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Intelligent personal assistants (IPAs) such as Amazon Alexa, Google Assistant and Apple

Siri extend their built-in capabilities by supporting voice apps developed by third-party

developers. Sometimes the smart assistant is not able to successfully respond to

user voice commands (aka utterances). There are many reasons including automatic

speech recognition (ASR) error, natural language understanding (NLU) error, routing

utterances to an irrelevant voice app, or simply that the user is asking for a capability

that is not supported yet. The failure to handle a voice command leads to customer

frustration. In this article, we introduce a fallback skill recommendation system (FROST)

to suggest a voice app to a customer for an unhandled voice command. There are

several practical issues when developing a skill recommender system for IPAs, i.e., partial

observation, hard and noisy utterances. To solve the partial observation problem, we

propose collaborative data relabeling (CDR) method. Tomitigate hard and noisy utterance

issues, we propose a rephrase-based relabeling technique. We evaluate the proposed

system in both offline and online settings. The offline evaluation results show that the

FROST system outperforms the baseline rule-based system. The online A/B testing

results show a significant gain of customer experience metrics.

Keywords: intelligent personal assistants, recommender system, deep learning, paraphrase detection, data

relabeling

1. INTRODUCTION

Intelligent personal assistants (IPAs) such as Alexa, Siri, and Google Assistant have been becoming
more and more popular and making people’s daily lives convenient. IPAs can fulfill users’ request
by answering questions ranging from weather to stock price. To enrich the user experience, a large
amount of third-party (3P) voice apps (aka skills) have been developed. These voice apps extend
IPAs built-in capabilities to better serve customers. They can perform operations such as ordering
food, playing a game, or helping a user sleep by playing soothing sounds. The supported 3P skills
can number up to hundreds of thousands.

Intelligent personal assistants understand user’s request using spoken language
understanding (SLU) system. The request goes through a series of components to get a
response, as illustrated in Figure 1. The first component is automatic speech recognition
(ASR), which converts speech to its transcription also called utterance. At the second
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FIGURE 1 | A high-level overview of an intelligent personal assistant (IPA).

stage, the utterance is interpreted by the natural language
understanding (NLU) system. NLU as the critical component
of SLU interprets the meaning of an utterance by using
several natural language processing (NLP) technologies including
domain classifier (DC), intent classifier (IC), and named entity
recognition (NER). The DC determines which domain should
process the request. The IC predicts what the user wants to do
from the list of intent types of the identified domain. NER, or
slot tagging, finds the entity (i.e., person, place, or thing) in
the utterance and tags it as a particular entity type (i.e., city,
song). For example, given an utterance “play Million Reasons
by Lady Gaga.,” the DC predicts Music as the domain. The
IC predicts the intent as PlayMusic. Finally, NER identifies
the slot-value pairs as SongName:Million Reasons and
Artist:Lady Gaga. After NLU, the arbiter is responsible
to select the most relevant voice app (skill) for a given NLU
interpretation {Music, PlayMusic, SongName:Million

Reasons, Artist:Lady Gaga}. Sometimes the arbiter may
fail to find a relevant skill that can handle the user request. It
could be a system error such as ASR error, NLU error. Another
reason could be that the feature requested by the user is not
supported yet by the dialog system or the requested content is
not found such as music, video, book, and recipe. To reduce
customer friction and recover the conversation, we propose a
skill recommender system that proactively suggests 3P skills to
users for unhandled requests, even if the users are not aware of
the skills.

The proposed skill recommender system is composed of two
components: a shortlister, and a reranker. Figure 2 shows the
system architecture. Given an utterance, shortlister, also known
as the candidate generator retrieves k most relevant skills out
of the skill catalog. The skill catalog for a certain locale has
tens of thousands of voice apps and is continuously changing
as skills are added, deleted, or updated. This stage is optimized
to have a high recall. The retrieved skills are passed to the
reranker that ranks the skill candidates by using skill specific
information and utterance. Finally, the top-1 skill is presented
to users. The advantage of adopting multiple-stage architecture
is to improve the recommendation inference time. The first
stage depends on simple input to quickly reduce the number
of candidates from tens of thousands to k. The second stage
uses more complicated model architecture and more skill-related
features without suffering from complexity issues as it works on
a very small number of candidates. This system is not meant to
replace the original NLU or arbiter components. It is specifically
designed to serve as a fallback for utterances that are not handled

FIGURE 2 | A overview of skill recommender system.

by the existing system (i.e., unclaimed utterances) using the
increasing catalog of 3P skills.

