ability to apply second-order methods without the need for
forming the second-order operator (Gupta et al., 2018; Reddi
et al., 2018; Yao et al., 2019, 2020c). It has been shown that the
performance and robustness of these methods are higher than
first-order optimization methods on classical ML problems (e.g.,
in computer vision or natural language processing). Interestingly,
some recent results for Physics Informed Neural Networks
(PINN) (Raissi et al., 2019) have found that first-order methods
work significantly sub-par to (quasi) second-order methods. This
could potentially provide opportunities to adapt or redesign some
of the second-order algorithms for Science problems.

For the NAS algorithms, the goal is similar, which is to find
methods that require evaluating fewer candidate architectures,
with less manual restriction or tuning of the search space.
Another goal is to design transferable NAS algorithms that can
be trained on a small problem and then transferred to larger
problems that are more expensive (Cai et al., 2018, 2019b).

In summary, the core of designing NN architecture is to have
a fast method of sampling architectures (through NAS), and the
fast training of the sampled architectures (through fast and robust
optimization algorithms).

4.3. Hardware Architectures: Conventional
CMOS
As the prevalence and demands for machine learning rapidly
continue to grow, it is increasingly important that we design
machine learning algorithms efficiently and simultaneously
deploy them on complementary and powerful hardware
platforms. The compute and memory demands of NN
deployments are huge and growing beyond the limits to
where standard silicon-based semiconductors can scale. The
reasons behind the scalability challenges in the semiconductor
industry are as follows: Firstly, as we approach the End of
Moore’s Law, transistor cost has been exponentially rising due
to rising chip design costs with shrinking technology nodes (as
published by Xilinx and Gartner in 2011 already Trimberger,
2018). Furthermore, with the end of Dennard scaling, we’ve
encountered considerable thermal challenges as power density
no longer remains constant between node generations. To
mitigate the challenges of increasing thermal density, chips
are now designed to conditionally deliver power to groups
of transistors, effectively throttling or "turning off" parts of a
chip. This technique has come to be known as creating dark
silicon (Esmaeilzadeh et al., 2011).

To overcome these challenges and provide sufficient compute
capabilities, many disruptive approaches have been proposed.
For example, Cerebras Systems (Cerebras, 2019) has brought to
market the first computer system which employs wafer scale

integration. where chips are built from complete wafers rather
than individual dies. Such a technique brought with it substantial
engineering challenges in regards to power delivery, packaging,
and cooling. Exploring the other dimension, foundries are
investigating true 3D chip stacking as was presented at
HotChips’2019 by TSMC (Hotchips, 2019). Even analog
computing, quantum computing, and in-memory computing are
investigated as well. See a more detailed discussion on beyond
CMOS neuromorphic computing in Section 4.5 below.

Less risky approaches focus on moving away from traditional
von Neumann architectures, using specialization of compute
architectures to provide the necessary performance scaling and
energy efficiency. Due to the specialization, the devices become
increasingly heterogeneous. A huge range of devices has emerged
that all try to address this problem in different ways, whereby
the key challenge is: How do we loop transform and unfold the
algorithms best to maximize data reuse and compute efficiency,
minimize memory bottlenecks, and limit power consumption
while meeting real-time requirements?

The choice of hardware type and quantity often boils down
to a set of constraints imposed by compute environment
(datacenter, cloud, on-premise, edge, mobile), workload type
(inference, training), data type (Language, Time Series, Vision,
Graph, etc.), ML model, usage model (online inference, batch
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jobs), and user-centric Service-Level Agreements (encryption
level, request latency, etc). For large datacenter deployments
handling various types of workloads, it is often the case that
several platforms must be combined to reduce Total Cost
of Ownership (ToC) across all their hardware platforms. It
has therefore become increasingly necessary for owners of
heterogeneous platforms to think of their systems as large-
scale multi-processor computers, a trend sometimes termed
Warehouse Scale Computing (Luiz André Barroso, 2009). For
Deep Learning hardware accelerators, these new computers
generally take the form of CPU co-processors: a host CPU
communicates with other entities in the datacenter, interfaces
with disk memory, and formats input data which is then
offloaded to the accelerator responsible for executing a user-
defined compute graph, or Neural Network.

We begin with a taxonomy of these hardware architectures
and discuss their relevant characteristics when it comes
to the acceleration of machine learning workloads. This is
essential to understand how they will differ in their execution
behavior, what it takes to leverage their unique features and
how they can potentially benefit from previously introduced
optimization techniques.

Taxonomy of Compute Architectures for Deep Learning: A
broad range of hardware architectures to deploy machine
learning algorithms exists today. We can broadly classify them
by the following criteria:

1. Basic type of compute operation
2. Inherent support for specific numerical representations
3. External memory capacity (which is mostly relevant for

training workloads)3

4. External memory access bandwidth
5. Power consumption in the form of thermal design power

(TDP)
6. Level of parallelism in the architecture and the degree of

specialization

As is shown in Figure 7, we classify the compute architectures
into scalar processors (CPUs), vector-based processors (GPUs),
and so-called deep learning processing units (DPUs), although
realistically these categories blend to some degree. DPUs are
specialized for this application domain whereby we distinguish
the more generic matrix- or tensor-based processor and a spatial
processing approach. DPUs can be implemented with either
ASICs or FPGAs. All of these architectures will be discussed
individually below.

CPUs: CPUs are widely used for ML applications and are
viewed as largely serial or scalar compute engines (even though
high-end variants for cloud deployment may have up to 10s
of cores). They are optimized for single-thread performance,
with implicitly managed memory hierarchies (with multiple
levels of caches), and support floating point operations (FP64
and FP32) as well as 8bit and 16bit integer formats with
dedicated vector units in most recent variants. Theoretical
peak performance tops at 6.8TOPs for FP64 assuming boost

3In these comparisons, we treat HBM and HBM2 as external memory as it is used
in the same way as DDR4 or GDDR memory.

clock speed (Cascade lake, 56 cores, 3.8GHz). External memory
is currently primarily leveraging DDR4 memory banks with
large capacities: Intel’s Cascade Lake offers up to 4.5 TebiByte
(240 Bytes) which is beyond what any of the other device
categories can offer. Access is at maximum speed through
high-end hardened memory controllers, offering 282 Gbps
bandwidth (for example Cascade Lake with 12 DDR4 channels).
Compared to GPUs and other HBM-enabled devices, the
memory bandwidth of CPUs is lower. However, for many use
cases, this can be compensated through their sophisticated cache
hierarchies, combined with mature compiler tools. Regarding
power consumption, CPUs are at the upper end of the spectrum
with high-end devices range up to 400 W (Cascadelake, 2019).
In the embedded space, ARM processors provide generally
popular solutions, in particular when performance requirements
are very low and when functionality is required that is not
supported by the specialized device variants. In particular, the
Ethos (Skillman and Edso, 2020) family of processing cores
is specialized for CNN workloads and as such is considered
under the DPU category below. The advantages of CPUs
are the generality of the hardware, as well as the ease of
programming where design environments have matured over
decades. As expected this comes at the cost of lower peak
performance and less efficiency compared to themore specialized
device families. In regards to quantization, CPUs can only
leverage this optimization technique for INT8 and INT16 if
supported.

GPUs: GPUs are SIMD-based (Single Instruction, Multiple
Data) vector processors that support smaller floating point
formats (FP16) natively, as well as fixed point 8-bit and 4-bit
integer formats more recently, and have a mix of implicitly and
explicitly managed memory. NVIDIA GPUs are some of the
most popular hardware targets for machine learning, and newer
families of chips have been introduced to specifically accelerate
this workload, with AMD not far behind. The latest devices in
NVIDIA’s Volta and Turing architecture families, introduced in
2018 and 2019, respectively, offer up 130TOPs in FP16, which
is beyond the capabilities of the latest CPU generations. As
such they are amongst the highest performant devices in the
market for the acceleration of DNNs as they can exploit the high
degree of parallelism inherent in this application via increasingly
specialized architectural features. For example, NVIDIA’s Volta is
the first generation to incorporate tensor cores as a new feature,
as well as improved FP32 and FP64 support for training in a
data center setting (Durant et al., 2017), and also introduced a
deep learning accelerator (DLA) in their embedded devices to
further reduce power consumption. This specialization brings
additional challenges for their usage; there are up to 3 distinct
execution units now, namely CUDA cores, tensor cores, and
the DLA, which don’t operate on the workload simultaneously
(at least not easily or by default). We, therefore, don’t sum up
the peak performance of different execution units, but use only
the maximum. AMD announced the Vega GPU (Exxactcorp,
2017) with new deep learning instruction set operations, with
the goal of obtaining parity with NVIDIA’s high-end Tesla V100
datacenter GPUs. Also, AMD’smost recent EPYC family supports
customized instructions for deep learning (Epyc, 2019). Both
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FIGURE 7 | Taxonomy of compute architectures, differentiating CPUs, GPUs and DPUs.

companies offer also low power GPUs for the embedded space,
namely the AMD Vega mobile GPU (Hardawar, 2018) and
NVIDIA Jetson TX2 (Franklin, 2017) and AGX family (AGX,
2019).

