
ORIGINAL RESEARCH
published: 25 March 2022

doi: 10.3389/fdata.2022.789962

Frontiers in Big Data | www.frontiersin.org 1 March 2022 | Volume 5 | Article 789962

Edited by:

Nuno Pombo,

University of Beira Interior, Portugal

Reviewed by:

Virginie Felizardo,

University of Beira Interior, Portugal

Leonice Maria Reis De Souza Pereira,

University of Beira Interior, Portugal

*Correspondence:

David M. Steinberg

dms@tauex.tau.ac.il

Specialty section:

This article was submitted to

Medicine and Public Health,

a section of the journal

Frontiers in Big Data

Received: 05 October 2021

Accepted: 24 January 2022

Published: 25 March 2022

Citation:

Shapira G, Marcus-Kalish M,

Amsalem O, Van Geit W, Segev I and

Steinberg DM (2022) Statistical

Emulation of Neural Simulators:

Application to Neocortical L2/3 Large

Basket Cells.

Front. Big Data 5:789962.

doi: 10.3389/fdata.2022.789962

Statistical Emulation of Neural
Simulators: Application to
Neocortical L2/3 Large Basket Cells

Gilad Shapira 1, Mira Marcus-Kalish 1, Oren Amsalem 2, Werner Van Geit 3, Idan Segev 4 and

David M. Steinberg 1*

1Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel, 2Division of Endocrinology, Beth Israel

Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States, 3 Blue Brain Project,

École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland, 4 The Edmond and Lily Safra

Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Many scientific systems are studied using computer codes that simulate the phenomena

of interest. Computer simulation enables scientists to study a broad range of possible

conditions, generating large quantities of data at a faster rate than the laboratory.

Computer models are widespread in neuroscience, where they are used to mimic brain

function at different levels. These models offer a variety of new possibilities for the

neuroscientist, but also numerous challenges, such as: where to sample the input space

for the simulator, how to make sense of the data that is generated, and how to estimate

unknown parameters in themodel. Statistical emulation can be a valuable complement to

simulator-based research. Emulators are able to mimic the simulator, often with a much

smaller computational burden and they are especially valuable for parameter estimation,

which may require many simulator evaluations. This work compares different statistical

models that address these challenges, and applies them to simulations of neocortical

L2/3 large basket cells, created and run with the NEURON simulator in the context

of the European Human Brain Project. The novelty of our approach is the use of fast

empirical emulators, which have the ability to accelerate the optimization process for the

simulator and to identify which inputs (in this case, different membrane ion channels) are

most influential in affecting simulated features. These contributions are complementary,

as knowledge of the important features can further improve the optimization process.

Subsequent research, conducted after the process is completed, will gain efficiency by

focusing on these inputs.

Keywords: emulator, Gaussian process, random forest, in silico experiment, neural network, NEURON simulator

INTRODUCTION

Many systems in the physical, biological, and engineering sciences are now studied by running
computer codes that simulate generation of data, mathematically mimicking the natural
phenomenon. There are many reasons why computer simulation may be the preferred platform
for investigation. Some systems cannot be studied by traditional laboratory experiments, perhaps
due to the high costs of the laboratory experiment, the limited availability of experimental samples,
or because laboratory experimentation of the system is simply infeasible. Simulation experiments

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2022.789962
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2022.789962&domain=pdf&date_stamp=2022-03-25
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dms@tauex.tau.ac.il
https://doi.org/10.3389/fdata.2022.789962
https://www.frontiersin.org/articles/10.3389/fdata.2022.789962/full

Shapira et al. Statistical Emulation of Neural Simulators

(known in the life sciences as in silico experiments and
in statistical parlance as computer experiments) can explore
behavior over a variety of input settings.

In silico experiments present new possibilities (and challenges)
when compared to traditional laboratory experiments, but there
are also many similarities: what are the factors of the experiment,
which will serve as control factors at constant levels and which
will be varied and investigated, what combinations of factor levels
should be used in the experiment, and more. This work will
focus on new features that arise when the laboratory is replaced
by a computer as the main experimental tool, and especially on
the new challenges these unique features present for statistical
modeling. It breaks new ground in showing how these modeling
efforts can enhance the optimization of neural simulators and by
proposing methods appropriate for features that never occur in
the simulated output for some input settings.

In silico Experiments in Neuroscience
Neuroscience is a domain where experiments may be too
expensive, too risky, and sometimes impossible, to perform in a
lab. Consequently, there is great interest in research to simulate
the brain at a variety of levels and scales. Makin (2019) concisely
summarizes four major challenges: scale, complexity, speed, and
integration, describing major progress to date and expectations
for the near future.

The examples below illustrate the use and value of in silico
models in recent neuroscience research.

Deep Brain Stimulation
Deep brain stimulation (DBS) is a surgical procedure usedmainly
to treat movement disorders. The stimulation is achieved by
applying an electric pulse to a pre-specified target location in
the brain. A critical part of this procedure is the adjustment, a-
priori, of the electrical parameters of the DBS device, such as the
amplitude and pulse width (Perlmutter and Mink, 2006).

Thousands of different parameter combinations are available,
so finding a successful combination for a specific patient may
be long and dangerous. Instead, computer models have been
developed that can be adapted to the specific patient to predict the
neurostimulation effect of an electrical parameter combination.
The current “gold standard” method is to couple electric field
data to multi-compartment neuron models, which are based on
the structure of the neuron and on the solutions of differential
equations for the plasma membrane and the membrane potential
(McNeal, 1976; Chaturvedi et al., 2013; Pava et al., 2015).

Brain Simulation Platform and Multiscale Modeling
The Brain Simulation Platform (BSP) of the European Human
Brain Project (HBP) aims to develop a computerized replica of
the human (and other animals) brain, and its dynamics. There
are several goals for the BSP: first, to enable researchers to
conduct investigations that are not possible in a lab; second, to
offer a similar approach to lab experiments, and thus reduce the
need for animal brain experiments; third, to offer researchers
a method to compare their experimental results with computer
model predictions.

Statistical Modeling and Analysis of
Computer Experiments
The increased use of simulation platforms for research has been
accompanied by an extensive body of statistical research on
effective approaches to model and analyze the data that they
generate (Levy and Steinberg, 2010; Santner et al., 2018).

There are two main benefits to this statistical modeling.
First, many computer experiments rely on complex simulators
involving numerical solvers of the underlying equations. One
run of the simulator may require substantial resources (including
time), so that the investigation of all desired combinations of
factor levels may exceed available resources. Statistical modeling
can provide an emulator, or surrogate model, of the simulator.
With the emulator, much more extensive exploration of factor
settings is possible. This consideration is especially important in
applications where the goal is to optimize a system, which may
require many function calls.

Second, the fit and analysis of a statistical model can identify
the input factors with the strongest effects on the output
variable(s). Although the role of each input is known from
the work that went into building the simulation model, many
simulators are so complex that it is difficult to determine
from first principles which factors are most important. In
addition, analysis can be essential for uncertainty quantification,
which aims to understand output variation when there is large
uncertainty regarding input values.

Following the example of DBS in the preceding section (DBS),
according to Chaturvedi et al. (2013), the McNeal simulation
method mentioned above is too slow (due to its computational
burden) to be practical for most clinical applications. Therefore,
simplified, fast and accurate methods are needed. Pava et al.
(2015) developed a new methodology to reduce the computation
time required to estimate the volume of tissue activated during
deep brain stimulation. At the heart of their method is an
emulator that replaces the system of differential equations
with combined multi-compartment axon models coupled to
the stimulating electric field by a Gaussian process classifier
estimated from outcome data. The approach of Pava et al. (2015)
reduced by a factor of 10 the average computational runtime
of Volume Tissue Activated estimation, while maintaining a
prediction error rate below 20%.

Statistical modeling is also important when a simulator is
inherently stochastic. Papamakarios et al. (2019) showed how
such models can be used to estimate the consequent density
function of observed data and thus provide a sound basis for
statistical inference. Lueckmann et al. (2017) took this idea
and adapted it for use with neural simulation models. Cranmer
et al. (2020) provides an excellent overview of several related
approaches to model-driven inference for simulation models.

Outline
Our goal in this work is to show how statistical emulation
of complex computer simulations can be effectively used in
neuroscience. The focus is on a particular use case involving
optimization of parameters for a model developed and run
in the NEURON environment. The next section of the paper

Frontiers in Big Data | www.frontiersin.org 2 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

gives a brief summary of the statistical ideas and methods that
were applied. We then describe the simulation model and the
optimization task. The following section presents the results and
a brief summary followed by Discussion and Conclusions.