Traditional recommender systems such as video
recommendation recommend a ranked list of items to a
user. The user scans the list and selects the one they like the most
(Covington et al., 2016). The feedback from the user is treated as
the label (accept/reject) for learning a model. However, due to the
limitation of the voice user interface (VUI), we can only present
the top-1 skill to users, as listening to the playback of a long list
is tedious and can significantly degrade user experience (Cohen
et al., 2004). This limitation results in a partial observation
problem. Namely, users cannot observe the full recommendation
list and make a decision, which imposes difficulties in learning
a ranking model. To solve the partial observation problem, we
propose a novel method called collaborative data relabeling
(CDR). CDR mitigates the partial observation problem by trying
to answer a counterfactual question, "what if we present another
skill to the user?". CDR answers this question by matching a
similar request and using feedback from that request to relabel
the original ranked list. User feedback is noisy, which results in
noisy labels that can hurt the performance of machine learning
models. CDR also allows us to mitigate these noisy labels by using
multiple similar requests to determine the label. Recommender
systems usually focus on optimizing the accuracy of predictions
while ignoring the diversity of recommended items, which can
degrade user experience if similar items get recommended over
and over again (Ziegler et al., 2005; Knijnenburg et al., 2012;
Castagnos et al., 2013; Ekstrand et al., 2014; Willemsen et al.,
2016). CDR improves the diversity of recommended skills by
relabeling different skill candidates that serve the same intent.
The relabeled skills force the model to learn to diversify its
prediction distribution among multiple skill candidates.

Another challenge of building a skill recommender system
is noisy and hard utterances that cannot be handled by NLU.
Customers express their intents in many different ways with a
long tail of rare utterances (Falke et al., 2020) which are hard
for the voice assistant to interpret. Although these utterances
are rare, in aggregate their volume is huge. Besides hard
utterances, the input utterances can be noisy and erroneous
due to background noise and ASR errors. For noisy and hard
utterances, it is hard for the voice assistant to interpret them.
However, we found that customers often try to help voice
assistant by rephrasing their utterances until it understands them.
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To make the model learn to handle hard and noisy utterances,
we propose rephrase-based relabeling. This method identifies the
rephrased utterances of the unclaimed utterances within the same
session that are handled successfully by the voice assistant. Then
it uses the invoked skill of the claimed rephrase utterance as a
ground truth label of the unclaimed utterance.

In the beginning, we do not have data for training the model.
To collect training data, we build a rule-based system. Similar
to the proposed system, the rule-based system also has a two-
stage architecture. We use the data collected from this system
to train and evaluate our proposed model offline. The proposed
model is put into production for online A/B testing after it has
achieved satisfying offline results. Online experimental results
show significant gains of user experience metrics such as higher
volume of acceptances and lower friction rates.

Overall, the contributions of this study are summarized as
follows:

• We propose a skill recommender system for IPAs to handle
unclaimed utterances by exploiting the ever-increasing 3P
voice apps.
• To mitigate the partial observation issue, we propose CDR

inspired by causal inference. CDR has the additional advantage
of solving noisy label issues.
• Collaborative data relabeling also has the advantage of

improving recommendation diversity and, thus, improving
user satisfaction. Suggesting diverse skills to users can help
them explore and discover more skills, which is also beneficial
to third-party skill developers.
• To make the model robust to hard and noisy utterances,

we propose rephrase-based relabeling. This method utilizes
customer paraphrasing behavior to help the model learn to
handle noisy and hare utterances.
• We conduct offline and online experiments. Online

experimental results show significant gains in user experience
metrics.

2. SKILL RECOMMENDER SYSTEM

Our skill recommender system consists of two components,
shortlister and reranker, as shown in Figure 2.

2.1. Shortlister
Given the input utterance text, the shortlister selects top-k
relevant skills from the skill catalog. We implement shortlister as
a keyword-based search engine. To build the skill search engine,
we index skill metadata including skill name, skill descriptions,
example phrases, and invocation phrases. At retrieval time, the
relevancy score between an utterance and a skill is computed
as the sum of TF-IDF score (Rajaraman and Ullman, 2011) of
every word in the utterance. The skills with top k relevancy scores
are returned. Shortlister plays an important role as it decides
the performance upper bound of the whole system. One of the
benefits of using search-based skill retrieval is that we do not
need to use customer feedback to train the shortlister component,
which is especially helpful at the beginning of the development
of the system as we do not have any customer feedback data.

