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In classical causal inference, inferring cause-effect relations from data relies on the

assumption that units are independent and identically distributed. This assumption is

violated in settings where units are related through a network of dependencies. An

example of such a setting is ad placement in sponsored search advertising, where

the likelihood of a user clicking on a particular ad is potentially influenced by where

it is placed and where other ads are placed on the search result page. In such

scenarios, confounding arises due to not only the individual ad-level covariates but also

the placements and covariates of other ads in the system. In this paper, we leverage

the language of causal inference in the presence of interference to model interactions

among the ads. Quantification of such interactions allows us to better understand the

click behavior of users, which in turn impacts the revenue of the host search engine

and enhances user satisfaction. We illustrate the utility of our formalization through

experiments carried out on the ad placement system of the Bing search engine.

Keywords: causal inference, allocational interference, spillover effect, dependent data, counterfactual layout,

online advertising

1. INTRODUCTION

In recent years, advertisers have increasingly shifted their ad expenditures online. One of the most
effective platforms for online advertising is search engine result pages. Given a user query, the
search engine allocates a few ad slots (e.g., above or below its organic search results) and runs
an auction among advertisers who are bidding and competing for these slots. Quantifying the
effectiveness of ad placement is vital not only to the experience of the user, but also revenue of
the advertiser and the search engine. Click yield is a common metric used in this regard. Often,
statistical and flexible machine learning models are used to predict the click behavior of users by
estimating the likelihood of receiving a click in a given slot using logged data. A rich literature is
devoted to click prediction in sponsored search advertising (Shaparenko et al., 2009; Cheng and
Cantú-Paz, 2010; Cheng et al., 2012; Xiong et al., 2012; Zhang et al., 2014; Nabi-Abdolyousefi, 2015;
Effendi and Ali, 2017; Bisht and Susan, 2021). For a survey on click prediction in online advertising
please refer to Wang (2020). However, a comprehensive understanding of click behavior requires
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causal, rather than associative, reasoning (Bottou et al., 2013; Yin
et al., 2014; Hill et al., 2015; Zeng et al., 2021).

Causal inference is central to making data-driven decisions.
Inferring valid cause-effect relations, even with granular data and
large sample sizes, is complicated by confounding induced by
common causes of observed exposures and outcomes. In classical
causal inference, it is assumed that samples are independent
and identically distributed (iid). However, a causal view of
ad placement under the iid assumption is implausible as ads
interfere with one another from the beginning of the auction until
the end when clicks on impressed ads are recorded. In non-iid
settings, confounding arises due to not only the individual ad-
level covariates but also the exposures and covariates of other
ads in the system. This is commonly referred to as interference
(Hudgens and Halloran, 2008). Incorporating knowledge of
interference into the statistical models used to compute rank
scores for each ad can help optimize the final layout of
each search page. Moreover, a proper understanding of the
interference issue in relation to causal inference directly impacts
engineering of more purposeful interventions and design of more
effective A/B testing for ad placement. Alternatively, randomized
experiments via bipartite graphs offer a useful formalism to
study two-sided market experiments under violation of iid
assumption (Pouget-Abadie et al., 2018, 2019; Bajari et al.,
2021; Harshaw et al., 2021; Johari et al., 2022). This stands
in contrast with interference that occurs on networks where
all units are of the same type (e.g., ads in a block)—in
bipartite experiments, there is a distinction between units that
can be subject to an intervention and units whose responses
are of interest to the experimenter. Hence, modeling what
we are after in the context of sponsored search advertising is
closer to the causal framework for modeling interference in
social networks.

In this paper, we formalize the problem of interference
among ads using the language of causal inference. To the
best of our knowledge, this is the first analyis of ads under
the plausible and realistic setting of interference. We hope
our proposed framework serves as a benchmark for future
work in search advertising that go beyond the classical iid
assumption. Throughout the paper, we discuss mechanisms
that give rise to interference in ad placement. Using graphical
models, we assume a causal structure that encodes the various
sources of interference. We formulate our causal questions
and discuss the identification and estimation of relevant
effects. Our experiments find statistically significant interference
effects among ads. We further adapt the constraint-based
structure learning algorithm Fast Causal Inference (Spirtes
et al., 2000) to verify the correctness of our presumed causal
structure and learn the underlying mechanisms that give
rise to interference. Finally, we incorporate the knowledge
of interference to improve the performance of the statistical
models used during the course of the auction. We demonstrate
this improvement in performance by running experiments
that closely resemble the framework in the Genie model—
an offline counterfactual policy estimation framework for
optimizing Sponsored Search Marketplace in Bing ads (Bayir
et al., 2019).

2. PRELIMINARIES AND SETUP

In causal inference, we are interested in quantifying the cause-
effect relationships between a treatment variable A and an
outcome Y using experimental or observational data. A common
setting assumes that the treatment received by one unit does not
affect the outcomes of other units—this is known as the stable
unit treatment value assumption or SUTVA Rubin (1980) and
is informally referred to as the “no-interference” assumption. In
this setting, the average causal effect (ACE) of a binary treatment
A on Y is defined as ACE : = E[Y(1)] − E[Y(0)], where Y(a)
denotes the counterfactual/potential outcome Y had treatment A
been assigned to a, possibly contrary to the fact.