In regards to memory, GPUs leverage specialized and highly
pipelined GDDR memory, which reduces capacity, but offers
much higher bandwidth (up to 732GBps). With NVIDIA’s
Turing family the latest devices include HBM2 DDR memory
stacks (Turing, 2019), which scales thememory access bandwidth
to 1TBps and beyond. Again this is particularly important to
address the needs of training workloads. For the same reason,
some of the DPUs introduce HBM2 as well, as discussed below.
In regards to power consumption, GPUs are high, up to 345 W.

One general challenge for GPUs is that they need to leverage
input parallelism to achieve high utilization of their large
compute arrays. Therefore, before execution inputs need to
be grouped into batches, which has adverse effects on end
latency. Further, GPUs are relatively high in power consumption.
Regarding quantization, support is limited to the inherent
datatypes, which are INT4 at smallest in the context of NVIDIA’s
Turing family, and INT8 for many of the others. Finally, the
corresponding software environments for GPUs, while not on
the same level as CPUs, have matured significantly and provide
increased ease of use.

FPGAs and ASICs: FPGA and ASIC customize hardware
architectures to the specifics of a given application. They can be
adapted in all aspects to suit a use case’s specific requirements.
This includes their IO capability, their functionality, or even to
suit specific performance or efficiency targets. FPGAs can be
reprogrammed whereas ASICs are fully hardened. This flexibility
allows for amortizing the design costs of the circuit across many
applications but comes at the expense of hardware resource cost
and performance.

FPGAs are a popular choice for the acceleration of CNNs.
Traditionally, an FPGA compute fabric consist of a sea of
lookup tables (LUTs) which are interconnected through a
programmable interconnect. The latest generations host millions
of LUTs. Furthermore, the fabric is interspersed with specialized
hardened compute blocks (DSPs) which accelerate n-bit multiply
accumulate operations (MACs), as well as SRAM blocks. The

latter are referred to as block RAMs (BRAMs), which hold
36 kbits, and Ultra RAMs (URAMs) which store 288 kbits.
More recent FPGA generations combine multiple FPGA dies,
referred to as super logic regions (SLRs), and leverage a
silicon interposer to provide connectivity between SLRs. This
technology is referred to as stacked silicon interconnect (SSIT)
and helps scale device capacity.

DPUs: As mentioned at the beginning, the term DPU (short
for deep learning processing unit) refers to a new type of
compute architecture, specialized for the acceleration of CNNs.
DPUs are customized for these types of applications in a
number of ways: types of operations supported, direct support of
tensors or matrices, inherent data types and supported numerical
representations, macro-architecture, explicitly managed and
specialized memory hierarchies, and which levels of parallelism
they exploit (input, output pixel, IFM, OFM, bit, and layer
and branch parallelism) as was introduced in the first part of
this chapter. We differentiate two types of DPUs, which can be
implemented with both ASIC technology and FPGAs.

Matrix of Processing Elements (MPE): The first type, as shown
on the left side of Figure 8, consists of an MPE that operates
on matrices or higher dimensional tensors. The processing
engines can be simple MACs, vector processors, or more
complex VLIW (Very Long Instruction Word) cores that can
support concurrent execution of different instructions. A popular
example in this category is Google’s Tensor Processing Unit
(TPU). Introduced in 2016 (Sato et al., 2017), it was originally
designed to accelerate Google’s TensorFlow framework. The
first generation supported integer arithmetic with a massively
parallel INT8 matrix-multiply engine. The second generation
TPU was announced in May 2017 (Jouppi et al., 2017), and
the third generation in May 2018 (Teich, 2018). These newer
chips boast improved memory performance as well as support
for floating point specifically aimed at training. There are a
number of startups introducing custom hardware that fall into
this category. Within the cloud, there are Graphcore, Groq, and
Wave Computing. Within the embedded space, where the design
constraints are even more stringent, we find even more solutions.
Most are secretive about the details of their designs. Intel is
investigating several custom accelerators and has for that purpose
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FIGURE 8 | DPU architectures: Matrix of Processing Engines (MPE) on the left, and spatial architecture on the right.

acquired a number of startups, namely Nervana, Habana, and
Movidius. Fathom (Armasu, 2016) is Movidius’ ultra low power
Neural Compute Stick (NCS) which operates at about 1 W. Also,
ARM offers specialized CNN processors in the form of their
Ethos family, boosting performance up to 4TOPs with support
for INT8 and INT16 datatypes.

As mentioned above, DPUs provide specialized datatypes
to execute heavily quantized, reduced precision CNN
implementations. At the extreme, binarized neural networks
(which are very high throughput at extremely low power)
are exploited in the following ASICs: BinarEye (Moons et al.,
2018), BNN Custom Fabric (Ando et al., 2017), and IBM
AI Accelerator (IBM, 2018). Also, Lattice has announced
binarized neural network libraries targeting low power FPGA
and achieving 1 TOPs/W (Lattice, 2018). Custom floating point
representations are also considered. For example, Microsoft’s
Brainwave project (Chung et al., 2018) uses this approach with
the aim of applying FPGAs to CNNs at datacenter scale. However,
typically the hardened versions in ASICs only support INT8, as
lower precisions could potentially limit their application scope.
FPGA-based MPE implementations such as Xilinx’s xDNN are
less constrained and in principle can be customized as needed.

Similar to the GPU, but perhaps to a lesser degree, DPUs
leverage input, IFM (input feature map) and OFM (output
feature map) parallelism, which requires buffering of inputs
and may have adverse effects on latency as well. A particular
challenge arises in the context of software environments, which
differ for all vendors and are less mature than what we have
observed for CPUs and GPUs. Typically, they are limited to
support execution of very specific layer types (sometimes even
restricted in regards to parameter ranges) and neural networks,
whereby the range of layer types and neural network models is
continuously expanding.

In summary, through their specialization, these
implementations minimize hardware cost, maximize
performance and optimize efficiency by exploiting specific
precision arithmetic with a specialized instruction set and

customized memory system. However, in order to gain a
performance advantage, the algorithms need to be adapted to
leverage these features.

Spatial DPUs: The second type of DPU leverages spatial
acceleration and exploits layer and branch parallelism. Popular
examples are hls4ml and FINN (Umuroglu et al., 2017; Blott
et al., 2018). To that extent, the hardware architecture is even
further specialized to the specifics of a given deep learning
topology. This is visualized on the right side of Figure 8. The
hardware architecture actually mimics the given deep learning
topology and the inputs are streamed through the architecture.
Every layer is instantiated with a dedicated compute datapath.
Each layer has a dedicated weight buffer, and activation buffers
in-between layers are FIFOs of minimal size. They buffer just
enough data to feed the next set of convolutions in the next layer.
This is substantially more efficient compared to the first type of
DPUs or GPUs and yields reduced latency.

DPUs and GPUs generally perform a layer-by-layer compute,
where a sequence of images has to be buffered in order to extract
maximum compute out of the platform (input, IFM and OFM
parallelism). For this, the device buffers a batch of images before
computing the first layer of all images. Then all intermediate
results are buffered, and then the next layer is computed, and
so on. Hence the latency is heavily dependent on the size of the
input batch.

As a result, spatial DPUs have an advantage in regard
to latency. This level of customization is only possible with
programmable hardware architectures such as FPGAs, as they
can adapt the hardware architecture for different use cases.
This generally wouldn’t make sense in the context of an
ASIC accelerator, as that would yield an ASIC only capable
of accelerating one specific topology, which would be far too
restrictive in scope. The limitation in spatial architectures is the
scalability in the numbers of layers. Each layer comes at a resource
cost overhead and there is a maximum number of layers that can
be created within a single device. As a result, some extremely deep
CNNs might not be able to fit into a single device. Microsoft’s
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TABLE 4 | Characterization of types of hardware based on important metrics.

Server-class Throughput Latency Power Ext. Mem. Bandwidth HW specialization Ease of Use Training/Inference

Conventional

CPU Medium High High Medium Low High Both

DPU-MPE High Medium-high Medium High Medium Low-medium Inference

DPU-Spatial High Low Medium High High Low Inference

GPU (NVIDIA A100) High High High High Medium High Both

Speculative

Cerebras CS-1 Very high Medium High Very High Medium Medium Both

Brainwave project leverages spatial computing and overcomes
this limitation with a distributed approach (Chung et al., 2018).

Once a spatial DPU has been leveraged and the architecture
is specialized for a very specific CNN, the architecture can
be further customized in regards to minimum precision. By
supporting only the bits as needed per layer of the CNN
they can achieve even higher performance and efficiency,
while in an MPE, the hardware will support the maximum
precision that is required over the whole network. In regards
to customized precisions and spatial architectures, FINN has
pioneered the first binarized neural network accelerators (Fraser
et al., 2017; Umuroglu et al., 2017) and provided many proof
points for customized reduced precision implementations (Blott
et al., 2018). This flexibility comes at a cost, in the form
of programming complexity, and they are extremely difficult
to characterize in general, as the performance characteristics
depend on the specifics of the hardware architecture that has
been implemented.