FIGURE 3 | The model architecture of reranker.

However, since it uses a keyword-based matching technique,
the semantic meaning of the utterance is ignored. We use the
reranker to rank the skill candidates generated by shortlister to
make sure the most relevant skills are ranked at the top.

2.2. Reranker
The reranker model takes in the skill candidates generated by
shortlister and returns a ranked list of skills based on utterance
and skill specific information. The reranker is a deep learning
model with a listwise ranking loss function. Figure 3 shows
the reranker model architecture. The utterance is encoded by
a Bidirectional Encoder Representations from Transformers
(BERT) encoder (Devlin et al., 2018). The features of skills
include skill id, skill name, and skill score returned by shortlister.
Skill id is represented using an embedding vector; skill name
is encoded into an embedding vector by BERT. The skill score
feature is converted into a bin and encoded as an embedding
vector. The skill feature embedding vectors are concatenated
to form a single embedding vector. The utterance embedding
vector is concatenated with every skill embedding vector to
form a sequence of utterance-skill embedding vectors. As the
skill candidates returned by shortlister is ordered by relevance
score, to capture such sequential information, these sequence of
embedding vectors are put into a Bi-LSTM layer (Hochreiter and
Schmidhuber, 1997). The outputs from the Bi-LSTM layer are
converted to probability scores by using the softmax function.
Each skill has a corresponding probability score. The skills are
reranked according to the predicted probability scores.

When suggesting a skill to a user, the voice assistant asks the
user if they want to accept it. A skill is launched if the user agrees
to accept it, which is regarded as a positive label; otherwise, the
label is negative. For a list of skill candidates, the user feedback
for the skill candidates is y = {y1, ..., yk}, yi ∈ {0, 1} and the
predicted probabilities by the reranker model is s = {s1, ..., sk}.
We use the listwise ranking objective function (Cao et al., 2007).
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FIGURE 4 | Illustration of collaborative data relabeling (CDR). In skill

recommendation, only the top-1 skill is presented to users. Given a user x who

invoked voice assistant with some utterance, to know her responses to skills

sy and sz that were not presented to her, we found two users y and z who

spoke similar utterances and were suggested with skills sy and sz, respectively,

and use their responses to relabel user x’s feedback to skills sy and sz.

The objective function is formulated as

L(y, s) =
1

k

k∑

i=1

[−yi log(si)− (1− yi) log(1− si)]. (1)

Compared to pointwise (Shashua and Levin, 2003) and pairwise
(Burges, 2010) rerankers which treat each skill independently,
listwise reranker models the whole list so that it can capture
the correlation between them. Due to the partial observation
issue, the labels of the unobserved skills are treated as negative.
However, this assumption is not realistic and can bias the
model, because the missing values are not necessarily negative.
In the next section, we introduce CDR to mitigate this issue.
Another advantage of using the listwise model is efficiency. The
pointwise model needs to encode the utterance k times, while the
listwise model only needs to encode the utterance once. Online
experiments also show that the listwise model reduces latency
significantly.

3. COLLABORATIVE DATA RELABELING

Compared to traditional recommender systems such as video
recommendation where users view the full recommended list
and select the best one they like, the skill recommender system
has its unique challenge. Limited by VUI, we can only present
the top-1 ranked skill to the user, which results in a partial
observation problem. With partial observation, users have no
chance to view and compare other skills in the list. We do not
know if the user would like the other skills more than the top-
1. Without comparing the top-1 skill with the other skills, it is
hard to learn a ranking model, as ranking, in essence, is about
comparing. To solve the partial observation problem, we propose
CDR approach.

The intuition of CDR is to answer a counterfactual question,
namely, “what if we had presented another skill to the user?”. To
answer this question, we find k nearest neighbors of a user request

(utterance) and use their feedback to relabel the original ranked
list of skill candidates, which is inspired by matching method
(Stuart, 2010) in causal inference. In causal inference, matching
is an approach to estimate the treatment effect of a treatment
by comparing the treated units to non-treated units with similar
characteristics. CDR has a similar working mechanism. Given a
user utterance, to know the user’s response to an unpresented
skill, we find a similar utterance whose invoker has interacted
with that skill and used their response to relabel it as either
positive or negative, as illustrated in Figure 4. Usually, there are
more than one neighbors that have interacted with the skill, in
which case we use majority vote to decide the final label.