Causal inference uses assumptions in causal models to
link the observed data distribution to the distribution over
counterfactual random variables. A simple example of a causal
model is the conditionally ignorable model which encodes three
main assumptions: (i) Consistency assumes the mechanism that
determines the value of the outcome does not distinguish
the method by which the treatment was assigned, as long as
the treatment value assigned was invariant, (ii) Conditional
ignorability assumes Y(a) ⊥ A | X, where X acts as a set of
observed confounders, such that adjusting for their influence
suffices to remove all non-causal dependence between A and Y ,
and (iii) Positivity of p(A = a | X = x),∀a, x. Under these
assumptions, p[Y(a)] is identified as the following function of
the observed data:

∑
X p(Y | A = a,X) × p(X), known as

backdoor adjustment or g-formula (Robins, 1986; Pearl, 2009).
For a general identification theory of causal effects in the presence
of unmeasured confounders see (Huang and Valtorta, 2006;
Shpitser and Pearl, 2006; Bhattacharya et al., 2020a). Alternative
causal quantities of interest include conditional causal effects
(effects within subpopulations defined by covariates) (Shpitser
and Pearl, 2012), mediation quantities (which decompose effects
into components along different mechanisms) (Shpitser, 2013),
and the effects of decision rules in sequential settings (such
as dynamic treatment regimes in personalized medicine) (Nabi
et al., 2018, 2019).

In this paper, we relax the implausible assumption of no-
interference in ad placement. Interference among ads across
different pageviews creates the most extreme scenario of
full interference, as this allows for user interaction with the
system over multiple time frames. Following the convention
in Sobel (2006), Hudgens and Halloran (2008), Tchetgen and
VanderWeele (2012), and Ogburn and VanderWeele (2014),
we model only interference within pageviews and restrict any
cross-pageview interference among ads. In other words, we
restrict the interference to spatial constraints and exclude
temporal dependence across pageviews. This is known as partial
interference and could be justified by the fact that pageviews are
query specific and are separated by time and space. In presence
of interference, the counterfactual Y(a) is no longer well-defined
as we need to distinguish ads by a proper indexing scheme and
consider the treatment assignments of other ads simultaneously.

Suppose we have N pageviews, indexed by n = 1, . . . ,N,
with each containingm impressed ads. We index the ads on each
pageview by i = 1, . . . ,m based on the order in which they appear
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on the page. The i-th ad on the n-th pageview is represented by
the tuple (Xni,Ani,Yni), where Xni denotes the vector that collects
all the ad-specific features such as geometric features (e.g., line
width, pixel height), decorative features (e.g., rating information,
twitter followers), and other textual features extracted from the
ad. Ani denotes the treatment and is predefined by the analyst.
An example of a treatment is the block membership of the ad:
an indicator that specifies whether the ad is placed on top of the
page (Top) or bottom of the page (Bottom). Ads can also appear
elsewhere such as the sidebars. In this paper, without loss of
generality, we assume we only have two distinct blocks of ads on
each pageview: Top and Bottom. Yni denotes a binary indicator
of receiving a click by the user. We denote the state space of a
random variable V by XV .

Let Xn : = (Xn1, . . . ,Xnm), An : = (An1, . . . ,Anm), and Yn : =

(Yn1, . . . ,Ynm) collect the features, treatment assignments, and
outcomes of all the ads on the n-th pageview, respectively. We
define the counterfactual Yni(an) to be the click response of
the i-th ad on the n-th pageview where every ad on the same
pageview is relocated according to the treatment assignment rule
an, which is a vector of size m and the i-th element ai denotes
the treatment value of the i-th ad. This notation makes the
interference among ads on the same pageview more explicit as
the potential outcome of a single ad now depends on the entire
treatment assignment an, rather than just ani. The causal effect
of interventions in the presence of interference can be quantified
by comparing such counterfactuals under different interventions;
for instance Yni(an) vs. Yni(a′n), where an and a′n denote two
plausible interventions.

In the next section, we discuss various sources that give
rise to interference among ads and propose a causal graphical
model that captures such interactions in a reasonable way.
In what follows, we discuss various ways of quantifying the
interference effect among ads and provide sufficient conditions
for identification of such effects along with estimation strategies.
In general, we observe fewer pageviews that would have m > 5
impressed ads. This may affect the finite sample performances
of our effect estimations for such pageviews, discussed in
Section 4.3. The number of impressed ads does not affect any
of our identification claims in Section 4.2. We do consider
pageviews with up to m = 8 impressed ads in our experiments
in Section 5.