Further Variants of DPUs: Beyond the previously discussed
spatial DPUs and MPEs, there are many more variants. Some
exploit sparse computing engines for example, such as EIE
and its successor ESE (Han et al., 2017), SCNN (Parashar
and Rhu, 2017), Cnvlutin (Albericio et al., 2016), Cambricon-
S and Cambricon-X (Zhang et al., 2016). These are the only
architectures that can benefit from irregular sparsity. Finally,
another dimension for customization of precision is to optimize
over the execution- or run-time of a CNN. In other words,
beyond using statically fixed reduced precision, where the
hardware operates with a fixed precision for all variables, some
approaches explore run-time configurable bit precision which
allows for the exploitation of bit-parallelism in the arithmetic.
On the hardware implementation side, this can be exploited
with run-time programmable precision and is effective with bit-

serial implementations. For example Umuroglu et al. (2018)
demonstrate with BISMO that bit-serial can provide highly
attractive performance with minimal overhead on FPGAs, while
Judd et al. Judd et al. (2016) show the same is true for ASICs with
their prototype ASIC called Stripes. While this concept can be
applied to both MPE and spatial architectures, it makes the most
sense for MPEs.

Summary of Conventional CMOS Hardware Architectures:
We analyzed three categories of hardware architectures that are
leveraged for CNN inference, namely common CPUs, SIMD-
based vector processors such as GPUs, and DPUs which are
specialized architectures for the acceleration of deep learning

workloads. An overview of the architectures is visualized in
Table 4. Please note, "Ease of Use" includes compute kernel
programmability as well as general ease of use. The degree
of specialization includes operators, precision support, and
customization toward topologies. In summary, for DPUs, we
distinguish between tensor processors which leverage a matrix
of processing engines and spatial architectures which can be
further specialized for specific topologies using FPGAs. CPUs
are the most general solution but high in power. GPUs and
DPUs offer the highest performance, though GPU are more
expensive in energy cost. Spatial DPU architectures excel at
low latency and provide the highest compute efficiency through
maximized customization. CPUs, GPUs, and DPUs (MPE)
use a sequential layer-by-layer compute model whereas spatial
DPUs execute all layers of the network concurrently. Hardened
topologies in form of ASICs, CPU and GPU offer a fixed set of
native dataypes, whereas FPGAs can adopt any precision and
numerical representation, which provides the utmost flexibility
and leverages optimization with quantization to the maximum,
whereas hardened approaches need to default to the next higher
supported precision into which the reduced precision variable
can be embedded. However, the programmability in the FPGA
fabric also comes at a speed and energy cost. All architectures can
benefit from coarse-grained pruning optimization techniques.
Only sparse execution engines can benefit from irregular
pruning, such as synaptic pruning. We also discussed the various
deployment options. Many devices offer different power and
operating modes as different compromises between throughput
and power consumption to adapt to the potentially very different
optimization targets of different application settings. Similarly,
batch sizes, thread counts and stream sizes offer another
compromise in regards to throughput vs. latency. Again this is
to facilitate a spectrum of different use cases. Finally, the table
shows that speculative approaches such as Cerebras can bring
fundamental performance scalability. Overall, each approach
comes with its own advantages and disadvantages and the
best solution greatly depends on the specifics of a given use
case.

4.4. Hardware/Software Codesign
Example: FPGA-Based Systems
In the last decade, we have observed the rise of two
significant paradigms that have come to scientific applications:
heterogeneous-computing systems and machine learning.
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Heterogeneous computing can overcome the decline of
Moore’s Law and Dennard Scaling and achieve the desired
computational cost and performance by executing portions of
the applications on the best-matched hardware, e.g., CPU, GPU,
ASIC, and FPGA. On the other hand, machine learning is an
automatic process that creates programs that can solve classes of
problems. As with traditional programming, machine learning
can significantly benefit from heterogeneous computing; in
addition, designers can tailor specialized but reprogrammable
hardware to fit ever-changing machine learning requirements.
This section examines tools and methodologies that can
automatically deploy and orchestrate machine learning on
FPGA systems in larger scientific applications. FPGAs are
a particularly compelling example to explore because the
efficiency of the hardware coupled with their programmability
makes for an interesting case study in hardware/software
codesign.

Traditional software programming is complicated, and
parallel high-performance programming is even more
challenging. Programming heterogeneous systems that integrate
FPGAs bring the challenge to the next level: the programmer
must deal with a multi-objective optimization problem that
involves performance and costs, i.e., hardware resources. For
machine learning applications, a common practice is to profile
the application on CPU (or GPU) to identify the bottlenecks
to be offloaded onto the reprogrammable logic to improve
latency, throughput, or energy efficiency of the application as a
whole. Then, part of the application can remain on the CPUs to
control the execution and interact with the rest of the scientific
setup.

FPGA Programming: FPGA are configurable integrated
circuits that provide a good trade-off in terms of performance,
power consumption, and flexibility with respect to other
hardware paradigms. However, it is a challenging and lengthy
task to program FPGAs. FPGA programming has traditionally
been a job for hardware designers familiar with digital design
and computer architecture. These requirements lead to a steep
learning curve for software developers and other domain
experts. In order to lower the entry barrier, there has been a
growing focus on designing FPGA hardware at a higher level
of abstraction. As a result, various approaches have brought
FPGA development into the mainstream by allowing developers
to design for FPGAs at a higher level using familiar languages
such as C, C++, OpenCL, and in some cases, even C# (Singh
and Greaves, 2008). Here an important question arises: what
are the additional advantages of designing the hardware at a
higher level of abstraction? High-level languages (HLLs) include
various constructs and design patterns that are more functionally
expressive. Furthermore, the amount of time spent in the
verification of the design is also a crucial factor. Hardware-
description languages such as Verilog or VHDL focus on the final
implementation details and, because of that, are more verbose.
Bigger code repositories are not easy to verify for functional
correctness. On the other hand, HLLs are more compact and
simulate faster. Thus, a designer can do more verification in the
same span of time. Despite these advances, FPGA programming
remains complex. This has compelled academia and industry to

develop new compilers, frameworks, and libraries to facilitate
hardware design.

High-Level Synthesis and Languages: High-level synthesis
(HLS), also known as behavioral or algorithmic synthesis, is
an automated design process that takes as input a functional
description of a design and outputs an RTL implementation.
It transforms an untimed (or partially timed) high-level
specification into a fully timed implementation. The process
of HLS starts by analyzing the data dependencies between the
various operations in the functional description. This analysis
leads to a Data Flow Graph (DFG) representation. After the
DFG generation, during the allocation phase, HLS maps each
operation onto a hardware resource with latency and area
characteristics. Then, HLS adds the notion of time to the design
during the scheduling phase. Scheduling takes the operations and
resources of the DFG and decides in which clock cycle to execute
them, given their latency information. This step infers sequential
logic by adding registers between operations and creating finite
state machines (Fingeroff, 2010).

Over the past three decades, many HLS tools have been
proposed. The work in Nane et al. (2016) presents an
evaluation of different academic and commercial HLS
tools tested on the same set of benchmarks. These tools
have different input languages, perform different internal
optimizations, and produce different quality results, even
for the same input languages. The results show that each
HLS tool can significantly improve performance once the
designer has mastered benchmark-specific optimizations
and constraints. However, academic HLS tools have
a higher learning curve because of a minor focus on
usability. Commercial HLS tools have an advantage because
of their better documentation, robustness, and design
verification integration.

In terms of input languages for HLS, most of the HLLs are
variants of the C language. However, there are a few limitations
to generate hardware from a pure C specification. First, C
lacks the notion of timing and concurrency. The designer must
rely on the HLS tool to create clock-based timing. Similarly,
the designer must specify the concurrency model or rely on
HLS to extract the parallelism among operations or processes.
Second, C lacks bit-accurate data types. It only provides “native”
data types such as char, int, and long, whose size is a
multiple of a byte. Third, it lacks the concepts of hardware
interfaces and communication channels. SystemC was adopted
as HLS language to address all of these limitations (Ren,
2014). However, SystemC still has not entirely made inroads
in the FPGA community. Another common problem with all
C-based languages, including SystemC, is memory access and
modeling. These languages have a flat memory model, and
memory access is done through pointers. Either HLS has to
decide how to implement the memories in hardware, or the
designer must leverage additional HLS directives or libraries
to model the memory sub-system properly. Finally, in the
family of the C-based specification languages for HLS, the
SYCL language is emerging. SYCL (pronounced sickle) is an
industry-driven standard that adds parallelism to C++ to design
heterogeneous systems. SYCL programs perform best when
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TABLE 5 | A brief taxonomy of domain-specific languages and frameworks for

FPGA applications.