BRAIN SIMULATIONS

NEURON Simulations
NEURON (Hines, 1984; Hines and Carnevale, 1997) is a
popular and flexible simulation environment for implementing
biologically realistic models of electrical and chemical signaling
in neurons and networks of neurons. The simulator describes the
unique spread and interaction of electrical and chemical signals
within and among neurons in different parts of the brain. It is
based on a constrained non-linear equation system that does
not have an analytical solution. NEURON provides an efficient
numerical solution, enabling researchers to illustrate and explore
the operation of brain mechanisms, cross-validate their data,
estimate experimental parameters, test hypotheses, and perform
robust and groundbreaking experiments that are difficult, if not
infeasible, to perform in a lab due to technical difficulties as well
as ethical limitations.

NEURON was designed specifically to simulate the equations
that describe the electrical and chemical activity of nerve
cells, in order to offer a flexible framework for handling
problems in whichmembrane currents are complex, and spatially
inhomogeneous. The outputs of the simulator are step by step
evolutions of electrical and chemical values of a cell. The input
parameters of this paper’s use case are membrane ion channels
whose opening/closing in response to voltage and/or a chemical
is the basis for the electrical activity of neurons.

NEURON simulations can also serve as the empirical basis
for biologically realistic quantitative models that formulate new
hypotheses of brain function. Some examples of topics that were
investigated with such simulation-based models are given in
Hines and Carnevale (1997), and the list has grown significantly
during recent years.

Multiple Objective Optimization
The novel framework of multiple objective optimization (MOO)
was developed using the NEURON simulator for automatically
constraining parameters (in particular of the membrane ion
channels) in compartmental models of neurons, given a large
set of experimentally measured responses of these neurons
(Druckmann et al., 2007). This method accounts for the
variability of experimental voltage responses, even for the
exact same input, and provides several error functions that
characterize the difference (in experimental standard deviation
units) between experimental voltage traces and simulated model
responses, and can be performed on the basis of individual
features of interest (e.g., spike rate, spike width). Druckmann
et al. (2007) consolidated their method with a genetic search
algorithm and showed an excellent fit between model behavior
and the laboratory firing pattern of two distinct electrical classes
of cortical interneurons, accommodating and fast-spiking. The
process has important implications, as these cells serve as
building blocks for more complex neural networks and the exact

channel densities affect the network behavior (Egger et al., 2014;
Markram et al., 2015; Casali et al., 2019; Amsalem et al., 2020;
Billeh et al., 2020).

Framework
Every fitting attempt between model performance and
experimental data with this method is based on an experimental
target dataset (and the stimuli that generated it), a simulator
with corresponding parameters (and their ranges), and a search
method. The result of the fitting procedure is a solution (or
sometimes a set of solutions) of the best fitting parameter
values as quantified by a score function that accounts for the
distance between the model output and the target experimental
data. At the heart of the score function is a sum of objective
scores for each set of parameters, or “individual,” where each
objective score is normalized into units of experimental standard

deviations:
fsim−µexp

σexp
, where fsim is the simulated objective value,

and µexp, σexp are the mean and standard deviation of the feature
values from the laboratory experiment. After an objective score
is calculated for each feature j, the scores are summed into a
unified global score:

Global score (individual) =

∑

j

∣

∣

∣

∣

∣

f j,sim(individual)−µ
j,exp

σ j,exp

∣

∣

∣

∣

∣

.

(1)

Genetic Algorithm
To find good individuals, Druckmann et al. (2007) used a
genetic algorithm (GA) that had proved effective for constraining
conductance-based compartmental models. The main idea
behind a genetic algorithm (GA), introduced by Holland in
1960 and developed by Goldberg (1989), is to solve optimization
problems with a population of candidate solutions that evolves
simultaneously toward the optimal solution. The evolution starts
from a set of n randomly drawn solutions that cover the entire
search space. The score function is calculated for each selected
individual and individuals with high scores are selected as
“parents” to produce the next set of solutions, or “children.”
That process involves both fixed rules for combining existing
individuals and a number of stochastic elements. The former
direct the GA to more successful individuals in later generations,
while the latter force the GA to explore the space and limit
the risk of converging to a local optimum. The process is then
repeated using the newly derived children as the parents for the
next generation.

In general, the combination of MOO and GA can be described
by the following flowchart.

Use Case
This paper explores the simulated data researched in the
work of Amsalem et al. (2016) on neocortical L2/3 large
basket cells (LBC). This study utilized a feature-based multi-
objective optimization (MOO) protocol (Druckmann et al., 2007;
Ramaswamy and Markram, 2015) to fit the isolated L2/3 LBC
neuron model to in vitro voltage traces. The experimental voltage
traces used as a target for the model consisted of 4 different

Frontiers in Big Data | www.frontiersin.org 3 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

stimulus protocols, two of which are studied here: (1) Three
different subthreshold current injections (−0.22, 0.04, and 0.15
nA) of 1,000ms each (IVf_0, IVf_3, IVf_5); (2) Five repetitions
of long (2,000ms) suprathreshold current injections (0.27 nA)
(IDRest_7). All simulations were performed in the NEURON
simulator (Hines and Carnevale, 2008) running both on local
clusters (NEURON 7.3) and on a supercomputer (NEURON 7.4).

The free parameters in the optimization were the specific
membrane resistivity, the densities of 11 active ion channels, and
the dynamics of intracellular Ca2+ (Hay et al., 2011). The neuron
was separated into different regions: (1) the axon initial segment,
(2) the soma, and (3) the dendrites. Each region had a separate set
of membrane channels with different conductance densities. The
full list of parameters for each region is provided in Appendix A.

The 28 electrical features used as outputs in this simulation
were basic features (such as input resistance, spike shape,
and frequency). The full list of these features is provided
in Appendix B. These features were extracted from the
electrical trace produced by the simulator for a given stimulus,
and compared to the corresponding feature values for all
experimental repetitions of that stimulus (that were extracted
from the experimental trace) for the same given stimulus.

The GA was run for 198 generations, each containing
1,000 individuals (consisting of 31 parameters each) and the
multivariate output of 28 electrical features for each individual.
Lists of all parameters and features, including their mean
and standard deviation laboratory values, can be found in
Appendices A, B, respectively.

The BluePyOpt Python package (Van Geit et al., 2016) was
used to activate the NEURON simulator, receive scores for
each individual in the generation, and send them to DEAP (De
Rainville et al., 2012; Fortin et al., 2012), a Python library that
implements GA procedures.

STATISTICAL METHODS

This section describes the strategy underlying the
implementation of statistical emulators, the specific emulation
methods that were assessed, and for some of the methods,
associated ideas for statistical inference.

The general problem of emulation has the following elements.
Given a vector x of inputs, and a simulator that generates output

f (x), we want to construct an empirical model, or emulator, f̂ (x).
The output could be a function (e.g., an electrical time trace),
a scalar (e.g., a feature like the time to first spike), or a vector
of features. The inputs could be experimental conditions (e.g.,
an external current) or values of unknown simulator parameters
(e.g., conductance of different cells). The simulator output is
observed on a training sample of input vectors and the training
data are used to fit the emulator.

Emulation Strategy
We exploit emulation as a tool in working with the NEURON
simulator to perform multi-objective optimization (MOO). As
shown in Figure 1, in the GA optimization process the simulator
functions as a steppingstone to each new generation. The
simulator runs require substantial computational resources,

provided by a large cluster; the process is not feasible on a single
computer. Even on the cluster, the average run time is ∼1 h
for each generation and the entire optimization process lasts
dozens and even hundreds of hours. With such resource-heavy
simulators, there is good potential to benefit by replacing, or
supplementing, the simulator by an emulator.

The simulator runs used to train the emulators are taken from
the GA iterations used in carrying out MOO. This supports a
“proof of concept” analysis in which we can show that emulators
can effectively complement theNEURON simulator.We describe
emulator fits at several different stages of the GA iterations.

The first generation of the GA optimization process simulates
output at a random sample of n input vectors (“parents”). This
sample covers the entire input space and so provides a basis for
emulating global input-output relationships. The results of this
modeling strategy will be presented in the section on Emulation
of Selected Electrical Features. Subsequent GA iterations are
expected to concentrate samples in “promising” regions of the
input space, with few samples in regions that do not match the
laboratory data. We expect that the global emulators from
the initial iteration will begin to lose their predictive ability
as the sampled inputs become more concentrated. Thus, it is
desirable to periodically refit emulators to samples from the most
recent GA generations.