3. AD PLACEMENT IN THE PRESENCE OF
INTERFERENCE

We describe ad placement in the presence of interference
by a system of nonparametric structural equation models
with independent errors (Pearl, 2009). The key characteristic
of structural models is that they represent each variable as
deterministic functions of their direct causes together with an
unobserved exogenous noise term, which itself represents all
causes outside of the model. Let U denote a variable capturing
user intention which is unknown and hidden to the analyst.
Given such intent, the user types a query, denoted by C, which
is expressed as an unrestricted function of the intent U and a

noise term ǫc, denoted by fc(.). Upon observing the query, a set
of ads are selected from the inventory, then online auction is run
to determine winner ads to be displayed on the page. The i-th
displayed ad is denoted by Xi. The relation between Xi and C is
captured by an unrestricted function fxi (.) and the perturbation
term ǫxi . The block allocation of i-th ad is denoted by Ai. The
set of all impressed ads and the allocations are denoted by X

and A, respectively (we suppress the indexing of pageviews for
clarity). The information on U,X,A, along with the noise term
ǫyi , determines whether the i-th ad is clicked or not which is
captured by Yi. The structural equation models are summarized
as follows.

user intent U ← fu(ǫu)

user query C ← fc(U, ǫc)

i-th ad Xi ← fxi (C, ǫxi )

i-th ad’s allocation Ai ← fai (X, ǫai )

i-th ad’s click indication Yi ← fyi (U,X,A, ǫyi ) (1)

Note that in the above display, when allocating the i-th ad to
Top or Bottom, we are not only considering the corresponding
features of the ad itself, but also features of other ads on the page,
hence the entire array of X is acting as causes of Ai. Similarly,
we allow for the entire vector of A and array of X to influence
Yi. These equation capture the interference mechanism in ad
placement. In the absence of interference, the above equations
simplify by replacing the allocation structural equation with
Ai ← fai (Xi, ǫai ) and the click indication structural equation with
Yi ← fyi (U,Xi,Ai, ǫyi ).

Causal relationships are often represented by graphical causal
models (Spirtes et al., 2000; Pearl, 2009). Such models generalize
independence models on directed acyclic graphs (DAGs) to also
encode conditional independencies on counterfactual variables
(Richardson and Robins, 2013). A DAG G(V) consists of a set
of nodes V connected through directed edges such that there
are no directed cycles. We will abbreviate G(V) as simply G,
when the vertex set is clear from the given context. Statistical
models of a DAG G are sets of distributions that factorize as
p(V) =

∏
Vi∈V

p[Vi | paG(Vi)], where paG(Vi) are the parents
of Vi in G. The absence of edges between variables in G, relative
to a complete DAG entails conditional independence facts in
p(V). These can be directly read off from the DAG G by the
well-known d-separation criterion (Pearl, 2009). That is, for
disjoint sets X,Y ,Z, the following global Markov property holds:
(X⊥⊥d-sepY | Z)G H⇒ (X ⊥⊥ Y | Z)p(V). When the context
is clear, we will simply use X ⊥⊥ Y | Z to denote the conditional
independence betweenX andY givenZ. TheDAG representation
of the structural (Equation 1) for a pageviewwith three impressed
ads is shown in Figure 1A. For simplicity and to avoid cluttering
the graph, we only depict the outcome of the i-th ad on the
DAG and marginalize out all the other outcomes (since all the
outcomes share the same set of parents). The statistical model of
the DAG in Figure 1A, assuming all outcomes are included on
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the DAG, can be written as,

p(U,C,X,A,Y) = p(U)× p(C | U)×
∏

3
i=1

{
p(Xi | C)

× p(Ai | X)× p(Yi | U,X,A)
}
. (2)

As we mentioned earlier, the user intent is unmeasured. We
further restrict our attention to ad-specific features and leave the
query-specific features aside. In other words U and C are both
treated as latent. We highlight this in Figure 1A by coloring both
vertices and the relevant edges in gray. In this case, the joint
distribution over observed variables X,A,Y and latent variables
U,C is said to be Markov relative to a hidden variable DAG.
There may be infinitely many hidden variable DAGs that imply
the same set of conditional independencies on the observed
margin, i.e., p(X,A,Y). It is typical to use a single acyclic directed
mixed graph that entails the same set of equality constraints as
this infinite class; see Verma and Pearl (1990) and Richardson
et al. (2017) for more details.

3.1. Sources of Interference in Ad
Placement
In order to better understand the interference behavior among
ads, we need to identify the causal mechanisms that give rise
to such behaviors. Looking at our causal model in Figure 1A,
we allow for two distinct pathways through which other ads
influence Yi. One is direct pathways such as Xj → Yi and
Aj → Yi. This type of interference is called direct interference.
As an example, suppose a low quality ad (determined by various
scores) is placed in the Top. The poor quality of this ad may
shape the user’s opinion about the sorted search results in
negative ways, preventing them from clicking on further ads.
Similarly, placing a high quality ad in the Top may convince
the user to return and explore more ads. Other pathways by
which outcomes of different ads could be related are ones that
go through the common unmeasured confounders and account
for marginal dependencies between Yi and Yj. An example of
this marginal dependency is through user intent U, Yj ←

U → Yi. This type of interference is called interference
by homophily (Shalizi and Thomas, 2011). Accounting for
homophily makes our framework more practical as it allows
for unmeasured confounders to influence multiple outcomes
simultaneously. For a discussion on graphical representations of
different sources of interference, see Ogburn and VanderWeele
(2014).