Domain and interfaces DSLs and frameworks

Signal-processing HDLCoder (Kapre and Bayliss, 2016), LabView

(Kapre and Bayliss, 2016), Spiral (Nordin et al.,

2005), VSIPL (Janka et al., 2001)

Networking SNORT (Mitra et al., 2007), Click (Kohler et al.,

2000), P4 (Bosshart et al., 2014), Floem

(Phothilimthana et al., 2018)

Databases Glacier (Mueller et al., 2010)

Machine learning OptiML (Sujeeth et al., 2011)

Numerics Verilog AMS (Kapre and DeHon, 2009)

Streaming Maxeler (Pell and Mencer, 2011), SCORE (Kapre

and DeHon, 2011), Lime (Bacon et al., 2013),

Aetherling (Durst et al., 2020)

Dataflow OpenDF (Bhattacharyya et al., 2009), OpenSpatial

(Kapre and Bayliss, 2016)

Graphs GraphStep (Delorimier et al., 2011), GraphGen

(Nurvitadhi et al., 2014)

Data parallel MapReduce (Kapre and Bayliss, 2016), Accelerator

(Bond et al., 2010), FCUDA (Papakonstantinou

et al., 2009), SuSy (Lai et al., 2020a)

Circuit generators Flopoco (de Dinechin et al., 2009), JHDL (Bellows

and Hutchings, 1998), PAMDC (Bertin and Touati,

1994)

Image processing HIPACC (Reiche et al., 2017), FROST (Del Sozzo

et al., 2017), Darkroom (Hegarty et al., 2014), RIPL

Stewart et al. (2018), PolyMage (Chugh et al., 2016)

Static JBits (Guccione et al., 2000), TVM (Moreau et al.,

2018)

Task based TAPAS (Chi et al., 2021)

Dynamic PyRTL (Clow et al., 2017), APARAPI (Segal et al.,

2014), TornadoVM (Fumero et al., 2019), (Caldeira

et al., 2018),

LINQits (Chung et al., 2013), DHDL (Koeplinger

et al., 2016), Spatial (Koeplinger et al., 2018)

Type Systems DAHLIA (Nigam et al., 2021)

Verification Kami (Choi et al., 2017b)

Virtualization Cascade (Schkufza et al., 2019)

paired with SYCL-aware C++ compilers such as the open-
source data-parallel C++ (DPC++) compiler (Reinders et al.,
2020).

Apart from the variations of C, Bluespec is an open-source
language for the description and synthesis of hardware based
on SystemVerilog. It provides levels of abstraction with a clean
semantic that highlights aspects of the architecture. It can
be considered a high-level functional HDL, where modules
are implemented as rules using SystemVerilog syntax. Those
rules are called guarded atomic actions and express behaviors
as concurrently cooperating finite state machines (FSMs).
Another recent language among FPGA designers is Chisel.
It is based on Scala and supports hardware definition using
highly parameterized generators, object-oriented and functional
programming. Similar to an HLS flow, it compiles into an RTL
Verilog implementation.

Although all these languages have helped create efficient
hardware and significantly shorten the development time,
specific coding techniques are still necessary. Also, the growth
and diversification of the application domains have shown the
limitations of these programming languages. This has further
pushed the level of abstraction to domain-specific languages
(DSLs). In recent years, we are observing the growth of
a considerable corpus of DSLs and frameworks for FPGA
designs (Papadimitrioua et al., 2012; Kapre and Bayliss, 2016). In
a DSL-based approach, the users and the tools can use domain
knowledge to apply static and dynamic optimizations. However,
a domain-specific HLS tool requires an appropriate compiler and
a development environment that caters to the target domain.
Table 5 shows some of the DSLs and frameworks developed
over the years for FPGA computing organized by domains of
application. Although all the approaches in the table are diverse
in terms of applications, the interesting question is, what are
the common denominators? To the best of our knowledge,
most of the approaches are broadly based on two approaches:
either the DSL specification gets directly compiled into the
RTL implementation, or the approach leverages source-to-source
compilers. In the latter case, the DSL compiler produces an
equivalent source code in a different programming language,
for example, C++, for a more standard HLS flow. As a final
concluding remark for this paragraph, the efforts for designing
better HLS compilers and languages are a significant part of
present FPGA research. Furthermore, the work in Table 5 by no
means is an exhaustive list. The area of DSLs for FPGA easily
outnumbers the work presented in the table.

Software and Hardware Integration: Running an application
as software on a microprocessor is more accessible than
designing and running specialized hardware, but it may result
in poor performance and higher power costs. On the other
hand, partitioning an application into software and hardware
components is challenging. This process, also known as
hardware/software codesign, divides an application between
software running on themicroprocessor and one or more custom
hardware or co-processors components to achieve desired
performance goals. Understandably there exists a plethora of
research work in this area. The authors in Todman et al.
(2005) have provided background information on notable aspects
of older FPGA technologies and simultaneously explained the
fundamental architectures and design methods for codesign.
Furthermore, the work in Choi et al. (2019) is another
comprehensive study that aims to evaluate and analyze the
microarchitectural characteristics of state-of-the-art CPU-FPGA
platforms in depth. That paper covers most of the shared-
memory platforms with detailed benchmarks.

The two leading FPGA vendors, Xilinx and Intel, have their
own solutions. The Xilinx Runtime Library (XRT) (Xilinx, 2021)
is implemented as a combination of userspace and kernel driver
components. It supports both PCIe-based boards and MPSoC
based embedded platforms. Similarly, Xilinx SDSoc (Xilinx,
2020b) and SDAccel (Xilinx, 2020a) became publicly available
later in late 2015; the former works only on select boards of the
Zynq family of FPGAs, the latter only on selected PCIe-based
boards for OpenCL computing. Since 2020 Xilinx has introduced
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Vitis (Xilinx, 2020c) as a unified platform. Vitis Unified Software
Platform is a comprehensive development environment to
build and seamlessly deploy accelerated applications on Xilinx
platforms, including on-premises Alveo cards, FPGA-instances
in the cloud, and embedded platforms. In addition, the recent
efforts of Xilinx under the flagship Versal (Xilinx, 2020d)
is also a step toward codesign applications. Intel has the
Open Programmable Acceleration Engine (OPAE) (Enno et al.,
2020) which is the API library for programmers writing host
applications that will leverage the FPGA acceleration. Likewise,
Intel oneAPI (Intel, 2020) is an open, unified programming
model built on standards to simplify the development and
deployment of data-centric workloads across CPUs, GPUs,
FPGAs, and other accelerators.

Apart from vendor solutions, academia and the open-source
community have also attempted to simplify the integration of
applications, operating systems, and hardware acceleration. For
a comprehensive analysis, the reader is referred to the works in
Eckert et al. (2016) and King et al. (2015), which give a historical
review and summary on ideas and key concepts to include
reconfigurable computing aspects in operating systems. They
also present an overview of published and available operating
systems of the last 30 years targeting reconfigurable computing.
Similarly, the design exploration and engineering of FPGA
drivers that are portable across multiple physical interfaces
(PCIe, Ethernet, optical links) have remained a significant part
of HW/SW codesign research. The challenges come from the
variety of FPGA boards, the plethora of interfaces, and the
diverse user requirements. Fundamentally, the FPGA drivers
should allow the designer to load or reconfigure an application
bitstream and support data transfers between the FPGA
and host.

A significant engineering challenge is to consider how to
partition driver functionality between the hardware and software
components. One growing research focus is to exploit the spatial
parallelism of FPGA technology through implementing multiple
queues on FPGA drivers. A thorough analysis of system-level
drivers for FPGA is out of the scope of our white paper. Readers
interested in FPGA system-level drivers are referred to the work
in Vipin et al. (2013) and Jacobsen et al. (2015). The authors of
those papers have provided benchmarks of various mainstream
academic and vendor solutions regarding system-level drivers in
the FPGA domain.

Despite various existing OS and driver solutions, an open
problem that remains is standardization. An industry-wide
standardization would allow for faster development and better
portability, and (re)usability of FPGA applications. There is
already ongoing work in this area. Standards like the CCIX
consortium (CCIX, 2020) and the Heterogeneous System
Architecture (HSA) foundation (HSA, 2020) have already made
good progress.

The Case for ML Frameworks for FPGA Design: Machine
learning is one of the fastest growing application domains
and over the years there has been an increasing demand for
FPGA-based implementations, as the FPGA can achieve latency
and throughput and efficiency requirements through extreme
customization of the hardware design leveraging reduced

precision arithmetic, streaming dataflow implementations (as
were introduced as spatial architectures), and fine-granular
sparsity. In order to enable a broad spectrum of users with
these customizations and to reduce the significant engineering
effort, compilers and tools are needed that cater to the needs of
ML researchers and domain experts working with FPGAs. Two
main ML frameworks are making the effort to fill this vacuum:
hls4ml and FINN. Considering the aforementioned tools,
compilers, programming languages, and codesign solutions, both
hls4ml and FINN have the potential to reach a broader
scientific community. To get a better understanding of how such
a tool flow works, we consider the FINN compiler in more detail
in the following paragraphs.

The FINN compiler (Umuroglu et al., 2017) is an open-
source framework to generate spatial DPU or streaming dataflow
accelerators on FPGAs. The FINN compiler has a highly modular
structure as shown in Figure 9, which allows the user to
interactively generate a specialized architecture for a specific
DNN. The framework provides a frontend, transformation
and analysis passes, and multiple backends to explore the
design space in terms of resource and throughput constraints.
Brevitas (Alessandro et al., 2020), a PyTorch library for
quantization-aware training, is the frontend used in this work.
It enables training DNNs with weights and activations quantized
down to a few bits, then exports the trained network into the
intermediate representation (IR) used by the FINN compiler. The
transformation and analysis passes help to generate an efficient
representation of the DNN. Finally, the backend contains a code
generator that creates synthesizable accelerator descriptions,
which can be implemented as either a standalone Vivado IPI
component or integrated into various shells, including Xilinx
Alveo boards and PYNQ embedded platforms.