Emulation can be injected into the iterative GA optimization
process in a number of different ways. If an emulator can be
tuned quickly, one option is to refit it at each generation, with
the simulator applied to some fraction of the new children to
generate training data, and the revised emulator used to evaluate
or to screen the remaining children. This strategy is illustrated in
Figure 2, with 80% of the individuals used to train the emulator,
which is then applied on the remaining 20% to predict their
electrical features. This strategy saves 20% of the simulator run
time and fitting the emulator permits deeper exploration of the
parameter space and statistical inference. If the emulators are
highly accurate, the fraction of training data can be reduced.

An alternative strategy is to produce new generations entirely
from the emulator. One option is to evaluate a generation with
the simulator, to use those results to estimate an emulator, and
then to evaluate subsequent generations with the emulator. As
noted earlier, due to the natural drift of the genetic algorithm
in parameter space, it will usually be necessary to return to the
simulator periodically, generating new training data and fitting
a new emulator. In each generation, one can run the simulator
on a small sample of children to check if the emulator continues
to accurately mimic the simulator. This strategy can dramatically
reduce the simulation budget. Figure 3 illustrates the flow.

An intermediate approach is to use the emulator from one
generation to “screen” children that are proposed at the next
generation. The GA may create offspring that are not at all
successful. Emulating the outcomes for the offspring can often
highlight these poor performers among the offspring, eliminating
the need to assess them via full simulation.

A more ambitious strategy is to replace the GA entirely,
using optimization strategies in which the emulator replaces
the simulator in iterative objective function evaluations. See,
for example, Taddy et al. (2009), Yao et al. (2014), Eames

Frontiers in Big Data | www.frontiersin.org 4 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

FIGURE 1 | A schematic portrayal of how the genetic algorithm advances from one generation to the next, when used for multiple objective optimization in

conjunction with the NEURON simulator. Each generation should lead to increasingly favorable individuals.

FIGURE 2 | A strategy for a modified genetic algorithm, simulating features for 80% of the individuals, using them to fit an emulator, and replacing the simulator runs

by emulator predictions for the remaining 20%.

Frontiers in Big Data | www.frontiersin.org 5 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

FIGURE 3 | A strategy for a modified genetic algorithm, simulating the individuals in one generation, using them to fit an emulator, and replacing the simulator runs by

emulator predictions, for the following generation. Periodically a new generation should be evaluated by the simulator in order to update the emulator.

et al. (2015), Springenberg et al. (2016) and Bischl et al.
(2017). This more ambitious strategy was not implemented
in the current use case and will be considered in future
work. Acerbi and Ma (2017) applied emulation methods to a
complex likelihood resulting from a neural model for visual
perception. Their approach uses Gaussian processes and exploits
a Bayesian approach that approximates the objective function
and provides uncertainty measures that guide where to make
further function evaluations.

Emulation Methods
Emulators can be produced using many prediction methods
that have been proposed in the statistics and machine learning
literature. The following sections briefly review the statistical
methods and models used here. These models have a number of
attractive features for modeling data from computer experiments
(Rasmussen and Williams, 2006; Ghahramani, 2013).

Gaussian Process Regression
Gaussian process regression (GPR) models were first proposed in
geostatistics (Krige, 1951) as a method for spatial interpolation of
two or three-dimensional data. They are very flexible models and,
following Sacks et al. (1989), they have been a popular choice in
the statistical analysis of computer experiments. They have also
become an important tool in machine learning (Rasmussen and
Williams, 2006; Ghahramani, 2013). GPR can be used directly to
emulate a numerical output. For classification problems, it can

be used to estimate the probability of a given class occurring for
a given input location.

As in Sacks et al. (1989), view the output f (x)as the realization
of a random process that includes a regression model and a
stochastic component Z(x) that is a Gaussian process with mean
0 at all x:

f (x) =

n
∑

i=1

β ig i(x) + Z(x). (2)

where the g i(x) are known regression functions, the β i are
unknown coefficients and Z(x) represents the deviation of the
simulator from the regression model. Welch et al. (1992) advised
removing all regression terms except a constant, so that all the
dependence on x is reflected via Z(x). Rasmussen and Williams
(2006) took a further step, advocating models with no regression
terms at all.

One of the attractive properties of the GPR emulator is that
it interpolates the training data: if x is one of the observation

sites, then f̂ (x) = f (x). This is very appealing when the training
data are observed with no random error, as often happens with
neuroscience simulators.

An essential element of the method is the covariance function,
or “kernel,” k(x, x

′
) of Z(x). The covariance function describes

the similarity of the output at different input settings and, not
surprisingly, emulated values rely primarily on those training
data highly correlated with the emulation site.

Frontiers in Big Data | www.frontiersin.org 6 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

One common option is to normalize each input variable and
then apply the squared exponential family:

ky
(

xp, xq
)

= σ 2
f exp

(

−
1

2l2
|xp − xq|

2
)

. (3)

The hyperparameter σ 2
f
is often called signal variance, and l is the

length scale. Often each factor is given a distinct length scale lj,
with large values indicating important factors. The formulation
can be expanded to handle noisy training observations (i.e.,
stochastic simulators). A number of efficient methods have been
proposed for estimating the hyperparameters. In practice, most
emulators then condition on these estimated values (in the spirit
of empirical Bayes). There are also fully Bayesian approaches that
average the emulator with respect to the posterior uncertainty in
the hyperparameters (Harari and Steinberg, 2013; Pronzato and
Rendas, 2017).

One drawback to GPR is computational complexity, especially
for large data sets, since GP models require inversion of N × N
covariance matrices, where N represents the number of desired
evaluation and prediction points, and the computation time of
the standard method for computer matrix inversion of positive
definite symmetric N × N matrices, Gauss–Jordan elimination,
is O(N3).

Thus, some simplified methods have also been proposed. One
option is to enable a data-driven choice, for each input factor, as
to whether its relationship to the output will be linear or GP in
form (Gramacy and Lee, 2008). This is known as the Gaussian
Process limiting linear model, or GPllm. Another is to use only
a subset of the training data in making a prediction—known as
local approximate Gaussian Process (laGP) (Gramacy and Apley,
2014; Park and Apley, 2018). The subset is chosen in an optimal
manner on the basis of the assumed kernel.

Random Forest
The random forest (Breiman, 2001) is a tree-based method
for non-parametric prediction or classification. Treed partitions
divide up the input space recursively, using binary splits of
the data on the value of a single variable. The prototypical
treed partition is Classification and Regression Trees (CART)
(Breiman et al., 1984), which is very easy to use and interpret.
The prediction for a new input vector is the average of the
training cases in the same partition. Classifications are assigned
by majority vote within the partition. CART uses all the training
data to generate a single prediction/classification model. Often
this leads to a tree that over-emphasizes peculiar features in
the data. Random forests address this drawback by building
a collection of trees and introducing some randomness into
the process, both in terms of the training cases used for each
binary split and the features that are candidates for splitting. The
resulting predictor for an input vector x is the average prediction
over all the trees in the forest. The random forest classifier for x is
the class assigned by the largest number of trees. Random forest
is considered an excellent “all purpose” prediction/classification
method (Efron and Hastie, 2016, Chapter 17).

Bayesian Treed Models and Treed Gaussian Process

Regression
Chipman et al. (2002) proposed a Bayesian approach to finding
and fitting treed models. The method assigns a prior distribution
to the tree structure that prefers smaller trees and larger partitions
and then guides a Markov Chain Monte Carlo (MCMC) search
toward “more promising” treed models, thereby fully exploring
the model space. The resulting posterior includes a collection
of trees sampled by the MCMC, each with a prediction model
(typically a simple regressionmodel) conditioned on the tree. The
priors and posterior estimation techniques proposed by Chipman
et al. (2002) are summarized in the Supplementary Materials.

Gramacy and Lee (2008) and Taddy et al. (2009) combined
the Bayesian treed models (Chipman et al., 2002) with GPR,
leading to Treed Gaussian Process (TGP) models. The TGP
follows Chipman et al. (2002) in its treatment of tree structure,
but replaces the simple regression for each partition with a
GPR model. The TGP thus has two mechanisms for capturing
complex input-output relationships: like other treed models, it
can adapt to changes in relationships across the input space;
and in each partition, it has the modeling flexibility of GPR.
Gramacy and Lee (2008) noted that simple models might be fine
for some partitions. They added binary variables that indicate,
for each input factor and within each partition, whether the final
prediction model is linear or GPR. Each MCMC iteration makes
a new draw of these indicators. The linear model can be expressed
as a limit of GPR, so they referred to this as a limiting linearmodel
(LLM) and to the overall model as TGP-LLM.