3.1. Handling Noisy Labels
Customer feedback is noisy, which results in noisy labels. As
the suggested skill is presented to the user by reading its
name, in some cases, the skill name might mislead the user to
accept it but cannot fulfill the user request, which results in a
false positive label. Noisy labels can severely hurt the model’s
generalization performance. Another source of noisy labels is
from the neighbors at the relabeling stage. Some of the neighbors
might not be similar to the source utterance, which introduces
noisy labels when relabeling the source skill candidates. Another
advantage of CDR is its ability to mitigate the impact of noisy
labels. The intuition is that instead of using one user’s response to
a skill as the label, we choose several similar users and aggregate
their responses to a skill by majority vote. As the final decision is
made by several users, the label is more reliable than that of just
one user.

3.2. Recommendation Diversity
Recommender systems are confronted with an over-fitting
problem that only a small portion of items are recommended to
users (Kunaver and Požrl, 2017), which can hurt user satisfaction
as they can quickly get bored by always being suggested with
similar types of items. This problem is especially relevant for
skills that serve the same intent with different content. For
example, when users ask to play a soothing sound to help them
sleep, always suggesting the same sleep sound can get users
bored, while there exist many types of sleep sounds in the skill
store such as frog, ocean, rain, and waterfall sleeping sound.
Suggesting diverse skills can improve user satisfaction (Castagnos
et al., 2013). The proposed CDR method improves diversity by
relabeling different skill candidates as positive, which forces the
model’s predictive distribution to be dispersed amongmore skills.
Diversified suggestions can lead to a drop in accuracy (Ziegler
et al., 2005; McNee et al., 2006), which imposes difficulties in
faithfully evaluating the real user satisfactionmetrics. To evaluate
how diversity can influence user satisfaction, we use manual
annotation. The detail of the manual annotation schema will be
explained in Section 6.1.2.

3.3. Interpretability
Collaborative data relabeling relabels a skill candidate by using
the response of a neighboring utterance. The proposed CDR is
interpretable in the sense that when relabeling a skill candidate,
we know why it gets relabeled by inspecting the neighboring
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utterance. The benefit of interpretability is that if the neighboring
utterance does not make sense, we can discard the corresponding
relabeled label.

3.4. Similarity Metrics
The core part of CDR is similarity measurements between two
utterances. We investigate several approaches for measuring
similarities.

3.4.1. Jaccard Similarity
Given an utterance, the output from the shortlister is k skill
candidates. If two utterances are similar, their corresponding skill
candidates should also be similar. Therefore, we can measure the
similarity between utterances by comparing their skill candidates.
For utterances i and j, their skill candidates are sci and scj. The
similarity score between utterances i and j is Jaccard similarity
between sci and scj

sim(i, j) =
sci ∩ scj

sci ∪ scj
. (2)

3.4.2. Term Frequency and Inverse Document

Frequency (TF-IDF)
We treat each utterance as a document and compute the term
frequency and inverse document frequency of each word in an
utterance. Each utterance is represented as a vector. An entry in
the vector represents the TF-IDF (Rajaraman and Ullman, 2011)
value of the corresponding word. The similarity score of two
utterances is computed as the cosine similarity of their vectors.

3.4.3. Semantic Similarity
To capture the semantic meaning of utterances for similarity
measurements, we use fine-tuned BERT encoder to encode
utterances into embedding vectors. The BERT model is fine-
tuned using data with amulti-task objective function, specifically,
intent classification, and NER. We also experiment with a pre-
trained BERT encoder and find that it does not work well for
capturing the semantics of an utterance, which has also been
discovered by several works such as Reimers and Gurevych
(2019) and Li et al. (2020). We use the average pooling of
the contextual embedding vectors in the last layer as the
utterance embedding vector. We measure the similarity score
between two utterances using cosine similarity between their
embedding vectors.

4. REPHRASE BASED RELABELING

Noisy and hard utterances can negatively impact the performance
of SLU. This is especially problematic for the fallback skill
recommender system (FROST) as utterances that cannot be
handled by the voice assistant come to the fallback component.
To build a successful skill recommender system, it needs to
handle hard and noisy utterances. We found that when the voice
assistant does not understand them, users tend to rephrase what
they said to help it. The rephrases are usually simpler and the
voice assistant is able to provide correct answers. To build a skill
recommender system that is robust to hard and noisy utterances,

Algorithm 1: Rephrase-based relabeling.