For further processing, the DNN model must be converted
into the IR of the FINN compiler first. The frontend stage
takes care of this by converting the PyTorch description into
the IR, called FINN-ONNX. This IR is based on ONNX (Bai
et al., 2019), an open-source interchange format that uses a
protobuf description to represent DNNs. It comes with several
standard operators and allows the user to easily create their
own operators to customize the model. The nodes represent
layers and edges carry outputs from one layer to become
inputs to another. The feature to customize the ONNX
representation is used in the framework to add application-
specific nodes and attributes. Each node is tagged with the
quantization of its inputs, parameters (weights and activations),
and outputs to enable quantization-aware optimizations and
the mapping to backend primitives optimized for quantized
computation. During the compiler flow the nodes will be
transformed into a backend-specific variants via a series of
transformation passes.

The main principle of the FINN compiler is graph

transformation and analysis passes, which change or analyze
the IR of the model. A pass is a function that takes the
IR graph as input and either (a) transforms the DNN by
looking for a certain pattern, changing the graph in a specific
manner and outputs the modified graph, or (b) analyzes the
DNN to produce metadata about its properties. To bring the
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FIGURE 9 | FINN compiler flow.

model into a representation from which code can be produced
and finally the hardware accelerator can be generated, various
transformations must be applied. The main transformations
involved are summarized below.

Although the PyTorch description of the network is mostly
quantized, it may still contain some floating-point operations
from e.g., preprocessing, channelwise scaling or batchnorm
layers. In order to generate a hardware accelerator from the
model, these floating-point operations must be absorbed into
multi-level thresholds, so that a functionally identical network
of integer operations is created. The transformation to achieve
this is called streamlining, as described by Umuroglu and
Jahre (Umuroglu and Jahre, 2017). During streamlining, floating-
point operations are moved next to each other, collapsed
into a single operation, and absorbed into succeeding multi-
thresholding nodes.

Next, high-level operations in the graph are lowered to
simpler implementations that exist in the FINN HLS-based
hardware library. For instance, convolutions will be lowered to
a sliding window node followed by a matrix-vector node, while
pooling operations will be implemented by a sliding window
followed by an aggregation operator. The resulting graph now
consists of layers that can be converted to hardware building
block equivalents. Each node corresponds to a Vivado HLS C++
function call, from which an IP block per layer can be generated
using Vivado. The resources utilized by each hardware building
block can be controlled through specific attributes passed from
FINN to Vivado. For example, multiplications can be performed
with LUTs or DSP blocks, and parameters can be stored in
distributed, Block, or Ultra RAM.

Finally, the folding process assigns compute resources to each
layer to obtain the desired throughput with a balanced pipeline
by fine-tuning their degree of parallelism. To enable per-layer
specialization without reconfiguration and minimize latency,
FINN creates dedicated per-layer hardware interconnected with
FIFO channels, thus the outermost loop across L layers is always
fully pipelined. Once the folding is specified, resource estimates
can be produced for each node. There are several ways to estimate
the resources. Even before IP blocks are generated from the HLS
layers, an estimate of the resources per layer can be made by
using analytical models based on the concepts from the FINN-
R paper (Blott et al., 2018). Estimations can also be extracted

from Vivado HLS after IP generation, though these results are
still estimations that may differ from the resource usage of the
final implementation due to synthesis optimizations.

The Backend is responsible for consuming the IR graph
and backend-specific information to create a deployment
package, also implemented using the transformation concept.
To get the inference accelerator, between the layers FIFOs
are inserted, which can be sized automatically by the FINN
compiler. Afterwards, the single IP blocks are stitched together
and synthesized. The stitched IP can be manually integrated
into a system, or inserted into an appropriate shell for the
target platform. If the target platform is an Alveo card, the
design is exported as a Vivado Design Checkpoint (DCP),
followed by generation of Xilinx Vitis (Kathail, 2020) object files
and linking.

Summary of Hardware/Software Codesign and FPGA-Based
Systems: In summary, CPUs are the most general solution for
CNN inference but high in power. GPUs and DPUs offer highest
performance, whereby GPU are more expensive in regards to
energy cost. FPGAs offer several tradeoffs that may well fit rapidly
moving application domains. FPGAs can adopt any precision
and numerical representation, which provides utmost flexibility
and leverages optimization with quantization to the maximum,
whereas hardened approaches need to default to the next higher
supported precision where the reduced precision variable can be
embedded. Furthermore, through the spatial dataflow approach,
much lower latency can be achieved. However, the complexity
of programming FPGAs limits their deployment. Tools such
as hls4ml and FINN are frameworks specifically created for
the ML domain where they automate the process of hardware
generation for the end-user thus hiding the associated design
complexity of FPGAs and enabling them for the previously
discussed end applications.

4.5. Beyond-CMOS Neuromorphic
Hardware
With rapidly growing machine learning applications comes
the acute need for their efficient hardware implementations.
Most of the efforts are focused on digital CMOS technology,
such as implementations based on general-purpose TPUs/GPUs,
FPGAs, and more specialized ML hardware accelerators. The
steady improvements in such hardware platforms’ performance
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and energy efficiency over the past decade are attributed to
the use of very advanced, sub-10-nm CMOS processes and
holistic optimization of circuits, architectures, and algorithms.
It includes, for example, taking advantage of aggressive voltage
supply scaling (Moons et al., 2017), very deep pipelines and
extensive data reuse in architectures (Chen et al., 2017),
and lowering the precision of weights and activations of the
algorithms (Simons and Lee, 2019). As a result, very compact
state-of-the-art neural networks, such as MobileNet based on
3.4M parameters and 300M multiply-and-add operations per
inference (Sandler et al., 2018), can now be fitted entirely on a
single chip. However, on all these fronts, advances are saturating
and cannot rely on the faltering Moore’s law.

On the other hand, further progress would be essential
because ML algorithms are getting increasingly more complex.
For example, transformer networks (Vaswani et al., 2017), the
state-of-the-art approach for many ML tasks today (Vaswani
et al., 2017; Vinyals et al., 2019; Dosovitskiy et al., 2020), could
have hundreds of billions of parameters and perform hundreds of
trillions of operations per inference. Moreover, the transformer’s
functional performance typically improves with the model size
(Brown et al., 2020; Rajbhandari et al., 2020). Training such
models requires enormous, data-center-scale (e.g., kiloTPU-
year) resources while performing inference on resource-
constrained edge devices would be extremely challenging.

The opportunities for building more efficient hardware may
come from biological neural networks. Indeed, it is believed
that the human brain, with its >1000× more synapses than
the weights in the largest transformer network, is extremely
energy efficient (Hasler and Marr, 2013), which serves as
a general motivation for developing neuromorphic hardware
(Mead, 1990). There is a long history of CMOS neuromorphic
circuits (Indiveri et al., 2011). However, unleashing the full
potential of neuromorphic computing might require novel,
beyond-CMOS device and circuit technologies (Berggren et al.,
2020) that allow for more efficient implementations of various
functionalities of biological neural systems.

In this section, the most prominent emerging technology
proposals, including those based on emerging dense analog
memory device circuits, are grouped according to the targeted
low-level neuromorphic functionality - see, e.g., reviews in Burr
et al. (2017), Bavandpour et al. (2018), Yang et al. (2013), and
Yu (2018) and original work utilizing volatile (Ohno et al., 2011;
Pickett et al., 2013; Chu et al., 2014; Sheridan et al., 2017; Wang
et al., 2017, 2018c; Adda et al., 2018; Lashkare et al., 2018; Zhang
et al., 2018b; Cai et al., 2019a; Yeon et al., 2020) and nonvolatile
(Mahmoodi et al., 2009, 2019; Alibart et al., 2012; Govoreanu
et al., 2013; Prezioso et al., 2015, 2016, 2018; Li et al., 2016a;
Adam et al., 2017; Pedretti et al., 2017; Bayat et al., 2018; Hu
et al., 2018b; Wang et al., 2018c; Kim et al., 2019; Cai et al., 2020a;
Lin et al., 2020b; Liu et al., 2020b; Yao et al., 2020a) memristors,
phase change memories (PCM) (Kuzum et al., 2011; Burr et al.,
2015; Tuma et al., 2016; Ambrogio et al., 2018; Ríos et al., 2019;
Joshi et al., 2020; Karunaratne et al., 2020), and nonvolatile NOR
(Bayat et al., 2015; Guo et al., 2017a,b; Mahmoodi et al., 2019),
and NAND (Bavandpour et al., 2019, 2020; Lee et al., 2019),
and organic volatile (Fuller et al., 2019) floating gate memories,

as well as multiferroic and spintronic (Sengupta et al., 2016; Ni
et al., 2018; Ostwal et al., 2018; Romera et al., 2018; Grollier et al.,
2020), photonic (Bruiner et al., 2013; Vandoorne et al., 2014; Tait
et al., 2016; Buckley et al., 2017; Shen et al., 2017; Feldmann
et al., 2019; Hamerly et al., 2019; Hamley et al., 2019; Lin et al.,
2019; Ríos et al., 2019; Goi et al., 2020; Shasti et al., 2021), and
superconductor (Buckley et al., 2017; Segall et al., 2017; Rowlands
et al., 2021) circuits. More discussion is devoted to analog vector-
by-matrix multiplication circuits in the following subsection
because of their immediate value for today’s state-of-the-art
algorithms. More biologically-realistic proposals described in
the subsequent sections are less emphasized because they target
algorithms with inferior performance. The least mature though
very intriguing quantum neuromorphic computing (Markovich
and Grolier, 2020; Yamamoto et al., 2020) is not discussed in this
brief review.