Neural Networks
A neural network is a highly parametrized model considered as
a “universal approximator”—meaning it is a model that, with
enough data, could learn any smooth predictive relationship.
The original purpose of NN models was to model the neural
networks found in the human brain, hence its name and network
architecture. Readers interested in more details regarding NN
models can view (McCulloch and Pitts, 1943; Efron and Hastie,
2016, Chapter 18;).

Emulation Sensitivity Analysis
One of the benefits of fitting an emulator is that it can point
to the input factors with the largest (or smallest) effects on
the output(s). This is known as “sensitivity analysis” and was
introduced by Saltelli (2002). Saltelli proposed sensitivity analysis
for use directly with simulator output, but it is equally useful
when applied with an emulator, with the advantage that it can
be much faster to compute.

The focus is on how predictive means and variances change
when fixing some input coordinates and integrating out others.
For example, one might want to know what is the typical
time to first spike for a particular conductance is. As this time
also depends on other model inputs, the idea is to fix the
conductance of interest and average over the others, with respect
to a distribution that reflects either best knowledge of their likely
values (for example, a posterior density) or relative interest in
different settings. When working with an emulator that provides
only a point prediction, sensitivity analysis is limited to assessing

Frontiers in Big Data | www.frontiersin.org 7 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

such typical value dependence. For emulators like GPs, which
give a posterior distribution, other aspects of the distribution
(e.g., the variance, or some quantiles) can also be averaged.

RESULTS

Emulation of Selected Electrical Features
This section provides a “proof of concept” presentation of the
ability to apply our emulation strategies in neuroscience, using
electrical features generated by the NEURON simulator for
Neocortical L2/3 Large Basket Cells. The first generation included
1,000 individuals and 28 output features. Nineteen features were
observed and recorded for all the individuals. For nine features,
though, all from the IDRest seven current group, the event that
defines the feature did not occur in some of the individuals,
hence no value could be recorded; for example, if an individual
simulated only one spike, the minimal voltage between spikes is
undefined. We refer to these cases as missing values (see Table 1)
and propose an emulation strategy for them in the section on
Emulation of Features with Missing Values.

There is strong correlation between features of the same type,
but from different current groups (see Supplementary Figure 1).
Thus, it is sufficient to illustrate the potential of emulation on a

TABLE 1 | Features with missing values (generation 1).

Feature name Number of missing values

Peak voltage 11

AP amplitude 874

AHP depth (absolute) 11

Burst number 933

ISI log slope skip 895

Spike half width 11

Minimal voltage between spikes 737

AP2 AP1 peak difference 737

Time to second spike 737

single current group; we used the subthreshold current injection
of 0.04 nA for 1,000 ms (IVF_3).

Two of the features, the number of initial spikes and
the spikecount, have distributions concentrated near 0, with
spikes present in only a few individuals. For most stimulus
protocols, the laboratory target values for these features are 0
(see Appendix B), so the optimization process encourages these
outcomes and zero values are prevalent in all generations. In
the IDRest_7 stimulus protocol, these features have positive
laboratory target values (6 and 55.6, respectively), so later GA
generations have more individuals with positive values.

This section presents emulators that use 80% of the individuals
in a generation (here 800 individuals) as the train set, with 20%
set aside as a test set. Figure 4 and Table 2 present results for
three representative features (steady state voltage at the end of
the stimulation, voltage base, and voltage after stimulation) and
for each of the nine emulators that were described in the methods
section. Table 3 presents the standard deviation of the simulated

TABLE 2 | RMSE and run time for emulating generation 1 features.

Model Steady state voltage Voltage base Voltage after

at stimulation end stimulation

RMSE Time (Min) RMSE Time (Min) RMSE Time (Min)

LR 9.45 0.00 10.64 0.00 10.95 0.00

NN 7.67 0.44 9.37 0.47 8.72 0.44

RF 7.40 0.06 8.64 0.06 8.55 0.06

laGP 11.10 0.81 12.89 0.58 11.83 0.79

GP 7.63 4.04 9.22 4.82 8.90 3.42

GPllm 6.11 3.77 8.19 3.93 8.10 3.01

TLM 8.07 0.07 10.05 0.06 9.08 0.06

TGP 8.88 3.20 10.10 4.86 8.85 2.07

TGPllm 6.80 4.05 10.08 3.84 8.37 3.32

For each feature, the results for the method with the most accurate predictions are in bold
font.

FIGURE 4 | Observed (i.e., simulated) vs. predicted (i.e., emulated) values for the three electrical features for each of the nine emulation methods considered here.

Frontiers in Big Data | www.frontiersin.org 8 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

outcomes for each feature and thus serves as a benchmark for the
root mean squared errors of the emulators in Table 2.

The most accurate emulator for all three features is GPllm, as
seen in Figure 4 and Table 2. The RMSE of this emulator is less
than one-half the SD for each feature, indicating that it explains at
least 75% of the variation in the independent test data. The fastest
run times were for LR, NN and RF, <1min on all features. The
GP/TGP models average 1–4min, still very fast when compared
to the run time of the simulator.

Emulation of Features With Missing Values
Features with missing values present an interesting problem.
An ideal emulator for a feature with some missing values
would predict whether or not it is missing, and what is its
value if it is not missing. Standard emulator approaches are
not geared to this task. Here we propose and examine a two-
stage emulation strategy. First, we fit a classifier that predicts
whether an individual is likely to produce a missing value when
simulated in NEURON. Second, we fit an emulator only to those
individuals that supplied data. The emulator cannot be expected
to give satisfactory results outside the input region where training
data were obtained. We minimize this risk of extrapolation by
predicting results only for new individuals classified as non-
missing. The resulting combined emulator requires a classifier
that is sensitive (in which it predicts an observed value for most
individuals that actually produce a value in NEURON), and an

TABLE 3 | Standard deviations for the 3 features in generation 1.

Steady state voltage at stimulation end Voltage base Voltage after

stimulation

15.94 17.88 16.75

accurate emulator when data are present. An illustration of this
method is provided in Figure 5.

We apply the method to three features from IDRest 7
that contain missing values: peak voltage, AP amplitude, and
minimum voltage between spikes. The chosen starting point for
the application is generation 6, due to a sharp decrease of missing
values in this generation.

A standard RF classifier was trained and applied after briefly
tuning the number of trees (Ntree) and number of features per tree
(mtry) hyperparameters in generation 6 on AP amplitude and
minimum voltage between spikes. The optimal solutions were
Ntrees = 1, 200, mtry = 15 on AP amplitude and Ntrees =

1, 100, mtry = 24 on minimum voltage between spikes. Note
that no classifier was applied to peak voltage since it had only
five missing values in this generation. The results on the 200
independent test individuals are shown in Tables 4, 5.

The accuracy of the AP amplitude classifier is 96.5%, and
the accuracy of the minimum voltage between spikes classifier
is 84.5%. In this use case, as noted earlier, the most important
property of the classifier is high sensitivity (i.e., that individuals
with values are correctly classified as non-missing). Erroneously
classifying them as missing would discard individuals that
produce a valid, maybe promising, value, without running them
through the emulator. The sensitivity of the AP amplitude

TABLE 4 | RF classifier confusion matrix for AP amplitude in generation 6.

AP Amplitude Observed

Non-missing Missing

Predicted Non-missing 166 1

Missing 6 27

FIGURE 5 | A strategy for a modified genetic algorithm for features that are observed only in some of the traces. The strategy simulates traces for 80% of the

individuals, using them to fit a classifier, which is applied to the remaining 20% of the individuals. If the classifier predicts that the feature will be observed, it is then

predicted with an emulator.

Frontiers in Big Data | www.frontiersin.org 9 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

TABLE 5 | RF classifier confusion matrix for minimum voltage between spikes in

generation 6.

Min voltage between spikes Observed

Non-missing Missing

Predicted Non-missing 123 24

Missing 7 46

FIGURE 6 | Variable importance plot for the RF classifier of AP amplitude,

using the data from generation 6.

classifier on the test data is 96.5%, and the sensitivity of the
minimum voltage between spikes classifier is 94.6%. These are
very good results, illustrating the ability of the RF classifier to
predict whether or not individual outcomes will be missing. For
both features, the classifiers pass on to the emulator most of
the valid individuals. The specificities of the two classifiers are
96.4 and 65.7%, respectively. The classifier for AP amplitude
passes on only a small fraction of those with missing values, but
the minimum voltage classifier errs on about one-third of the
individuals that aremissing the outcome. This error is less serious
in the context of MOO, hence still reasonable for applications.

In addition, RF classifiers measure variable importance by the
average decrease in Gini impurity over all splits (Menze et al.,
2009). Figures 6, 7 show the 10 most important parameters for
both RF classifiers.