The third type of interference that we account for is
called allocational interference. In allocational interference,
the interactions among units are modeled according to their
corresponding group assignments. Through interactions within a
group, units’ characteristics may affect one another. This type of
interference is well-suited for our purposes since each pageview
is divided into non-overlapping blocks (Top and Bottom), and
we can simply treat each block as a single group of ads. In our
setting, treatment allocates each ad to a single block (randomly
or given covariates X), and the outcome of the ad is affected by
which other ads are allocated to the same block. We call this
behavior block-level interference.We can also imagine a scenario
where the outcome of an ad is affected by the ads that are not

allocated to the same block. In other words, ads could potentially
interact across blocks. We call this cross-block interference. As an
example, moving a high quality ad to the Bottom may improve
the perception of other ads in the Bottom and yield higher clicks
on these ads. On the other hand, it may also affect the click yields
of ads in the Top by drawing attention away from these ads,
resulting in cross-block interactions. In order to formalize the
block-level interference and cross-block interference, we split X
into two disjoint sets: one that contains block-level information,
denoted by Xb, and one that contains information outside the
block, denoted by Xc. For the i-th positioned ad, we define two
disjoint sets:

Xb
i =

{
Xj ∈ X s.t. Aj = Ai

}
=

{
I(Aj = Ai)× Xj, ∀j = 1, . . . ,m

}
,

Xc
i =

{
Xk ∈ X s.t. Aj 6= Ai

}
=

{
I(Aj 6= Ai)× Xj, ∀j = 1, . . . ,m

}
.

We modify the structural equations for Yi in (Equation
1) to directly account for the allocational interference in
our framework by simply replacing fyi (U,X,A, ǫyi ) with

fyi (U,Xb
i ,X

c
i , ǫyi ). Note that both Xb

i and Xc
i depend on the

treatment rule A by construction. The function fyi can take a
nonlinear or a linear form. For illustration, assume fyi is linear in
parameters. Therefore, we have:

Yi ←

m∑

j=1

γj × I(Aj = Ai)× Xj + ηj × I(Aj 6= Ai)× Xj + ǫyi

In the above equation, γj controls the block-level influence of
Xj on the i-th ad if Xj is in the same block as Xi, otherwise
the influence is controlled by the parameter ηj. If ηj = 0,∀j,
then this implies that there is no cross-block interference and
blocks are independent. If ηj = γj,∀j, then this implies that
there is no allocational interference. In other words, interactions
within blocks and across blocks are modeled exactly the same and
therefore the notion of “groups” is ruled out.

4. INTERFERENCE EFFECTS AMONG ADS

Structural equation models, such as the one in display (1),
enable us to determine the response of variables to interventions
through incorporating knowledge of the functional dependencies
between variables. For instance, intervening on the block
allocation of the i-th ad would fix the value of Ai to ai, and would
transform descendants of Ai to counterfactual variables of the
form V(ai). Under an intervention that sets A to a, the structural
(Equation 1) are modified as follows:

Ai ← ai, ∀i = 1, . . . ,m, and

Yi(a) ← fyi (U,X, a, ǫyi ), ∀i = 1, . . . ,m. (3)

Interventions can be directly applied to the causal graph through
a node-splitting operation where random variables in A are
split into two parts: a random part that takes all the incoming
edges and a fixed part that takes all the outgoing edges. The
resulting graph is called a single-world intervention graph
(SWIG) which encodes counterfactual independencies associated

Frontiers in Big Data | www.frontiersin.org 4 June 2022 | Volume 5 | Article 888592

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Nabi et al. Interference in Sponsored Search Advertising

FIGURE 1 | (A) DAG representation of the SEM in Equation (1) for a pageview with three impressed ads (the independent error terms are omitted from the graph for

simplicity). (B) The corresponding SWIG where we intervene on A and set the block allocations (A1,A2,A3 ) to (a1, a2, a3 ).

with the intervention (Richardson and Robins, 2013). Given the
causal model in Figure 1A, we obtain the corresponding SWIG in
Figure 1B after performing the intervention described in display
(Equation 1).

4.1. Causal Effects of Interest
We set block allocation as our treatment of interest, and based
on the prior literature, consider several causal effects that are of
particular interest in ad placement systems.

1. Unit-level effect: defined as the effect ofmodifying an ad’s block
allocation on its clickability but holding the block allocations
of other ads fixed. Assume we have a fixed allocation rule a,
and we are interested inmoving the i-th ad from block a′ to a′′,
i.e., altering the i-th element of a and allowing the other ads to
follow the rule a−i. Then the unit-level effect is quantified via

UEi(a
′, a′′, a) = E

[
Yi(a

′, a−i)
]
− E

[
Yi(a

′′, a−i)
]
.

2. Spillover effect: defined as the effect of holding an ad’s block
allocation fixed but modifying the block allocations of other
ads on the pageview. Assume we are interested in comparing
two allocation rules a′ and a′′ where the i-th element in each
rule is fixed to a. Then the spill-over effect is quantified via

SEi(a, a
′, a′′) = E

[
Yi(a, a

′
−i)

]
− E

[
Yi(a, a

′′
−i)

]
.

3. Overall effect: defined as the effect of allocation rule a vs. a′ on
the outcome of the i-th ad, which can be quantified via

OEi(a, a
′) = E

[
Yi(a)

]
− E

[
Yi(a

′)
]
.

4. Average overall effect: defines as a pageview-level comparison
of two different allocation rules. This would require an average
over all the overall effects computed on a single pageview, i.e.,

AOE(a, a′) =
1

m

m∑

i=1

E
[
Yi(a)

]
− E

[
Yi(a

′)
]
.