Analog Vector-By-Matrix Multiplication: The emergence of
dense analog-grade nonvolatile memories in the past two decades
renewed interest in analog-circuit implementations of vector-
by-matrix multiplication (VMMs) (Widrow and Angel, 1962;
Mead, 1990; Holmes et al., 1993; Chawla et al., 2004; Alibart
et al., 2012; Bayat et al., 2015; Guo et al., 2017b), which is the
most common and frequently performed operation of any neural
network in training or inference (Hertz et al., 1991; Gerstner and
Kistler, 2002). In the simplest case, such a circuit is comprised
of a matrix of memory cells that serve as configurable resistors
for encoding the matrix (synaptic) weights and peripheral sense
amplifiers playing the role of neurons (Figure 10). The input
vector is encoded as voltages applied to rows of the memory
matrix so that the currents flowing into virtually grounded
columns correspond to VMM results. Because addition and
multiplication are performed on the physical level, via Kirchhoff’s
and Ohm’s laws, respectively, such an approach can be extremely
fast and energy-efficient, provided that memory devices are dense
and their conductances are adjustable (i.e., multi-state). The
energy efficiency in part comes from performing “in-memory"
computing that reduces the amount of data (corresponding to
the synaptic weights) that are moved across or in-and-out of the
chip during computation. Such communication overhead could
dominate the energy consumption in the most advanced digital
CMOS implementations.

The general challenge toward practical adoption of such
circuits, especially when using the most prospective emerging
memory technologies, is variations in I-V characteristics, e.g.,
in the switching voltages applied to change the memory state.
In light of this challenge, the most straightforward application
is ex-situ trained inference accelerators for the earlier firing-
rate neural networks (Bavandpour et al., 2018), i.e., the so-called
second generation of artificial neural networks (ANNs) with
graded-response neurons. In such applications, memory devices
are updated infrequently, only when new inference functionality
should be programmed. Thus, crosspoint devices’ conductances
can be tuned with slower, more tolerant to device variations
write schemes. For example, after the weights have been found in
the software, memory cells are programmed, one by one, using
feedback write-verify algorithms that can adapt to the unique
I-V characteristics of each device (Alibart et al., 2012). For the
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FIGURE 10 | Analog vector-by-matrix multiplication (VMM) in a crossbar

circuit with adjustable crosspoint devices. For clarity, the output signal is

shown for just one column of the array, while sense amplifier circuitry is not

shown. Note that other VMM designs, e.g., utilizing duration of applied voltage

pulses, rather than their amplitudes, for encoding inputs/outputs, are now

being actively explored see, e.g., their brief review in Bavandpour et al. (2018).

same reason, the switching endurance, i.e., the number of times
the memory devices can be reliably programmed, and the write
speed/energy are less critical. Additionally, VMM operations in
the inference of many neural networks could be performed with
moderate, less than 8-bit precision, without incurring accuracy
loss (Yang and Sze, 2019), which further relaxes requirements for
analog properties and permits more I-V non-idealities and noise.

The most advanced neuromorphic inference circuits
have been demonstrated with more mature floating-gate
transistor memory circuits. Up until recently, such circuits
were implemented primarily with “synaptic transistors" (Diorio
et al., 1996), which may be fabricated using the standard CMOS
technology, and several sophisticated, efficient systems were
demonstrated (Chawla et al., 2004; Hasler and Marr, 2013;
George et al., 2016). However, these devices have relatively
large areas (>103 F2, where F is the minimum feature size),
leading to higher interconnect capacitance and hence larger
time delays. More recent work focused on implementing
mixed-signal networks with much denser (∼40 F2) commercial
NOR-flash memory arrays redesigned for analog computing
applications (Bayat et al., 2015; Guo et al., 2017b). For example,
a prototype of a 100k+-cell two-layer perceptron network
fabricated in a 180-nm process with modified NOR-flash
memory technology was reported in Guo et al. (2017a).
It performed reliably, with negligible long-term drift and
temperature sensitivity, and reproducible classification of the
MNIST benchmark set images with ∼ 95% fidelity and sub-1-µs
time delay and sub-20-nJ energy consumption per pattern. The
energy-delay product was six orders of magnitude better than
the best (at that time) 28-nm digital implementation performing
the same task with a similar fidelity (Guo et al., 2017a).

Recent theoretical studies showed that neuromorphic
inference circuits could be also implemented with much denser
3D-NAND flash memories (Bavandpour et al., 2019, 2020;
Lee et al., 2019), projected to scale eventually to 10 terabits
per square inch density. In the long term, the most promising

are perhaps circuits based on metal-oxide resistive switching
random access (ReRAM for short, which are also called metal-
oxide memristors) (Yang et al., 2013; Yu, 2018), especially
their passively integrated (0T1R) technology variety (Kim
et al., 2019). Indeed, due to the ionic switching mechanism,
ReRAM devices with dimensions below 10 nm still retain
excellent analog properties and year-scale retention (Govoreanu
et al., 2013). Furthermore, a low-temperature fabrication
budget allows monolithic vertical integration of multiple
ReRAM crossbar circuits, further increasing effective density
(Adam et al., 2017). There has been rapid progress in scaling
up the complexity of ReRAM-based neuromorphic circuit
demonstrations over the past several years (Prezioso et al.,
2015; Bayat et al., 2018; Hu et al., 2018b; Kim et al., 2019; Lin
et al., 2020b; Liu et al., 2020b; Yao et al., 2020a). However, the
ReRAM technology is still in much need of improvement. In
addition to high device variations, another remaining issue is
high write currents and operating conductances, which must
be decreased by at least one order of magnitude to reduce
the significant overhead of peripheral circuits (Kim et al.,
2019).

The device requirements for training hardware accelerators
are different and much more stringent. For instance, long
retention is not required because weights are frequently
updated. That allows using volatile memories in analog VMM
circuits, such as interfacial memristors based on electron
trapping/detrapping switching (Chu et al., 2014; Sheridan
et al., 2017; Cai et al., 2019a) and solid-state-electrolyte
memories (Fuller et al., 2019; Berggren et al., 2020; Yeon et al.,
2020), or even capacitor-based memories controlling current
via crosspoint transistors (Ambrogio et al., 2018). However,
the toughest challenge is much higher computing and weight
precision required for training operation and the need for
efficient schemes for weight updates, which in turn necessitate
drastically tighter device variations. The additional related
requirement is that the change in device conductance upon
applying the write pulse should not depend on its current state
(the so-called linearity of update property). Otherwise, accurate
conductance adjustment would require sending a unique write
pulse based on the current device state, which would be hardly
compatible with fast (in parallel) weight update.

Phase change memories have also been investigated as
candidates for variable resistors in analog VMM circuits (Burr
et al., 2015; Joshi et al., 2020), though their main drawback
is significant drift in the conductive state over time. High
write endurance, high density (with vertical 3D-NAND-like
integrated structure), and long retention are demonstrated in 1T
Ferroelectric RAM devices. There is much excitement about such
devices’ applications in training and inference accelerators (Ni
et al., 2018), though their analog properties are probably inferior
to ReRAM. The significant drawbacks of magnetic devices, such
as magnetic tunnel junction memories, are smaller on/off current
ratios, insufficient for practical VMM circuits, and poor analog
properties for scaled-down devices (Grollier et al., 2020).

The potentials of using light for implementing fast and large-
fanout interconnect and linear computations, such as multiply-
and-add operation, have motivated photonic neuromorphic
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computing research (Hamley et al., 2019; Berggren et al., 2020;
Goi et al., 2020; Shasti et al., 2021). Different implementation
flavors, e.g., with fixed (Lin et al., 2019) and programmable (Tait
et al., 2016; Shen et al., 2017; Hamerly et al., 2019; Ríos et al.,
2019) functionalities, have been recently suggested in the context
of modern neural networks. Specifically, Lin et al. (2019) reports
a system of multiple 3D-printed optical layers, each being a
mesh of regions (neurons) with specifically chosen transmission-
reflection properties, which can perform pattern classification
inference similar to the convolutional neural networks. By
sending a coherent light with amplitude-encoded input, a useful
computation is performed at the speed of light. Specifically, the
light diffracts and interferes when passing through the optical
system and is ultimately steered to the specific region at the
output layer corresponding to the pattern class. Ríos et al. (2019),
Hamerly et al. (2019), Shen et al. (2017), and Tait et al. (2016)
report optical neuromorphic systems with configurable weights.
The inputs are encoded in the light’s energy, and the weights
are encoded by optical attenuation in PCM devices in Ríos et al.
(2019) so that a product is computed by passing the light via
PCM device. Tait et al. (2016) proposes encoding inputs with
light amplitude and uses specific frequency for different VMM
inputs. The light from inputs is combined and passed to the
frequency selective weight banks based on a microring resonator
(MRR) that features metal heaters to perform multiplication.
In particular, the MRR coupling (i.e., weight) is controlled
via heating by adjusting currents supplied to each MRR. In
these reconfigurable implementations, the product accumulation
(i.e., the summation operations in the VMM) is performed by
integrating the light-induced charges on the photodetector. A
very aggressive time-divisionmultiplexing scheme for calculating
VMM in which both weights and inputs are encoded in the
coherent light’s amplitude is proposed in Hamerly et al. (2019).
At one step of such scheme, the input light is fanned out into n
channels and combined with the light-encoded n weights using
a beam splitter and then sent to n homodyne photodetectors
to compute n products in parallel. All-optical feed-forward
inference based onMach-Zehnder interferometer meshes utilizes
single-valued decomposition for the weight matrix (Shen et al.,
2017). Unitary matrix transformations are implemented with
optical beam splitters and phase shifters, while the diagonal
matrix is implemented with optical attenuators.