The variable importance lists could be used to explore
the parameter space more efficiently. The variable importance
plot presented in Figure 6 shows that “gSK_E2bar_SK_E2”
from the “somatic” parameter group is the most influential
for AP amplitude, followed by “gNap_Et2bar_Nap__Et2” from
the “basal” and “somatic” parameter groups. Interestingly, the
variable importance list for the second feature, minimum voltage
between spikes, is very similar to the first list. Although the
same parameters dominate both outcomes, these features are not
typically missing (or present) in the same individuals; they have
the same status on 514 training individuals, but differ on 486.
Each is missing much more often when the other is present than
when it is missing.

FIGURE 7 | Variable importance plot for the RF classifier of minimum voltage

between spikes, using the data from generation 6.

TABLE 6 | RMSE and run time for emulating generation 6 features.

Model Peak voltage AP amplitude Min voltage

between spikes

RMSE Time (Min) RMSE Time (Min) RMSE Time (Min)

LR 4.9 0.0 6.95 0.00 11.77 0.00

NN 3.72 0.74 6.24 0.35 8.01 0.38

RF 3.95 0.08 6.13 0.05 6.31 0.05

laGP 4.57 0.73 6.71 0.55 10.76 0.44

GP 3.46 13.73 6.07 2.03 6.99 2.05

GPllm 3.47 13.08 6.47 1.72 4.89 1.61

TLM 4.21 0.12 6.95 0.03 9.69 0.05

TGP 3.68 5.14 6.01 3.63 11.60 1.01

TGPllm 3.74 11.76 6.33 4.61 9.25 2.14

Target values for each feature are shown in Appendix B. For each feature, the results for
the method with the most accurate predictions are in bold font.

The top two explanatory variables for these features are
the same, suggesting that they are very influential on spike
formation/pattern in general. These insights can be used to
guide the GA algorithm search to areas with fewer missing
values, enhancing efficiency by increasing the chance of finding
promising individuals.

Following the method set out in Figure 5, an emulator can
now be applied to the non-missing predicted individuals for each
feature. In this proof-of-concept application, the emulator was
trained and applied to all non-missing simulated individuals.
This section shows the results of our emulation strategy on
these non-missing individuals in generation 6 for the three
selected features.

Table 6 and Figure 8 show that the most accurate emulator
for peak voltage is GP, for AP amplitude it is TGP, and for
minimum voltage between spikes it is GPllm. Figure 8 shows a
good fit of all these emulators to the relevant electrical features.
The RMSEs of the emulators are less than half as large as the
standard deviations of the features (Table 7), indicating ability to
achieve accurate emulation. Second, Table 7 shows that the run

Frontiers in Big Data | www.frontiersin.org 10 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

FIGURE 8 | Observed (i.e., simulated) vs. predicted (i.e., emulated) values for the three electrical features which are not always observed, using the data from

generation 6, for each of the nine emulation methods considered here.

times of the LR, NN, and RF models for these features are very
fast. The GP/TGP models are slower for this task, with average
run times of 1–14min, but that is still substantially faster than
the run time of the simulator.

Table 6 and Figure 8 show that the most accurate model for
minimum voltage between spikes was GPllm, yielding the lowest
RMSE for this feature-−4.67. Surprisingly, this model is far more
successful than any of the other emulators for this electrical
feature, unlike the other features, in which the competition
between all models is relatively close. This is surprising given
the bi-modal distribution of this feature, which makes it a
challenging task and led us to expect that only tree-based
emulators would successfully capture the two distinct output
regions (near −80 and −25). However, GP and GPllm proved
that the flexibility of the GP models, discussed in chapter 2, can
overcome these challenging gaps and fit the data well.

Inference
One advantage of GP emulators is that they provide full
predictive distributions, and not just point predictions as with RF
or NN models. The distributions provide a basis for uncertainty
assessments and Bayesian sensitivity analysis. We demonstrate
the ideas here for selected features, using the most accurate GP
model for each feature.

Predictive Uncertainty
The predictive uncertainty assessment in this section is given
by plots like Figure 9 that take into account the real simulated
responses (purple points) and the estimated 0.05 and 0.95
quantiles, q̂5% and q̂95%, (blue crosses). Coverage describes
the fraction of test individuals whose outcomes are within the
estimated quantiles. The nominal coverage rate here is 90%, so
coverage at that level indicates both a good fit of the model to the
data and an accurate assessment of model uncertainty.

For steady state voltage at stimulation end, voltage base and
peak voltage the coverage rate is very close to 90%. For the other
features, the coverage rate is closer to 80%, which indicates that
the intervals are a bit too narrow or, as for AP amplitude, that

they suffer from bias, moving the quantiles off target (in this case
slightly “high”). The most interesting result in this section is the
coverage plot of minimum voltage between spikes. The GPllm
model, in addition to emulating the two distinct components
of the simulated responses, also provides a realistic picture of
the uncertainty, and clear discrimination between settings with
results near the higher/lower mode.

The spreads of these interval widths for each feature
were relatively small—all intervals were about 1–2 standard
deviations in width, with respect to the corresponding standard
deviations for each feature (shown in Tables 3, 7). Thus the
statistical model’s predictive intervals (e.g., predictive uncertainty
measurements) yield good coverage while remaining narrow.

Bayesian Sensitivity
Sensitivity analysis provides a summary of the importance of
each feature in determining the output. We add to the actual
input factors two noise factors (random samples from a standard
normal distribution); these factors act as “negative controls” in
the plots, providing a frame of reference for assessing the actual
factors. The main effects plots of selected parameters from these
Bayesian sensitivity analyses are in the Supplementary Material

(Supplementary Figures 2–5).
Figures 10, 11 show the first order and total sensitivity

indices of all 31 parameters for AP Amplitude and Min Voltage
Between Spikes. These indices were calculated using the sens
function in the tgp package using 80% of generation 6 as the
training data and the most accurate models (TGP model for AP
amplitude and a GPllm model for minimum voltage between
spikes). The most prominent parameters were gNap_Et2bar_
Nap_Et2_somatic and again gNap_Et2bar_Nap_Et2_basal for
AP amplitude, and gSK_E2bar_SK_E2_somatic and gNap_
Et2bar_Nap_Et2_basal for minimum voltage between spikes.
The secondmost influential parameter for each feature was one of
the two most influential parameters on the other feature—gSK_
E2bar_SK_E2_somatic for minimum voltage between spikes, and
gSK_E2bar_SK_E2_somatic (along with gSKv3_1bar_SKv3_1_
basal) for AP amplitude. The presence of common factors is

Frontiers in Big Data | www.frontiersin.org 11 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

surprising, as the Pearson correlation coefficient between these
two outputs is only−0.55.

These parameters were also the most influential ones for the
RF classifier (presented in Figures 7, 8) of presence/absence.
For AP amplitude, the most influential RF parameter is
gSK_E2bar_SK_E2_somatic (the fourth most influential
parameter according to the sensitivity analysis) followed
by gNAP_Et2bar_Nap_Et2_basal and gNAP_Et2bar_Nap_
Et2_somatic (the two leading parameters in the sensitivity
analysis). For minimum voltage between spikes, the most
influential RF parameters are gSK_E2bar_SK_E2_somatic
(the most influential parameter in the sensitivity analysis),
followed by gNAP_Et2bar_Nap_Et2_basal (the second
most influential parameter in the sensitivity analysis) and
decay_CaDynamics_E2_somatic (not influential in the
sensitivity analysis).

These results offer interesting insights on the electrical
features studied here. First, the correlation between the

TABLE 7 | Standard deviations table (#2).

Peak voltage AP amplitude Min voltage between spikes

8.57 13.31 26.7

influential parameters on the classification and the regression
tasks implies that there is a connection between the numeric
result of the feature and its tendency to result in missing/non-
missing output. In addition, the similarity between the influential
parameters for AP amplitude and minimum voltage between
spikes implies that this set of parameters (gSK_E2bar_SK_E2_
somatic, gNap_Et2bar_Nap_Et2_somatic, gNAP_Et2bar_Nap_
Et2_basal and maybe also gSKv3_1bar_SKv3_1_basal and decay_
CaDynamics_E2_somatic) may be very influential for other
features, so they should be explored carefully throughout the
optimization process.

DISCUSSION

The paper presents strategies for using statistical emulators as
a tool in studying neural processes via simulation platforms.
Our results show that statistical emulators can effectively mimic
the results from a complex neural simulator with many input
factors and show promise for use as an integral tool within the
framework of MOO.