Input: session {u1, ..., ut , .., uN}; original utterance ut ;
labels {l1, ..., lt , ...lN}; utterance encoder e;
predefined similarity threshold θ .

for k← t + 1 to N do

if cos(e(ut), e(uk)) > θ then
l← lk

end

end

if l is 3P skill then
return (ut , l)

end

we propose rephrase-based relabeling, which utilizes labels from
simpler utterances to label hard and noisy utterances.

The critical part of rephrase-based relabeling is rephrase
detection. Given the original utterance with friction, we want
to identify the utterance within the same session that is the
rephrasing of the original utterance and successfully served by
the voice assistant.

4.1. Rephrase Detection
Given an unclaimed utterance, the task of rephrase detection
is to find an utterance after ut in the conversation session
that is semantically similar to the unclaimed utterance ut . The
assumption is that the users tend to rephrase their requests
in the conversation with the voice assistant until they get the
expected response. A session is a sequence of utterances denoted
as {u1, ..., ut , .., uN}. Assume ut is the original utterance, we want
to find rephrase in {ut+1, ..., uN}. An utterance is considered as
a rephrasing of the original utterance if they are semantically
similar. To measure the similarity of two utterances, we encode
the utterances into embedding vectors using a pre-trained BERT
encoder as in Section 3.4.3 and the similarity score is computed
as the cosine similarity between the two embedding vectors.
A future utterance is regarded as the rephrase of the original
utterance if its similarity score is above a certain threshold. We
decide the optimal similarity threshold by manually checking the
original and rephrase pairs.

4.2. Relabeling
Given an unclaimed utterance ut , its conversation session
{u1, ..., ut , .., uN} and skills that served the corresponding
utterances {l1, ..., lt , ...lN}, the rephrase-based relabeling works as
shown in Algorithm 1.

Note that we treat the last similar utterance within the session
as the rephrase and we only relabel the original utterance if the
rephrase is served by a 3P skill.

5. EXPERIMENTS

5.1. Data Collection
In the beginning, we do not have data to train and evaluate our
system. To collect data, we build a rule-based system that has
similar architecture as our proposed one. The rule-based system
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uses the same shortlister but a different reranker. The difference
is the reranker. The input into the rule-based reranker is the
skill candidates from shortlister. The rule-based reranker ranks
the skill candidates by using their historical acceptance rates.
The skill with the highest acceptance rate is selected. To ensure
high quality of recommendation, we only suggest the top skill
to the customer if its acceptance rate is higher than 0.5. We
collect 2-month data from a commercial voice assistant traffic
for model training and evaluation. The data of the last week is
used for testing. The data of the second last week is used for
validation. The remaining is used for training. The proportions
of training, validation, and testing data are around 80, 10, and
10%, respectively. Each data sample is composed of an utterance
ut , forty skill candidates st,1, ..., st,40 generated by shortlister, and
ground truth label yt , denoted as (ut , (st,1, ..., st,40), yt), where yt ∈
{st,1, ..., st,40} ∪ {N}, N is null which means all the skill candidates
are rejected by the user. The features of a skill st,1 include skill id,
skill name, and skill score from shortlister; skill id is represented
as one-hot vector and skill score is quantized into one of three
levels (high, medium, and low) and represented as one-hot vector
as well. Note that for the sake of customer privacy, the data is de-
identified and we are not able to know the identity of the user
from the data.

5.2. Collaborative Data Relabeling
For CDR, the k-nearest neighbors of an utterance are found
from the training data. Additionally, only the training data is
relabeled. We keep the labels of the validation and testing data
as it is. When relabeling the skill candidates of an utterance, we
select up to 200 neighbors and keep those whose similarity score
is above a certain threshold s. To avoid bringing noisy labels
from neighbors, a skill candidate is relabeled if the number of its
supportive neighbors is higher than n. The supportive neighbors
of skill are the neighboring utterances that relabel it as positive.
The intuition is that if there are multiple neighbors confirming
a skill candidate, the relabeled skill is reliable. We treat s and
n as hyperparameters and choose the best value by using the
validation dataset.

Figure 5 shows the percentage of label increments after
applying CDR. In this figure, we use cosine similarity between
utterance embedding vectors based on fine-tuned BERT model,
refer to Section 3.4.3. It shows that with the decreasing of
the similarity score threshold, the number of relabeled labels
increases. When the number of support increases, the number of
relabeled labels decreases as it requiresmore neighbors to support
a skill to be relabeled.