4.2. Identification Assumptions
Counterfactuals cannot in general be identified from data alone,
and require assumptions. It is straightforward to see that all the
effects described above involve counterfactual mean contrasts of
the form E[Yi(a)]. Thus if we can identify this counterfactual
mean, all the effects described are identifiable. In order to identify
the counterfactual mean E[Yi(a)], we make the following three
assumptions: (i) Allocational consistency: Yi(a) = Yi if A = a,
which means the potential outcome agrees with the observed
outcome when the allocational intervention agrees with the
observed allocations, (ii) Positivity: p(A = a | X = x) > 0,∀a ∈
XA and ∀x ∈ XX, and (ii) Network conditional ignorability:
Yi(a) ⊥⊥ A | X, which means all the common confounders
between each Aj ∈ A and Yi are measured.

Consistency and positivity assumptions are standard in
causal inference (with or without the presence of interference).
Even though, the no-unmeasured confounder assumption is
also a common assumption in the literature, see Hudgens
and Halloran (2008), Tchetgen and VanderWeele (2012), and
Ogburn and VanderWeele (2014) for examples in the context of
interference, this assumption is often untestable. In practice, we
may either rely on domain knowledge to argue for the conditional
ignorability assumption, or we can conduct a sensitivity analysis
to know whether, and to what extent, the conclusions are
robust to potential unmeasured confounding (Robins et al., 2000;
Scharfstein et al., 2021). Fortunately, given the ad placement
setup, described via the structural equations in display (1) and
illustrated via the DAG in Figure 1A, we know the observed
set X is fully responsible for deciding the allocations. Thus, the
network conditional ignorability assumption still holds even in
the presence of unmeasured confounders U, e.g., the use intent.
Further, as mentioned previously, we can exclude the observed
queries, collected in C, from the conditioning set as such factors
do not play a direct role in neither choosing the allocations
nor the final observed clicks. Using d-separation rules (Pearl,
2009), we can read off the independence between allocations A
and counterfactual variable Yi(a) (conditioned on X) from the
corresponding SWIG shown in Figure 1B.

Given the structural equation model described in Equation
(1), the represented causal model in Figure 1A, and the
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corresponding SWIG in Figure 1B, we can easily verify that
network conditional ignorability holds in our model. By rules of
d-separation, all the paths from Yi(a) to each Aj is blocked by
conditioning on X. Under the aforementioned assumptions, the
identifying functional for E[Yi(a)] is then obtained as follows,

E
[
Yi(a)

]
= E

[
E

[
Yi | A = a,X

]]
, (4)

where the outer expectation is taken with respect to the marginal
distribution over X, i.e., p(X). For a general theory describing
when causal inference with interference is possible, interested
readers can refer to Sherman and Shpitser (2018).

4.3. Estimation of Causal Effects
We set our target of inference to be ψ = E[Yi(a)] which
is identified via (4). There are several ways of estimating
this identified functional (e.g., G-computation methods, inverse
probability weighting estimators, etc). In our experiments, we use
the augmented inverse probability weighting (AIPW) estimator,
given as

ψ̂aipw =
1

N

N∑

n=1

[
I(An = a)×

(
Yin − E

[
Yin | A = a,Xn; α̂y

])

∏m
i=1 p(Ain = ai | Xn; α̂a)

+ E
[
Yin | A = a,Xn; α̂y

]]
, (5)

where α̂y and α̂a are MLE estimates of the parameters in the
outcome regression model E[Y | A,X] and propensity models
p(Ai | X), respectively. The above estimator is consistent
if and only if either the propensity scores or the outcome
regression models are correctly specified. This property is known
as doubly robust. For amore general discussion of semiparametric
doubly robust estimators of average causal effects in presence
of unmeasured confounders, see Bhattacharya et al. (2020a).
An alternative approach is to use targeted maximum likelihood
estimators (Van der Laan et al., 2007), that use an ensemble of
machine learning models. We leave the exploration of TMLE to
future work.

4.4. Verifying and Learning Causal
Structure
Throughout the paper, we assumed a known causal structure
for the ad placement system. To verify the correctness of
our presumed causal structure, we adapt structure learning
algorithms to learn the underlying mechanisms that give rise
to interference. There is a rich literature on model selection
from observational data in the context of causal inference
with no interference (Spirtes et al., 2000). This includes
constraint-based algorithms such as PC (Spirtes et al., 2000;
Colombo and Maathuis, 2014), score-based algorithms such as
GES (Chickering, 2002), and continuous optimization based
algorithms such as the ones in and Bhattacharya et al. (2020b).
Bhattacharya et al. (2019) provided a novel algorithm for
model selection when units are related through a network
of dependencies that can be modeled using a chain graph
(Lauritzen, 1996). However, in our context, dependencies are

best modeled using DAGs with hidden variables. There exist
(conditional independence) constraint-based algorithms such as
fast causal inference (FCI) and variations of it, such as GFCI and
RFCI, that tackle the model selection problem in the presence of
unmeasured confounders.