The most popular emulation approach in the statistical
literature is the GP model. Our results show that GP models,
especially when modified as TGP (Gramacy and Lee, 2008)
and with/without limiting linear models, can indeed provide
excellent results for modeling the electrical features generated

FIGURE 9 | Predictive uncertainty plots for GP emulator predictions of the six electrical features considered here.

Frontiers in Big Data | www.frontiersin.org 12 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

FIGURE 10 | Sensitivity indices for each input factor in emulating AP amplitude. The panel on the left shows first-order indices, and the panel on the right shows total

effect indices. The last two factors on the right are randomly added “noise factors,” which indicate what might be expected for a factor that, by design, has no impact

at all on the feature.

FIGURE 11 | Sensitivity indices for each input factor in emulating minimum voltage between spikes. The panel on the left shows first-order indices, and the panel on

the right show total effect indices. The last two factors on the right are randomly added “noise factors,” which indicate what might be expected for a factor that, by

design, has no impact at all on the feature.

Frontiers in Big Data | www.frontiersin.org 13 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

by the NEURON simulation platform for neocortical L2/3
large basket cells. Since each generation contained no more
than 1,000 valid (non-missing) observations, the run times
of these models make them practical choices for use as
emulators. They required 1–15min run time, even though
applied on far simpler and weaker computers than those
available within the HBP community and to most neuroscience
research teams. The overall performance, in terms of accuracy,
adaptivity and efficiency of these models was remarkable and
can be a valuable tool when implemented in similar future
neuroscience applications.

It was challenging to fit a good emulator to features with
only a small spread of feature values from the simulator (and
where the laboratory target values are different from 0). In these
cases it is recommended to wait until more spread is observed,
and only then to fit an emulator. This suggestion holds also for
features observed in the laboratory that havemanymissing values
at the start of the optimization process (as shown in Table 1;
Supplementary Figure 1), but quickly advance to individuals
with far fewer missing values.

Another important aspect of the sample size is the train-
test ratio. For our use case, we chose an 80–20% ratio. Smaller
ratios are of course possible and will accelerate the computation,
but could degrade accuracy. The best choice will typically
depend on the application and should be made to efficiently
balance the time-accuracy tradeoff. It may depend on the goal of
the emulation.

There are several important advantages of the GP model.
It offers a flexible solution for dependent observations with
numerous kernel options that can fit functions of various degrees
of smoothness. In addition, unlike current black-box models,
the GP model is easily interpretable and offers not only point
predictions, but also uncertainty assessment and inference for the
simulator values at a given input location.

The basic GP model requires adjustments to handle training
data with a large number of individuals. Several useful methods
have been proposed that make it possible to fit GP models
to training data with tens and even hundreds of thousands of
observations. These include the multi-step approach (Haaland
and Qian, 2011) and the sub-design and local models approach
(Gramacy and Apley, 2014; Park and Apley, 2018). Some of
these methods were applied to the data (using the laGP package)
in this paper, but were not among the better-fitting emulators.
Further research is needed to elucidate the accuracy of these
emulation methods.

Our research illustrates the power of emulators based on
data that came from GA iterations to identify individuals with
good fit to observed data. In this accompanying role, emulators
can be catalysts to the optimization process. Emulator use can
go much further, guiding the process toward more promising
regions of the parameter space. The emulator can serve as a
filter to identify promising individuals at the beginning of the
next generation. This amounts to a role reversal between the
emulator and the simulator–first the emulator filters individuals,
then the simulator kicks in. Pre-screening and selection of
individuals by the emulator may lead to over-optimistic bias.

Techniques could be developed to adjust for these biases. In
addition, the drift toward better individuals will lead to new
regions of the parameter space where the emulator may no
longer be accurate. Strategies will be needed for when to
abandon an emulator and to train a new one using more
recent data.

Second, the inference products that accompany GP models
can be used to guide a genetic algorithm toward more promising
areas in the parameter space. The uncertainty of each prediction
can be accounted for, alongside its closeness to the laboratory
target value, when the next generation’s parents and individuals
are selected.

Third, fitting an emulator provides valuable information on
the relationship of each input parameter to the output. Knowing
which parameters are most influential for each feature can help
focus attention on these parameters when forming the next
generation. As seen in our sensitivity analysis and in our factor
influence summaries, often just a few of the parameters have
large effects.

Our emulators, like MOO, focus on features derived
from the electrical traces produced by NEURON, i.e.,
low-dimensional multivariate output. We chose to model
each outcome feature separately. The correlations observed
among the features in the training data were used only
to reduce the dimension, choosing representatives of
groups with high correlation. Alternatively, we could have
directly applied methods for multivariate emulation (see for
example, Rougier, 2008; Overstall and Woods, 2016).

There is a substantial body of research on methods for
analyzing and emulating functional data (Ramsay, 2005;
Bayarri et al., 2007, 2009; Higdon et al., 2008; Levy, 2008;
Goh et al., 2013; Hung et al., 2015; Plumlee et al., 2016;
Chakraborty et al., 2017; Salter et al., 2019). In principle,
these methods could be used to directly emulate the
electrical traces. However, all these methods assume that
the output is a smooth function. That assumption is clearly
inappropriate for the electrical traces obtained here, but might
be perfectly acceptable for other types of functional output in
neural simulations.

CONCLUSIONS

This paper provides a first and crucial step illustrating the
potential value of fitting statistical emulators to data arising
from complex neuroscience simulation engines. The test case
shows that accurate emulation is possible and propose strategies
for incorporating emulation within optimization processes. We
proposed different statistical emulation strategies, addressing
general challenges of computer models such as: where to sample
the input space for the simulator, how to make sense of the data
that is generated, how to estimate unknown parameters in the
model and how to model features that do not always occur in
a simulation.

In particular, we derive accurate emulators from modest
training samples of features generated by the NEURON

Frontiers in Big Data | www.frontiersin.org 14 March 2022 | Volume 5 | Article 789962

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

simulator for neocortical L2/3 large basket cells. We
compared different statistical emulation methods in terms
of both accuracy and efficiency (i.e., run times). Our
main conclusion is that statistical emulators, mainly GP
models, can accurately mimic the simulator’s outputs. Thus
emulation can expedite processes that require intense use
of the simulators (such as MOO iterations). Emulators can
dramatically reduce computation time and so accelerate
these processes.

The methods we present showed great value in two
aspects. First, they demonstrated the ability to accurately
predict the simulator’s outcome for different electrical features
at different stages (i.e., generations), thus offering a novel
method to accelerate the optimization process of simulators,
especially when these require many evaluations. Second, they
are able to identify which inputs are the most influential
ones, thanks to the chosen statistical models (variations of
Gaussian Process Models) which support this kind of inference.
The first aspect helps to address the computational issues
inherent in the speed challenge of Makin (2019); the second
aspect is relevant both to the scale and complexity challenges
described there.

This research presents useful first steps toward exploiting
emulators in neuroscience research. There are numerous
directions that could fruitfully be taken in future work. One
important area for neuroscience is to adapt the models for
use with features that have many missing values, when a two-
phase emulation (classification—regression) is required, and on
other statistical models that can improve the performance of
the presented emulators. Another is to consider multivariate
or functional simulator output. An important step ahead will
be to adapt and improve optimization methods that fully
and automatically incorporate emulation for application to
neuroscience research.

DATA AVAILABILITY STATEMENT

Our work is on a very limited subset of data generated for
a previous paper. Requests to access these datasets should be
directed to GS, giladshapira@mail.tau.ac.il.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

This research was supported by funding from the European
Union’s Horizon 2020 Framework Programme under the
Specific Grant Agreements Nos. 785907 and 945539 (Human
Brain Project) and, to IS, a grant support from the Drahi
family foundation, the Gatsby Charitable Foundation, and by
funding to the Blue Brain Project, a research center of the
École Polytechnique Fédérale de Lausanne (EPFL), from the
Swiss government’s ETH Board of the Swiss Federal Institutes
of Technology.

ACKNOWLEDGMENTS

Parts of this work were described in the unpublished M.Sc. thesis
of GS, Tel Aviv University (Shapira, 2020).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdata.
2022.789962/full#supplementary-material

REFERENCES

Acerbi, L., and Ma, W. J. (2017). “Practical Bayesian optimization for model fitting
with Bayesian adaptive direct search,” in Proceedings of the 31st International

Conference on Neural Information Processing Systems (Long Beach, CA),
1834–1844.