In principle, sub-aJ energy and sub-ps latency for a single
multiply-and-add operation might be possible with optical
computing (Hamley et al., 2019). However, the main challenge
remains much large dimensions of the optical components
and the very high I/O overhead of converting to and from
optical domains (Hamley et al., 2019; Berggren et al., 2020;
Shasti et al., 2021). The designs that rely on conversion to
the electrical domain would be especially affected by poor
integration density of optical devices due to larger electrical
communication overheads, which were shown to overwhelm
system-level performance of (much denser) ReRAM based
circuits (Bavandpour et al., 2018). Optical systems would
ultimately benefit from very wide (≫10,000) dot-products and/or

utilizing deep time-division multiplexing to amortize the I/O
overhead. However, the possible issues of nonlinearities in charge
integration and utility of such wide dot-product computations
remain unclear (Hamley et al., 2019).

Stochastic Vector-by-Matrix Multiplication: Computations
performed by the brain are inherently stochastic, in that, e.g.,
substantially different neural responses are observed to the
repeatable presentation of identical stimuli (Rolls and Deco,
2010). Such noisy operation is mimicked by probabilistic neural
networks, such as Boltzmann machines (Hinton and Sejnowski,
1983) and deep belief neural networks (Hinton, 2009). In the
simplest case, such a network is comprised of binary neurons that
compute stochastic dot products, i.e., probabilistically generate
output according to their pre-activation (dot-product) values.

The stochastic functionality can be realized at either the
synapse or the neuron side. In the latter, more straightforward
scenario, the neuron first computes a dot-product of its inputs
and corresponding weights deterministically. The result is
then passed to some “probabilistic" activation function, e.g.,
used as an argument in the sigmoid probability function, to
determine the probability of generating high output. Because
of the typically large (> 100) ratio of synapses to neurons,
the efficient deterministic dot-product implementations, e.g.,
with the already discussed analog VMM circuits, is of primary
importance for realizing high-performance probabilistic neural
network hardware. Still, earlier work showed that even the
simplest, deterministic neurons may incur substantial overhead,
e.g., occupy up to 30% of the area and consume up to 40%
of energy for some neural network models (Bavandpour et al.,
2018). Hence neuromorphic hardware would also benefit from
the efficient realization of stochastic neurons.

Emerging devices can be broadly employed in two ways to
achieve stochastic functionality, namely by using either dynamic
or static I-V characteristics of memory devices. Specifically,
the former approach is to utilize intrinsically stochastic
switching between memory states in emerging memory devices.
For example, in MTJ memories, thermal fluctuation causes
stochastic transition between the low resistance parallel and high
resistance antiparallel states so that the probability of the final
memory state upon switching could be controlled by the spin-
torque current (Grollier et al., 2020). The melt-quench-induced
reconfiguration of the atomic structure is intrinsically stochastic
in phase-change memories (PCMs) (Tuma et al., 2016). These
phenomena were suggested for implementing MTJ (Ostwal et al.,
2018) and PCM (Tuma et al., 2016) stochastic neurons. The
second approach is to utilize intrinsic and extrinsic current
fluctuations in memory devices, e.g., random telegraph (Cai
et al., 2020a) and thermal noise (Mahmoodi et al., 2009)
in ReRAM devices, or shot-noise in nanoscale floating gate
transistors (Mahmoodi et al., 2009, 2019). In such an approach,
the noisy current flowing into the neuron is compared against
a reference value, e.g., using a simple latch, to implement a
probabilistic activation function (Mahmoodi et al., 2019).

The primary concern for the former approach is the limited
endurance of many memories and the drift in the stochastic

Frontiers in Big Data | www.frontiersin.org 37 April 2022 | Volume 5 | Article 787421

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Deiana et al. Fast Machine Learning in Science

switching properties upon repeated switching. An additional
drawback is a necessity for the co-integration ofmultiplememory
device technologies for scalable stochastic dot-product circuits,
e.g., integrating ReRAM-based artificial synapses and MTJ-
based neurons. On the other hand, analog circuits based on
ReRAM devices only (Figure 10), though operating at a much
lower signal-to-noise ratio (SNR), can be utilized to implement
stochastic VMM of the second approach. Furthermore, adjusting
read voltages in such a circuit allows for controlling SNR.
Hence, the control of effective temperature, i.e., the slope of
sigmoid probability function, enables efficient implementation of
stochastic annealing in Boltzmannmachines during runtime. The
second approach’s possible downside is slower operation because
of lower read currents (which can be potentially addressed by
utilizing external noise instead Mahmoodi et al., 2019). Finally,
the impact of noise quality on functional performance is another
common concern. This issue has not been systematically studied
yet, though Gaussian-like thermal or shot noise should be more
advantageous for truly random operation.

Spiking Neuron and Synaptic Plasticity: Despite much recent
progress in algorithms (Neftci et al., 2019; Tavanaei et al.,
2019), the most biologically plausible, spiking neural networks
(SNNs) (Gerstner and Kistler, 2002) are still inferior in the
functional performance to simpler ANNs. If simpler ANNs
would remain superior, the work of efficient SNN hardware could
still be justified by the need to efficiently interface to the brain
and/or model it, which in turn could lead to the development of
higher-cognition artificial intelligence algorithms. An additional
intriguing feature of SNNs is local weight update rules, requiring
only information from pre- and post-synaptic neurons that
could enable large-scale neuromorphic hardware with real-time
training capabilities (Thakur et al., 2018).

In the simplest SNN models, the information is encoded in
spike-time correlations (Gerstner and Kistler, 2002), while the
network function is defined by the synaptic weights, which are
adjusted based on the relative timing of spikes that are passed
via synapses. In addition to VMM, the essential operations in
SNNs are leaky-integrate-and-fire (LIF) functions performed
by neurons and various types of synaptic plasticity, such as
short-term plasticity (STP) and long-term potentiation (LTP),
and spike-timing-dependent-plasticity (STDP) (Gerstner and
Kistler, 2002). LIF neurons mimic the dynamic processes in the
neuronal membrane, while synaptic plasticities mimic learning
and memory mechanisms in biological networks. For example,
STP is a temporary change in the synaptic strength implementing
a short-term memory. Without immediate reinforcement of
synaptic weight adjustment, the memory would be lost, i.e., the
synaptic weight would relax to the original equilibrium state. On
the other hand, the frequently repeated spiking stimulus causes
long-term memory, e.g., permanent potentiation via the LTP
mechanism. STDP is a time-dependent specialization of Hebbian
learning. Its specific goal is to strengthen the synaptic efficiency
when pre- and post- synaptic spikes happen in the expected
causal temporal order and weaken it otherwise.

A compact implementation of LIF neurons with biological,
ms-scale integration times using conventional circuit technology
is challenging because of the large capacitors that are required.

Leaky integration circuits utilizing volatile memristors (e.g.,
based on filamentary Zhang et al., 2018b, interfacial Lashkare
et al., 2018, and Mott insulator Adda et al., 2018 switching
mechanisms) have been suggested to address this problem.
In such implementations, the integrated current is encoded
with a conductive state of the volatile memory device. Neuron
spiking functionality was demonstrated with threshold-switching
(volatile) memory devices that feature S-type negative differential
resistance (NDR) I-V characteristics (Pickett et al., 2013). This
approach’s general idea is similar to the oscillator circuits based
on S-type (NDR) device connected to a resistor-capacitor circuit
(Kesim, 2019). LIF neurons based on spin-torque magnetic
memories were simulated in Sengupta et al. (2016). In such
a neuron, spin-torque oscillations are employed to generate
spikes, while incremental magnetization and its relaxation mimic
integration and leakage, respectively.

STP to LTP transition has been emulated with solid-state-
electrolyte devices see, e.g., original work in Ohno et al. (2011)
and more recent work on “diffusive" memristors (Wang et al.,
2017). Specifically, the short and infrequent write pulses result
in the formation of thin filaments, which are unstable and
quickly dissolve, representing a short memory. However, a
thicker and more stable filament can be formed by applying
repeated and/or longer write pulses, thus mimicking transition
to the LTP. Different STDP window implementations, e.g., using
PCM (Kuzum et al., 2011) or metal-oxide ReRAM (Prezioso
et al., 2016) devices, have been suggested by carefully selecting
the shape of pre and post-synaptic write voltage pulses—see a
comprehensive review of the emulated synaptic plasticity with
memristive devices in Serrano-Gotarredona et al. (2013) and
Saighi et al. (2015).