Click yields are the primary target of interest. Hence, we adapt
the FCI algorithm in order to learn the “causal parents” of each
Yi. We do this by performing a pre-processing step on the data,
where each row corresponds to the information we collect on a
single pageview, in order to account for block-level and cross-
block interference. As an example, consider pageviews with three
impressed ads where we are interested in finding the causal
parents of the outcome in the first positioned ad, i.e., Y1. We
pre-process the data as follows: For each row, we evaluate the
variables in Xj to zero if Aj = A1, for j = 1, 2, 3. We call this
pre-processed data D1. We then evaluate the variables in Xj to
zero if Aj 6= A1, for j = 2, 3. We call this pre-processed data D2.
We then append D2 to D1, column-wise and pass this data to the
FCI algorithm. Additional knowledge, such as causal ordering,
can be incorporated in the procedure. The FCI algorithm then
returns a partial ancestral graph (Zhang, 2008) as the Markov
equivalence class. The partial ancestral graph corresponds to a
set of ancestral acyclic directed mixed graphs (Richardson and
Spirtes, 2002) that agree on conditional independence constraints
on the observed data distribution. Under standard assumptions,
that the true model can be represented via an ancestral graph and
faithfulness, (asymptotically) FCI and hence our modification
of it returns a Markov equivalence class that contains the true
underlying model.

Here, we are working under a partial interference framework,
where we model only interference within pageviews and exclude
temporal dependence across pageviews. This means the search
result pages are iid, but the ads inside each pageview do interact.
Using the above description, we adapt the original FCI algorithm
that assumes iid data to our framework for learning causal
structures.

5. EXPERIMENTS

In this section, we illustrate the utility of our formalization of the
ad interference problem through four separate experiments using
Bing PC traffic: (i) estimating the counterfactual mean under
interference as described in Section 4, (ii) identifying causally
relevant features through structure learning, (iii) comparing click
prediction models with and without accounting for interference,
and (iv) evaluating the performance of models with interfernece
on layouts that do not appear in the training data. For training
and validation purposes, we used data from the first 2 weeks of
June in 2020. The test data comes from the first 2 weeks of July
in the same year. We use random forest classifiers for fitting the
propensity score and the outcome regression models.

We focused on two types of pageviews: positive pageviews,
i.e., pageviews with at least one observed click (corresponding to
users with an “ad frame of mind" who are more likely to click on
an ad), and balanced pageviews, i.e., pageviews with positive and
zero-clicked views. This scenario captures a more realistic view.
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FIGURE 2 | Estimates of E[Yi (a)] for all possible allocations using AIPW on pageviews with 3, 4, 5 impressed ads.

We used AIPW to estimate the counterfactual meanE[Yi(a)] and
ran our experiments on pageviews with 3, 4, and 5 number of
impressed ads.

5.1. Calculation of Interference Effects
Recall that each allocation rule can be represented via a binary
vector a = (a1, . . . , am); e.g., whenm = 3, the allocation (1, 1, 1)
corresponds to a scenario where all three ads are shown in the
Top block. As mentioned in the preliminaries, ads are indexed
according to the order in which they appear on the page. This
indexing scheme restricts the state space of all possible allocation
rules. For instance, an allocation like (0, 1, 1) where the first
positioned ad is placed at the Bottom and the rest are on Top is ill-
defined and therefore excluded from the set of possible allocation
rules.

We use the AIPW estimator to compute the counterfactual
mean E[Yi(a)] under all possible allocation rules for a. The
results are shown in Figure 2. The layout that yields the
highest click for each position on the pageview corresponds
to the tallest bar on each plot. For instance for m = 3,
the first positioned ad benefits the most from being the sole
ad in the Top block, i.e., E[Y1(1, 0, 0)] > E[Y1(a)],∀a 6=
(1, 0, 0). However, the corresponding optimal layout for the first
positioned ad is not coherent with the optimal layout of other
ads. For instance, the second positioned ad benefits the most
from being on the Top block as well. On the other hand,
the last positioned ad benefits slightly more when all ads are
placed at the Bottom. In order to find a coherent optimal
layout yielding the highest number of overall clicks, we need
to compare the average click response over all positions on the
pageview, i.e., the average overall effect 1

m

∑m
i=1 E[Yi(a)], for all

possible a.

TABLE 1 | Estimated values for the counterfactual mean E[Yi (a)] for all possible a,

along with the 95% confidence intervals.

E[Yi(1, 1, 1)] E[Yi(1, 1, 0)] E[Yi(1, 0, 0)] E[Yi(0, 0, 0)] E[Yi]

1st ad 0.57 ± 0.006 0.64 ± 0.004 0.83 ± 0.004 0.56 ± 0.005 0.65

2nd ad 0.28 ± 0.007 0.32 ± 0.005 0.11 ± 0.003 0.28 ± 0.005 0.25

3rd ad 0.20 ± 0.006 0.07 ± 0.002 0.09 ± 0.003 0.21 ± 0.005 0.13

The observed E[Yi ] is reported on the last column (positive pageviews with m = 3).