5.3. Evaluation Metrics
Given a list of skill candidates, the reranker ranks them and
returns a ranked list of skill candidates. The top-1 skill with a
predicted probability higher than 0.5 is presented to a user. If
the predicted probability of the top-1 skill is lower than 0.5,
no skill is suggested. To simulate this scenario, we evaluate the
model by selecting the top-1 skill with a predicted probability
higher than 0.5 and comparing it with the ground truth label. The
evaluation metrics we use include precision, recall, and F1 score.
Given the ground truth labels {s1, ...si, ..., sN} and predicted labels

FIGURE 5 | The percentage of label increments after applying CDR.

TABLE 1 | Evaluation metrics.

Metrics Equation

Precision1
∑

i 1(si=ŝi )·1(si 6=N)·1(ŝi 6=N)∑
i 1(ŝi 6=N)

Precision2
∑

i 1(si=ŝi )·1(si 6=N)·1(ŝi 6=N)∑
i 1(si 6=N)·1(ŝi 6=N)

Recall
∑

i 1(si=ŝi )·1(si 6=N)·1(ŝi 6=N)∑
i 1(si 6=N)

F11
2·Precision1 ·Recall
Precision1+Recall

F12
2·Precision2 ·Recall
Precision2+Recall

{ŝ1, ..., ŝi, ..., ŝN}, si, ŝi ∈ S ∪ {N}, where S denotes all the skills, the
evaluation metrics are defined in Table 1. Precision1 calculates
the number of correct predictions over all the predictions, while
Precision2 means the number of correct predictions over all
the utterances that have non-empty ground truth labels. In this
article, we report relative performance.

6. EXPERIMENTAL RESULTS

6.1. Collaborative Data Relabeling
6.1.1. Comparative Experimental Results
Figure 6 shows the relative performance improvements of the
CDR method with the change of hyperparameters, the number
of support n and similarity threshold s. The baseline model is a
listwise reranker model trained with the original training data.
Figures 6A,B show precision1 and precision2 with respect to n
and s. They show that precision1 and precision2 increase with
the increasing of n and s. With the increasing of s, the relabels
we obtain are from closer neighbors which tend to bring cleaner
labels. When the similarity score is lower, the two utterances are
less similar, which even leads to wrong labels. With the increasing
of n, we require more neighbors to confirm the relabeling of
a skill candidate, which leads to the higher quality of labels.
Relatively, the precision of the model decreases with respect
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FIGURE 6 | Experimental results of CDR method by varying the number of support and similarity threshold. These results are using similarity scores based on

utterance embedding vectors generated by fine-tuned BERT encoder. The unit of the vertical axis is the percentage. (A) Precision1. (B) Precision2. (C) Recall. (D) F11.

(E) F12.

to the baseline models. The reason is that after relabeling, the
model’s recommendations are more diverse, which hurts the
accuracy of the model as suggested by Castagnos et al. (2013)
etc. For a more fair comparison of how diversity can impact user
satisfaction, wemanually compare the twomodels and the results
are shown in Section 6.1.2.

Figure 6C shows the change of recall with respect to n and s.
It shows that by lowering s and n, recall increases roughly. When
lowering s and n, we bring more positive labels, therefore, the
model is more likely to make a suggestion. Figures 6D,E show
F11 and F12. From them, we can see that the overall performance
of the model trained on relabeled data is higher than that of the
baseline model.

6.1.2. Manual Evaluation
To evaluate how CDR impacts the model performance, we
manually compare the relabeled model against the model trained
on original data. We randomly sampled 2500 samples and asked
human annotators to check the suggested skills by relabeled and
baseline models. We use two types of evaluation metrics. The
first one is accuracy which is the number of correct predictions
divided by the total number of predictions. As the model only
makes a suggestion if the predicted probability is higher than 0.5,
the model can reject to make a suggestion if it is not confident
enough. To compare no suggestion with the suggestion, we use a
score. A model gets a score by the following rules:

TABLE 2 | Manual annotation results.

Model Accuracy Score #suggestions

CDR-based model +19.21% +62.73% +112.13%

• If the model’s prediction is correct, it gets a score.
• If the model does not make a suggestion: a) if the other model

makes a wrong prediction, the current model gets a score;
b) if the other model makes a correct prediction, the current
model does not get a score. The intuition is that no suggestion
is better than a wrong suggestion and a correct suggestion is
better than no suggestion.