Amsalem, O., Geit, W., Van, M.uller, E., Markram, H., and Segev, I. (2016).
From neuron biophysics to orientation selectivity in electrically coupled
networks of neocortical L2/3 large basket cells. Cerebral Cortex. 26, 3655–3668.
doi: 10.1093/cercor/bhw166

Amsalem, O., King, J., Reimann, M., Ramaswamy, S., Muller, E., Markram,
H., et al. (2020). Dense computer replica of cortical microcircuits
unravels cellular underpinnings of auditory surprise response. BioRxiv.
doi: 10.1101/2020.05.31.126466

Bayarri, M. J., Berger, J. O., Kennedy, M. C., Kottas, A., Paulo, R., Sacks,
J., et al. (2009). Predicting vehicle crashworthiness: validation of computer
models for functional and hierarchical data. J. Am. Stat. Assoc. 104, 929–943.
doi: 10.1198/jasa.2009.ap06623

Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J. A., Cavendish, J., et al.
(2007). A framework for validation of computer models. Technometrics 49,
138–154. doi: 10.1198/004017007000000092

Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W.,
et al. (2020). Systematic integration of structural and functional data into

multi-scale models of mouse primary visual cortex. Neuron 106, 388–403.e18.
doi: 10.1016/j.neuron.2020.01.040

Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., and Lang, M. (2017).
mlrMBO: a modular framework for model-based optimization of expensive
black-box functions. arXiv arXiv:1703.03373. Available online at: https://arxiv.
org/abs/1703.03373

Breiman, L. (2001). Random forests. Mac. Learn. 45, 5–32.
doi: 10.1023/A:1010933404324

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and

Regression Trees. Belmont, CA: Taylor & Francis.
Casali, S., Marenzi, E., Medini, C., Casellato, C., and D’Angelo, E. (2019).

Reconstruction and simulation of a scaffold model of the cerebellar network.
Front. Neuroinf. 13, 37. doi: 10.3389/fninf.2019.00037

Chakraborty, A., Bingham, D., Dhavala, S. S., Kuranz, C. C., Drake, R.
P., Grosskopf, M. J., et al. (2017). Emulation of numerical models
with over-specified basis functions. Technometrics 59, 153–164.
doi: 10.1080/00401706.2016.1164078

Chaturvedi, A., Luján, J. L., and McIntyre, C. C. (2013). Artificial neural
network based characterization of the volume of tissue activated during deep
brain stimulation. J. Neural Eng. 10, 56023. doi: 10.1088/1741-2560/10/5/
056023

Chipman, H. A., George, E. I., andMcCulloch, R. E. (2002). Bayesian treed models.
Machine Learn. 48, 299–320. doi: 10.1023/A:1013916107446

Frontiers in Big Data | www.frontiersin.org 15 March 2022 | Volume 5 | Article 789962

mailto:giladshapira@mail.tau.ac.il
https://www.frontiersin.org/articles/10.3389/fdata.2022.789962/full#supplementary-material
https://doi.org/10.1093/cercor/bhw166
https://doi.org/10.1101/2020.05.31.126466
https://doi.org/10.1198/jasa.2009.ap06623
https://doi.org/10.1198/004017007000000092
https://doi.org/10.1016/j.neuron.2020.01.040
https://arxiv.org/abs/1703.03373
https://arxiv.org/abs/1703.03373
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3389/fninf.2019.00037
https://doi.org/10.1080/00401706.2016.1164078
https://doi.org/10.1088/1741-2560/10/5/056023
https://doi.org/10.1023/A:1013916107446
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

Cranmer, K., Brehmer, J., and Louppe, G. (2020). The frontier of
simulation-based inference. Proc. Natl. Acad. Sci. 117, 30055–30062.
doi: 10.1073/pnas.1912789117

De Rainville, F. M., Fortin, F. A., Gardner, M. A., Parizeau, M., and Gagné,
C. (2012). “DEAP: a python framework for evolutionary algorithms,” in
GECCO’12 - Proceedings of the 14th International Conference on Genetic

and Evolutionary Computation Companion (New York, NY: Association for
Computing Machinery). doi: 10.1145/2330784.2330799

Druckmann, S., Banitt, Y., Gidon, A., Schürmann, F., Markram, H., and Segev,
I. (2007). A novel multiple objective optimization framework for constraining
conductance-based neuron models by experimental data. Front. Neurosci. 1,
7–18. doi: 10.3389/neuro.01.1.1.001.2007

Eames, M. E., Wood, M., and Challenor, P. G. (2015). “A comparison between
Gaussian process emulation and genetic algorithms for optimising energy use
of buildings,” IBPSA Building Simulation Conference (Hyderabad).

Efron, B., and Hastie, T. (2016). Computer Age Statistical Inference, Vol. 5.
Cambridge: Cambridge University Press. doi: 10.1017/CBO9781316576533

Egger, R., Dercksen, V. J., Udvary, D., Hege, H.-C., and Oberlaender, M. (2014).
Generation of dense statistical connectomes from sparse morphological data.
Front. Neuroanat. 8, 129. doi: 10.3389/fnana.2014.00129

Fortin, F. A., De Rainville, F. M., Gardner, M. A., Parizeau, M., and Gagńe, C.
(2012). DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13,
2171–2175.

Ghahramani, Z. (2013). Bayesian non-parametrics and the probabilistic approach
to modelling. Philosophical Transactions of the Royal Society A, 371(1984).
doi: 10.1098/rsta.2011.0553

Goh, J., Bingham, D., Holloway, J. P., Grosskopf, M. J., Kuranz, C.
C., and Rutter, E. (2013). Prediction and computer model calibration
using outputs from multifidelity simulators. Technometrics 55, 501–512.
doi: 10.1080/00401706.2013.838910

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning. Reading, MA: Addison-Wesley Publishing Company, Inc.
Gramacy, R. B., and Apley, D. W. (2014). Local Gaussian process approximation

for large computer experiments. J. Comput. Graph. Stat. 24, 1–28.
doi: 10.1080/10618600.2014.914442

Gramacy, R. B., and Lee, H. K. H. (2008). Gaussian processes and limiting linear
models. arXiv arXiv:0804.4685. doi: 10.1016/j.csda.2008.06.020

Haaland, B., andQian, P. Z. G. (2011). Accurate emulators for large-scale computer
experiments. Ann.Statist. 39, 2974–3002. doi: 10.1214/11-AOS929

Harari, O., and Steinberg, D. M. (2013). Convex combination of Gaussian
processes for bayesian analysis of deterministic computer experiments.
Technometrics 56, 861629. doi: 10.1080/00401706.2013.861629

Hay, E., Hill, S., Schürmann, F., Markram, H., and Segev, I. (2011).
Models of neocortical layer 5b pyramidal cells capturing a wide range of
dendritic and perisomatic active properties. PLoS Comput. Biol. 7, e1002107.
doi: 10.1371/journal.pcbi.1002107

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). Computer model
calibration using high-dimensional output. J. Am. Stat. Assoc. 103, 570–583.
doi: 10.1198/016214507000000888

Hines, M. (1984). Efficient computation of branched nerve equations. Int. J.
Bio-Med. Comput. 15, 69–76.

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.
Neur. Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hines, M. L., and Carnevale, N. T. (2008). Translating network models
to parallel hardware in NEURON. J. Neurosci. Methods 169, 425–455.
doi: 10.1016/j.jneumeth.2007.09.010

Hung, Y., Joseph, V. R., and Melkote, S. N. (2015). Analysis of computer
experiments with functional response. Technometrics 57, 35–44.
doi: 10.1080/00401706.2013.869263

Krige, D. G. (1951). A statistical approach to some basic mine valuation problems
on the Witwatersrand. J. Southern African Inst. Min. Metal. 52, 119–139.

Levy, S. (2008). The Analysis of Time Dependent Computer Experiments Tel-Aviv:
University of Tel-Aviv.

Levy, S., and Steinberg, D. (2010). Computer experiments: a review.AStAAdv. Stat.

Anal. 94, 311–324. doi: 10.1007/s10182-010-0147-9
Lueckmann, J.-M., Goncalves, P. J., Bassetto, G., Ocal, K., Nonnenmacher,

M., and Macke, J. H. (2017). Flexible statistical inference for mechanistic

models of neural dynamics. arXiv [Preprint] arXiv:1711.01861.
Available online at: https://proceedings.neurips.cc/paper/2017/hash/
addfa9b7e234254d26e9c7f2af1005cb-Abstract.html

Makin, S. (2019). Brain simulation. Nature 571, S9.
doi: 10.1038/d41586-019-02209-z

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,
Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. Bull. Math. Biophys. 5, 115–133. doi: 10.1007/BF02478259

McNeal, D. R. (1976). Analysis of a model for excitation of myelinated nerve. IEEE
Trans. Biomed. Eng. 23, 329–337. doi: 10.1109/TBME.1976.324593

Menze, B. H., Kelm, B. M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W.,
et al. (2009). A comparison of random forest and its Gini importance with
standard chemometric methods for the feature selection and classification of
spectral data. BMC Bioinf. 10, 213. doi: 10.1186/1471-2105-10-213

Overstall, A. M., and Woods, D. C. (2016). Multivariate emulation of computer
simulators: model selection and diagnostics with application to a humanitarian
relief model. J. R. Stat. Soc. 65, 483–505. doi: 10.1111/rssc.12141

Papamakarios, G., Sterratt, D. C., and Murray, I. (2019). “Sequential neural
likelihood: fast likelihood-free inference with autoregressive flows”, in
International Conference on Artificial Intelligence and Statistics.