Estimated values for all the counterfactual means (m = 3
with positive pageviews) are reported in Table 1 along with
the corresponding 95% confidence intervals.Results on m =

4, 5 with the two types of pageviews are provided in Table 2.
Additional information on frequencies of allocations are reported
in Table 3. We can use these tables to compute various effects
that were discussed in the previous section. For instance with
m = 3, the following contrast gives us the unit-level effect
for Y2 under allocation rule a = (1, 0, 0): UE2(1, 0, a) =
E[Y2(1, 1, 0) − Y2(1, 0, 0)] = 0.32 − 0.11 = 0.21 (±0.004). This
number quantifies the effect on clickability of the 2nd ad if we
(hypothetically) moved it from Top to Bottom, while the 1st ad
is kept on Top and the 3rd one is kept at Bottom. The spillover
effect under allocation rules a = (1, 0, 0) and a′ = (1, 1, 1) is
given by SE2(1, a′, a) = E[Y2(1, 1, 1) − Y2(1, 1, 0)] = 0.28 −
0.32 = −0.04 (±0.006). This number quantifies the effect on
clickability of the 2nd ad if we changed the layout from a′ to a,
while keeping the 2nd ad fixed on Top. The overall effect of a′ vs.
a, i.e., OE2(a′, a) = E[Y2(1, 1, 1)−Y2(1, 0, 0)] is equal to the sum
of UE and SE which is 0.17 (±0.007). Using Table 2, we can also
compare the performance of each layout in terms of overall click
yields. The results are provided in Table 4.
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TABLE 2 | Estimation of counterfactual E[Yi (a)] along with 95% confidence interval.

Scenarios Observed mean 0 at Bottom 1 at Bottom 2 at Bottom 3 at Bottom

m = 3 Positives Y1 0.65 0.57 ± 0.006 0.64 ± 0.004 0.83 ± 0.004 0.56 ± 0.005

Y2 0.25 0.28 ± 0.007 0.32 ± 0.005 0.11 ± 0.003 0.28 ± 0.005

Y3 0.13 0.20 ± 0.006 0.07 ± 0.002 0.09 ± 0.003 0.21 ± 0.005

Balanced Y1 0.48 0.41 ± 0.006 0.50 ± 0.004 0.60 ± 0.004 0.36 ± 0.008

Y2 0.18 0.22 ± 0.008 0.25 ± 0.004 0.10 ± 0.003 0.15 ± 0.011

Y3 0.10 0.16 ± 0.007 0.06 ± 0.002 0.07 ± 0.003 0.11 ± 0.011

m = 4 Positives Y1 0.59 0.52 ± 0.010 0.55 ± 0.006 0.63 ± 0.006 0.77 ± 0.007

Y2 0.24 0.25 ± 0.007 0.27 ± 0.004 0.31 ± 0.005 0.13 ± 0.004

Y3 0.13 0.18 ± 0.006 0.20 ± 0.004 0.09 ± 0.003 0.12 ± 0.004

Y4 0.08 0.14 ± 0.005 0.06 ± 0.002 0.09 ± 0.002 0.11 ± 0.003

Balanced Y1 0.49 0.45 ± 0.007 0.46 ± 0.005 0.51 ± 0.005 0.59 ± 0.009

Y2 0.20 0.22 ± 0.004 0.24 ± 0.003 0.26 ± 0.004 0.10 ± 0.003

Y3 0.11 0.16 ± 0.004 0.17 ± 0.003 0.08 ± 0.002 0.09 ± 0.003

Y4 0.06 0.13 ± 0.003 0.05 ± 0.001 0.07 ± 0.002 0.08 ± 0.003

m = 5 Positives Y1 0.51 0.46 ± 0.009 0.49 ± 0.006 0.54 ± 0.006 0.59 ± 0.018

Y2 0.24 0.23 ± 0.005 0.25 ± 0.004 0.27 ± 0.004 0.30 ± 0.010

Y3 0.15 0.17 ± 0.005 0.18 ± 0.004 0.18 ± 0.004 0.11 ± 0.006

Y4 0.09 0.13 ± 0.004 0.13 ± 0.003 0.06 ± 0.002 0.07 ± 0.005

Y5 0.05 0.11 ± 0.004 0.04 ± 0.002 0.05 ± 0.002 0.06 ± 0.005

Balanced Y1 0.44 0.41 ± 0.011 0.43 ± 0.006 0.47 ± 0.006 0.49 ± 0.019

Y2 0.21 0.21 ± 0.006 0.22 ± 0.004 0.24 ± 0.004 0.24 ± 0.009

Y3 0.13 0.15 ± 0.005 0.16 ± 0.003 0.15 ± 0.003 0.08 ± 0.005

Y4 0.08 0.12 ± 0.005 0.12 ± 0.003 0.05 ± 0.002 0.06 ± 0.005

Y5 0.04 0.08 ± 0.007 0.03 ± 0.002 0.04 ± 0.003 0.05 ± 0.009

Each allocation a is represented by the number of ads that it places at the Bottom. For instance “1 at Bottom” corresponds to the allocation (1, 1, 0) when m = 3, (1, 1, 1, 0) when m = 4,

and (1, 1, 1, 1, 0) when m = 5. Allocations with “4 at Bottom” and “5 at Bottom” do not appear in the time span we considered. The observed E[Yi ] is reported on the second column.

TABLE 3 | Observed frequencies of allocations.