Table 2 shows the evaluation results based onmanual annotation.
The baseline model is the model trained on original data. From
the results, we can see that the relabeled model has higher
accuracy even though the offline metrics show the opposite,
which indicates higher user satisfaction. The relabeled model also
gets a higher score and makes more suggestions.

6.1.3. The Influence of Similarity Measurements
We experiment with several similarity measurements between
utterances as discussed in Section 3.4, including Jaccard
similarity, TF-IDF, and semantic similarity. Table 3 shows the
comparative performance of models using different similarity
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TABLE 3 | The influence of different similarity measurements on performance.

Model Precision1 Precision2 Recall F11 F12

Jaccard similarity –32.54% -12.35% +43.31% +9.21% +27.53%

TF-IDF –10.39% –4.75% +5.94% +0.854% +3.69%

Semantic similarity –42.93% –16.09% +85.06% +13.98% +49.83%

TABLE 4 | Experimental results on rephrase-based relabeling.

Model Precision1 Precision2 Recall F11 F12

Rephrase-based model +2.22% +4.45% +10.67% +5.54% +8.09%

TABLE 5 | Experimental results of ablation study.

Model Precision1 Precision2 Recall F11 F12

Without skill id +9.71% +1.45% –28.5% –20.83% –24.13%

Without skill name +0.82% +0.05% –2.83% –1.84% –2.27%

Without skill score +0.15% +0.15% –0.55% –0.35% –0.41%

Without Bi-LSTM layer +11.35% +1.35% –52.46% –43.46% –46.97%

measurements. By F11 and F12, we can see that relabeling
by using semantic similarity achieves the best result. TF-IDF
performs the worst as it only considers term matching which
ignores the semantic meaning of an utterance. Jaccard similarity
utilizes the skill candidates generated by the shortlister which is
also based on term matching, therefore, it performs worse than
semantic similarity. However, even the worst relabeling method
outperforms the baseline model in terms of F11 and F12, which
shows the efficacy of CDR.

6.2. Rephrase-Based Relabeling
Table 4 shows the relative performance change of rephrase-based
relabeling with respect to the baseline. The baseline model is the
listwise reranker trained on original data. The relabeled model is
the listwise reranker model trained on the data with rephrase-
based relabeling. A total of 4% of the training utterances are
relabeled by using the label of the rephrased utterances. From
the table, we can see that rephrase-based relabeling can improve
both precision and recall. As rephrase-based relabeling brings
more positive labels, the model trained on relabeled data is
more likely to suggest skills, which drives the recall higher. In
addition, rephrase-based relabeling corrects wrong labels, which
improves precision.

6.3. Ablation Study
In this section, we study how different features and components
of the model impact the model performance. Specifically, we
study the influence of skill id, skill name, skill score, and Bi-LSTM
layer on model performance. We remove one of the factors while
fixing the others. Table 5 shows the experimental results. From
the results, we can see that removing skill id results in higher
precisions and lower recall and F1 scores. Removing skill name
and skill score increases precisions slightly and decreases recall

and F1 scores. Removing Bi-LSTM layer drops recall significantly
and leads to much lower F1 scores. In summary, skill id and
Bi-LSTM layer have the most impact on model performance.

6.4. Online Experiments
After seeing performance gains in offline experiments, we put
FROST into online A/B testing. We compare FROST with the
rule-based heuristic model. The online experiments show that
FROST reduced the friction rate by 0.35%. Friction means the
circumstances where the voice assistant does not understand
the user and cannot act on the user’s request. The number of
accepted skills increased by 5.86%. The average number of new
skills enabled per customer increased by 0.98%. Skill has to be
enabled before it can be used by the customer. In addition, the
number of unique suggested and accepted skills increased by 233
and 98.75%, respectively, which indicates that the new model
makes more diverse suggestions than the legacy system.

7. RELATED WORK

With more and more content created online, people are suffering
from information overload. To help people find interesting
information, recommender systems have been proposed and
are a popular research topic in both academia and industry.
Recommender systems have been widely adopted in the industry
for recommending videos, music, books, etc. They are an integral
part of many online services.