Park, C., and Apley, D. (2018). Patchwork kriging for large-scale Gaussian process
regression. J. Mach. Learn. Res. 19, 1–43. Available online at: https://www.jmlr.
org/papers/volume19/17-042/17-042.pdf

Pava, I. D., La Gómez, V., Álvarez, M. A., Henao, Ó. A., Daza-Santacoloma,
G., and Orozco, Á. A. (2015). “A Gaussian process emulator for estimating
the volume of tissue activated during deep brain stimulation,” in Iberian

Conference on Pattern Recognition and Image Analysis (Cham: Springer),
691–699. doi: 10.1007/978-3-319-19390-8_77

Perlmutter, J. S., and Mink, J. W. (2006). Deep brain stimulation. Ann. Rev.
Neurosci. 29, 229–257. doi: 10.1146/annurev.neuro.29.051605.112824

Plumlee, M., Joseph, V. R., and Yang, H. (2016). Calibrating functional parameters
in the ion channel models of cardiac cells. J. Am. Stat. Assoc. 111, 500–509.
doi: 10.1080/01621459.2015.1119695

Pronzato, L., and Rendas, M.-J. (2017). Bayesian local kriging. Technometrics 59,
293–304. doi: 10.1080/00401706.2016.1214179

Ramaswamy, S., and Markram, H. (2015). Anatomy and physiology of
the thick-tufted layer 5 pyramidal neuron. Front. Cell. Neurosci. 9, 233.
doi: 10.3389/fncel.2015.00233

Ramsay, J. O. (2005). Functional Data Analysis (2nd ed.). New York, NY: Springer.
doi: 10.1007/b98888

Rasmussen, C. E., and Williams, C. K. I. (2006). Gaussian Processes for Machine

Learning. Cambridge, MA: MIT Press. doi: 10.7551/mitpress/3206.001.0001
Rougier, J. (2008). Efficient emulators for multivariate deterministic functions. J.

Comput. Graph. Stat. 17, 827–843. doi: 10.1198/106186008X384032
Sacks, J., Welch, W. J., Mitchell, T. J., andWynn, H. P. (1989). Design and analysis

of computer experiments. Stat. Sci. 4, 409–423. doi: 10.1214/ss/1177012413
Saltelli, A. (2002). Making best use of model evaluations to

compute sensitivity indices. Comp. Phys. Commun. 145, 280–297.
doi: 10.1016/S0010-4655(02)00280-1

Salter, J. M., Williamson, D. B., Scinocca, J., and Kharin, V. (2019).
Uncertainty quantification for computer models with spatial output
using calibration-optimal bases. J. Am. Stat. Assoc. 114, 1–24.
doi: 10.1080/01621459.2018.1514306

Santner, T. J., Williams, B. J., and Notz, W. I. (2018). “Space-filling designs for
computer experiments,” in The Design and Analysis of Computer Experiments

(Cham: Springer), 145–200. doi: 10.1007/978-1-4939-8847-1_5
Shapira, G. (2020). Comparison of Statistical Models for Computer Experiments:

Application in Neuroscience. Tel Aviv: Tel Aviv University.
Springenberg, J. T., Klein, A., Falkner, S., and Hutter, F. (2016). Bayesian

optimization with robust Bayesian neural networks. Adv. Neural Inf. Proc. Syst.
29, 4134–4142. Available online at: https://proceedings.neurips.cc/paper/2016/
hash/a96d3afec184766bfeca7a9f989fc7e7-Abstract.html

Taddy, M. A., Lee, H. K. H., Gray, G. A., and Griffin, J. D. (2009). Bayesian
guided pattern search for robust local optimization. Technometrics 51, 389–401.
doi: 10.1198/TECH.2009.08007

Frontiers in Big Data | www.frontiersin.org 16 March 2022 | Volume 5 | Article 789962

https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1145/2330784.2330799
https://doi.org/10.3389/neuro.01.1.1.001.2007
https://doi.org/10.1017/CBO9781316576533
https://doi.org/10.3389/fnana.2014.00129
https://doi.org/10.1098/rsta.2011.0553
https://doi.org/10.1080/00401706.2013.838910
https://doi.org/10.1080/10618600.2014.914442
https://doi.org/10.1016/j.csda.2008.06.020
https://doi.org/10.1214/11-AOS929
https://doi.org/10.1080/00401706.2013.861629
https://doi.org/10.1371/journal.pcbi.1002107
https://doi.org/10.1198/016214507000000888
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1016/j.jneumeth.2007.09.010
https://doi.org/10.1080/00401706.2013.869263
https://doi.org/10.1007/s10182-010-0147-9
https://proceedings.neurips.cc/paper/2017/hash/addfa9b7e234254d26e9c7f2af1005cb-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/addfa9b7e234254d26e9c7f2af1005cb-Abstract.html
https://doi.org/10.1038/d41586-019-02209-z
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/TBME.1976.324593
https://doi.org/10.1186/1471-2105-10-213
https://doi.org/10.1111/rssc.12141
https://www.jmlr.org/papers/volume19/17-042/17-042.pdf
https://www.jmlr.org/papers/volume19/17-042/17-042.pdf
https://doi.org/10.1007/978-3-319-19390-8_77
https://doi.org/10.1146/annurev.neuro.29.051605.112824
https://doi.org/10.1080/01621459.2015.1119695
https://doi.org/10.1080/00401706.2016.1214179
https://doi.org/10.3389/fncel.2015.00233
https://doi.org/10.1007/b98888
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1198/106186008X384032
https://doi.org/10.1214/ss/1177012413
https://doi.org/10.1016/S0010-4655(02)00280-1
https://doi.org/10.1080/01621459.2018.1514306
https://doi.org/10.1007/978-1-4939-8847-1_5
https://proceedings.neurips.cc/paper/2016/hash/a96d3afec184766bfeca7a9f989fc7e7-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/a96d3afec184766bfeca7a9f989fc7e7-Abstract.html
https://doi.org/10.1198/TECH.2009.08007
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shapira et al. Statistical Emulation of Neural Simulators

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J. D., Muller,
E. B., et al. (2016). BluePyOpt: leveraging open source software and cloud
infrastructure to optimise model parameters in neuroscience. Front. Neuroinf.
10, 17. doi: 10.3389/fninf.2016.00017

Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J., and Morris, M.
D. (1992). Screening, predicting, and computer experiments. Technometrics 34,
15–25. doi: 10.2307/1269548

Yao, W., Chen, X. Q., Huang, Y. Y., and van Tooren, M. (2014). A surrogate-
based optimization method with RBF neural network enhanced by linear
interpolation and hybrid infill strategy. Optim. Methods Softw. 29, 406–429.
doi: 10.1080/10556788.2013.777722

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Shapira, Marcus-Kalish, Amsalem, Van Geit, Segev and

Steinberg. This is an open-access article distributed under the terms of the

Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Big Data | www.frontiersin.org 17 March 2022 | Volume 5 | Article 789962

https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.2307/1269548
https://doi.org/10.1080/10556788.2013.777722
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Statistical Emulation of Neural Simulators: Application to Neocortical L2/3 Large Basket Cells
	Introduction
	In silico Experiments in Neuroscience
	Deep Brain Stimulation
	Brain Simulation Platform and Multiscale Modeling

	Statistical Modeling and Analysis of Computer Experiments
	Outline

	Brain Simulations
	NEURON Simulations
	Multiple Objective Optimization
	Framework
	Genetic Algorithm

	Use Case

	Statistical Methods
	Emulation Strategy
	Emulation Methods
	Gaussian Process Regression
	Random Forest
	Bayesian Treed Models and Treed Gaussian Process Regression
	Neural Networks

	Emulation Sensitivity Analysis

	Results
	Emulation of Selected Electrical Features
	Emulation of Features With Missing Values
	Inference
	Predictive Uncertainty
	Bayesian Sensitivity

	Discussion
	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