Several small-scale spiking neuromorphic systems based on
emerging device technologies were demonstrated, including
coincidence detection via STDP mechanism based on metal-
oxide memristors (Pedretti et al., 2017; Prezioso et al., 2018)
and temporal data classification with diffusive memristors (Wang
et al., 2018c). However, the overall progress in such advanced
hardware has been much slower compared to simpler ANNs
inference accelerators. The main reason is more demanding
functionality from emerging devices in such applications and
hence the more severe impact of device variations on the SNN
operation and performance. For example, SNNs rely on fixed-
magnitude spikes to update the conductance of multiple devices
in parallel. Because of that, change in the conductances could
vary drastically even with minor variations in I-V ’s switching
voltages, which in turn leads to very significant variations in
STDP characteristics (Prezioso et al., 2018). On the other hand,
as already mentioned above, the implementation of simpler ex-
situ trained ANNs is much less challenging because the write
amplitude voltages in such networks can be adjusted uniquely
for each device based on the feedback information during
conductance tuning (Alibart et al., 2012).

Superconductor circuits, e.g., based on rapid single flux
quantum (RSFQ) variety (Likharev and Semenov, 1991),
are naturally suited for spiking circuits due to information
encoding in SFQ voltage pulses. For example, Josephson
Junction spiking neurons operating at up to 50GHz range
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have been demonstrated in Segall et al. (2017). The historical
challenges of such an approach include inferior fabrication
technology (which may finally change given the enormous
investments in superconductor quantum computing), the low-
temperature operation that limits its applications, and the
lack of efficient analog memory circuits (Likharev, 2012).
The photonic spiking neural networks (e.g., Feldmann et al.,
2019) and hybrid superconductor/optoelectronic neuromorphic
circuits (Buckley et al., 2017) share the same challenges
of the already discussed photonic neuromorphic inference
approaches.

Reservoir Computing: Due to intrinsic memory properties,
recurrent neural networks, such as Google Neural Machine
Translation model, are especially suitable for processing
sequential or temporal data. Reservoir computing (RC)
networks are a special type of efficiently learning recurrent
networks (Lukǒevičius and Jaeger, 2009), that were motivated by
cortical information processing (Maass et al., 2004). Among its
variants are liquid state machines (Maass et al., 2002), which is
a spiking RC network, and echo state networks (Jaeger, 2001),
an RC based on a very sparse recurrent network. The main
component in RC networks is a reservoir, which is a nonlinear
recurrent network that maps inputs into a higher-dimensional
spatio-temporal representation and has the property of a fading
memory of the previous inputs and network states. Another
component is a readout layer, which maps the intermediate state
to the outputs. All connections in the reservoir are fixed and only
weights in the readout layer are trainable. Because of that and
sparse intermediate representation, faster and online algorithms
can be employed for training such networks, which is a primary
strength of this approach.

Though both readout and the reservoir can also be realized
with the discussed analog VMMcircuits, intriguing opportunities
for implementing the reservoir are presented by nonlinear
physical phenomena in superconductor, magnetic, and photonic
devices (Tanaka et al., 2019). For example, spoken vowel
recognition was demonstrated with RC in which the reservoir
was implemented with four coupled MTJ-based spin-torque
oscillators (STO) (Romera et al., 2018). In such a demo, the
temporal input corresponding to spoken vowels is first converted
to the frequency domain, which is in turn mapped to the
corresponding DC bias currents that are applied to the MTJ
devices. The induced voltage on the STO devices is used as
an output of the reservoir. The reservoir utilizes the nonlinear
dependence of the frequency of STOs on the DC current and
the history-dependent transient motions of the MTJ’s free layer
spins spin.

Various photonic reservoirs have been suggested (Shasti
et al., 2021), e.g., utilizing transient properties of optical
systems with time-delayed feedback (Bruiner et al., 2013), or
relying on superimposing lights that passively circulates via
waveguides, splitters and combiners, and nonlinear conversion
to the electronic domain (Vandoorne et al., 2014), to achieve
high-dimensional response. The dynamics in the superconductor
circuits are recently studied for efficient and extremely fast
reservoir implementation (Rowlands et al., 2021). Specifically,
the proposed reservoir is based on a Josephson transmission line

(JTL) formed by a chain of biased JJs. An input pulse from one
end of the JTL causes a rapid cascade of junction phase slips that
propagate SFQ pulse to the other end. Because JJs modulate each
others’ currents, a complex dynamical state is achieved.

There are several general concerns with RC computing
approaches. On the algorithmic level, RC is inferior
in performance to state-of-the-art approaches and it is
unclear whether without further algorithm improvements
such a handicap can be outweighed by the advantages of
online training. The main concern for various hardware
implementations is again related to the device variations, e.g.,
whether the hardware would be able to produce repeatable
results when applying the same input. An additional
concern for magnetic devices is the limited coupling
between devices which could impact the effectiveness of
the reservoir.

Hyperdimensional Computing/Associative Memory:
Hyperdimensional computing (Kanerva, 2009) circuits have
been recently demonstrated with ReRAM (Li et al., 2016a)
and PCM (Karunaratne et al., 2020) devices. The low-level
operation in hyperdimensional computing is closely related
to that of associative or content addressable memory (Hertz
et al., 1991). Specifically, at the core of such an approach is an
associative memory array circuit that outputs the closest, in a
Hamming distance sense, memory row entry to a binary input
vector serving as a search key. Assuming symmetric binary
representation, with −1 and +1 encoding, Hamming distance
is linearly related to a dot product, i.e., equal to output vector
length minus dot product between the input vector and the
stored memory row values. Therefore, the critical functionality
in hyperdimensional computing is again a VMM operation.
After the VMM operation has been completed, its results are
passed to the winner-take-all circuit (Hertz et al., 1991) (which
is a harder version of a softmax function; Bridle, 1989) that
determines the element with the smallest Hamming distance
while discarding all other outputs. The additional simplification
is that both input and weights in VMM are binary.

In principle, binary VMM can be more efficiently
implemented in hardware than its fully analog version.
Similar to binary neural networks (Simons and Lee, 2019),
the apparent tradeoff is a worse functional performance of
hyperdimensional computing. Another essential feature of
hyperdimensional computing is the suitability for fast “one-shot"
or incremental learning (Kanerva, 2009) though at the cost
of having a much more redundant memory array. Note that
fast “one-shot” learning is not unique to hyperdimensional
computing. For example, Hebbian learning and its many variants
used in training associative neural networks have recursive form
and are naturally incremental in that the weights can be modified
only based on current weight values and the new pattern stored
in the network (Hertz et al., 1991).

Concluding Remarks: Many emerging devices and
circuit technologies are currently being explored for
neuromorphic hardware implementations. Neuromorphic
inference accelerators utilizing analog in-memory computing
based on floating gate memories are perhaps the closest to
widespread adoption, given the maturity of such technology,
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the practicality of its applications, and competitive performance
as compared to conventional (digital CMOS) circuit
implementations. Comparing the performance prospects
of other neuromorphic approaches is not straightforward
because many proposals target algorithms with inferior
functional performance, especially those closely mimicking the
brain’s operation. Baring a substantial breakthrough in ML
algorithms or the emergence of new applications that could
benefit from high-performance low-accuracy neuromorphic
hardware, the inferior functional performance may limit
the practicality of other approaches. The main challenge,
much more so for advanced neuromorphic computing
concepts, remains significant variations in the operation of
emerging devices.

5. OUTLOOK

This report has laid out exciting applications of fast ML to
enable scientific discovery across a number of domains. This is
a rapidly developing area with many exciting new studies and
results appearing often. However, this is a relatively young area
rich with potential and a number of open challenges across a
number of fields. Beyond what has been laid out in the report, we
hope that the discussion of scientific use-cases and their overlaps
will provide readers with the inspiration to entertain and pursue
additional applications.

In Section 4, we provided an overview of techniques for
developing powerful ML algorithms that need to be operated in
high throughput and low latency environments. This includes
both system design and training as well as efficient deployment
and implementation of those ML models. Implementation in
hardware is discussed under two main categories—current
conventional CMOS and more speculative beyond CMOS
technologies. In the conventional CMOS case, in light of the
end of Moore’s Law, the recent emphasis has been focused on
advanced hardware architectures designed for ML. We gave an
overview of popular and emerging hardware architectures and
their strengths and shortcomings. A key area of importance
for the multitude of hardware is their codesign of a given ML
algorithm for specific hardware including the architecture and
programmability of that algorithm. An example of a particularly
relevant and important hardware platform is for FPGAs and that
is the use-case discussed in Section 4.4. Finally, we concluded
with an overview of beyond CMOS technologies which offer
exciting and ultra-efficient technologies on which we can
implement ML models. While these technologies are speculative,
they offer potential orders of magnitude improvement over
conventional technologies.

Both ML training and deployment techniques and computer
architectures are extremely rapidly moving fields with new
works appearing at a pace difficult to keep up with, even
for this report. While new methods are being introduced
continuously in both spaces, it is particularly important to
understand the codesign of new algorithms for different
hardware and the ease of use of the tool flows for deploying
those algorithms. Innovations here will allow rapid and broad

adoption of powerful new ML hardware. In the case of
beyond CMOS technologies, these practical considerations are
important as well as considering the maturity of the technology,
integration into computing architectures, and how to program
such devices.

We look forward to revisiting these topics in the near future
to see how quickly advances may come in applications, ML
techniques, and hardware platforms—and most importantly
their confluence to enable paradigm-shifting breakthroughs
in science.
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