The earliest recommender systems are based on collaborative
filtering or content-based filtering. Collaborative filtering
assumes that similar users have similar interests and recommends
items from similar users (Sarwar et al., 2001). Content-based
filtering recommends items similar to the items the user
likes (Aggarwal, 2016). Basilico and Hofmann (2004) unify
collaborative filtering and content-based filtering by using a
suitable kernel function between user-item pairs. The critical
part of collaborative filtering and content-based filtering is
similarity measurements. Similarities between users or items
can be learned or calculated based on user or item features.
Ning and Karypis (2011) proposed to learn the item similarity
matrix by using sparse linear models. Another line of work for
recommender systems is based on matrix factorization (Hu
et al., 2008; Koren et al., 2009). Matrix factorization methods
decompose the user-item rating matrix into user and item
embedding vectors. The predicted rating of a user-item pair is
the dot product of their corresponding user and item embedding
vectors. Different variants of matrix factorization methods have
been proposed such as non-negative matrix factorization (Zhang
et al., 2006), SVD++ (Koren, 2008), timeSVD++ (Koren, 2009),
and factorization machines (Rendle, 2010). Xiao et al. (2018)
proposed a matrix factorization model for recommending music
in IPAs. To cope with the limitation of VUI, they binarize
play durations to obtain implicit affinity labels. Rendle et al.
(2012) proposed Bayesian personalized ranking (BPR) which
directly optimizes a ranking measure with the assumption that
users prefer observed items over non-observed items. With
this assumption, BPR naturally deals with missing and negative
observations.

Frontiers in Big Data | www.frontiersin.org 8 April 2022 | Volume 5 | Article 867251

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Hu et al. FROST

Deep learning has been more and more popular in many
fields such as computer vision, natural language processing, etc.
(LeCun et al., 2015). In the recommender system, we have also
seen many works based on deep learning. Matrix factorization
models user-item ratings using the inner product. Instead of
using the inner product, neural collaborative filtering replaces
it with a neural architecture (He et al., 2017). A deep learning
version of the factorization machine, DeepFM, was proposed
by Guo et al. (2017). DeepFM is an end-to-end model that
can model both low- and high- order feature interactions.
Covington et al. (2016) proposed two-stage deep learning models
for Youtube video recommendation. To combine memorization
and generalization, a wide and deep learningmodel was proposed
for Google Play apps recommendation (Cheng et al., 2016).
To model fashion evolution over time, one-class collaborative
filtering (He and McAuley, 2016) has been proposed, which
utilizes a time-window mechanism to highlight trends in a
time window. Ma et al. (2020) proposed HRNN-meta to
model temporal effects by encoding time information through a
learned embedding.

The aforementioned studies focus on optimizing prediction
accuracy. However, optimizing prediction accuracy is not
necessarily optimizing user satisfaction. Ziegler et al. (2005)
found that diversification of the recommendation topic can
improve user satisfaction. Different methods have been proposed
to improve the diversity of recommendations. Adomavicius
and Kwon (2011) proposed a parameterized ranking approach
to improve diversity. They also proposed a graph-theoretic
approach to increase the diversity of recommended items based
on maximum bipartite matching computations. Premchaiswadi
et al. (2013) proposed a total diversity effect ranking for
improving diversity by considering the diversity effect of each
item in the recommendation list. Sun et al. (2020) proposed a
recommendationmethod based on Bayesian graph convolutional
neural networks. The node-copying model in their study can
promote recommendation diversity.

The partial observation problem discussed in this article is
similar to position bias in the ranking and recommender system.
Position bias refers to the phenomenon that users are more likely
to interact with items in a higher position of the recommendation
list (Chen et al., 2020). Joachims et al. (2017) found that users are
less likely to browse items that are ranked lower in the list, while
only examining the top few items with eyetracking. Compared

to position bias, the partial observation problem studied in this
study is more severe as only the first item is exposed to the user.

8. CONCLUSIONS AND FUTURE WORK

In this study, we proposed FROST, a skill recommender system
to suggest skills for unhandled voice commands in IPAs that aims
to reduce user friction and recover the conversation. Compared
to traditional recommender systems, skill recommender systems
face the challenges of partial observation, noisy labels, and hard
and noisy utterances. To solve these challenges, we proposed two
relabeling techniques, i.e., CDR and rephrase-based relabeling.
CDR mitigates partial observation and noisy label problems.
In addition, it improves the diversity of recommended skills.
CDR as a simple and effective approach is especially useful
for industrial deployment. We also developed rephrase-based
relabeling method to overcome the hard and noisy utterance
problem. We evaluated the proposed system offline before
putting it online for A/B testing. The online experimental results
showed significant gains in user experience metrics. In the future,
we will try contextual bandits and let the model learn to explore
the unsuggested skills.
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