Impressed ads and scenarios 0 at Bottom(%) 1 at Bottom(%) 2 at Bottom(%) 3 at Bottom(%)

m = 3 Positives 36.9 31.7 22.6 8.8

Balanced 32.5 29.4 22.9 15.1

m = 4 Positives 32.0 26.5 24.9 16.6

Balanced 30.3 25.9 25.4 18.4

m = 5 Positives 29.3 27.2 23.5 20.0

Balanced 28.5 26.7 23.8 21.1

Allocations with “4 at Bottom” and “5 at Bottom” do not appear in the time span we considered.

TABLE 4 | Layout comparisons by reporting average overall counterfactual mean, i.e., 1
m

∑m
i=1 E[Yi (a)], for all possible allocations.

Impressed ads and scenarios Observed 0 at Bottom 1 at Bottom 2 at Bottom 3 at Bottom

m = 3 Positives 0.3437 0.3495 ± 1.2e-7 0.3460 ± 1.4e-7 0.3442 ± 1.58e-7 0.3499 ± 1.91e-7

Balanced 0.2526 0.2649 ± 2.0e-7 0.2713 ± 2.3e-7 0.2577 ± 2.7e-7 0.2079 ± 5.0e-7

m = 4 Positives 0.2591 0.2727 ± 1.5e-7 0.2709 ± 1.5e-7 0.2786 ± 1.9e-7 0.2816 ± 2.2e-7

Balanced 0.2140 0.2374 ± 1.3e-7 0.2294 ± 1.8e-7 0.2275 ± 2.2e-7 0.2171 ± 3.1e-7

m = 5 Positives 0.2087 0.2211 ± 1.3e-7 0.2186 ± 1.6e-7 0.2227 ± 1.8e-7 0.2260 ± 3.2e-7

Balanced 0.1807 0.1945 ± 2.3e-7 0.1926 ± 2.6e-7 0.1897 ± 3.0e-7 0.1836 ± 5.1e-7
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TABLE 5 | Using FCI procedure to learn the structure of our model, this table reports what categories the causally relevant features belong to.

Scenarios Calculated scores Decorative features Geometric features Match type Exogenous features

m = 3 Positives Y1 X X X

Y2 X X X

Y3 X X X

Balanced Y1 X X X

Y2 X X X

Y3 X X X X

m = 4 Positives Y1 X X X

Y2 X X X

Y3 X X X

Y4 X X X X

Balanced Y1 X X

Y2 X X X

Y3 X X X

Y4 X X X X

m = 5 Positives Y1 X X X X X

Y2 X X X X

Y3 X X

Y4 X X X X

Y5 X X X

Balanced Y1 X X X X

Y2 X X X X

Y3 X X

Y4 X X X

Y5 X X X

5.2. Learning the Causal Structure Using
FCI
In this part of the experiment, we use data to learn the parents of
each outcome for all ads on the pageview; while allowing for both
block-level and cross-block interference. We preprocess the data
as described in Section 4.4, and use the implementation of the
FCI algorithm in the Tetrad software1. Independence tests are
performed using kernel conditional independence tests (Zhang
et al., 2012) with a significance level of 0.01. On each pageview,
we collectm× 22 different features. Neither plotting the learned
graph nor enlisting all parental sets is relevant to the point we
like to deliver here. Our primary objective is to show that for a
particular positioned ad, features from other ads on the pageview
(not necessarily from the same block even) are directly relevant
to the clickability of the ad. In order for us to report the results in
a more concise and clear way, we divide the ad-specific features
into four distinct categories: (a) Calculated scores, such as PClick,
PDefect, Relevance score, etc., (b) Decorative features, such as
Twitter information, links, and ratings, (c) Geometric features,
such as line counts, pixel heights, pixel heights from top of the
block, and (d) match type information. We found out that the
parent set of eachYi contains at least one variable in each category
of features from a different ad; providing further evidence for
the presence of interference among ads. In our extended set

1https://www.phil.cmu.edu/tetrad/publications.html

of experiments, we learned that Decorative features are more
influential on pageviews with higher number of impressed ads.
Please refer to the appendix for more experiments.

We further designate a fifth category (e) for collection of
exogenous features that are layout-specific, such as ad counts.
For each scenario, we report what categories the causally relevant
features belong to in Table 5. For each positioned ad, the
influence of other ads on the pageview are spread over multiple
categories of features. Calculated scores and geometric features
are influential in clickability across all scenarios and pageviews
with different number of impressed ads.

5.3. Improvements in Click Prediction
Given the set of experiments described above, we have more
evidence to believe that interference does exist among ads. This
was shown through both finding effects that are away from zero
and learning causally relevant features that originate from other
ads on the pageview. We now leverage this knowledge to better
estimate the click yields. We considered fitting 5 different sets of
models:

(1) (Baseline) model where samples are assumed to be
independent, i.e., fitting p(Yi = 1 | L,Xi),

(2) (Block-level interference) model where we allow for block-
level interactions like I(Aj = Ai) × Xj, i.e., p[Yi = 1 |
L,Xi, I(Aj = Ai)× Xj],
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FIGURE 3 | Relative difference (in percentage) in AUCs with respect to the baseline model.

FIGURE 4 | Relative difference (in percentage) in AUCs with respect to the baseline model in unseen layouts.

(3) (Block-level and cross-block interference) model where in
addition to block-level interactions we allow for cross-block
interactions, i.e., p[Yi = 1 | L,Xi, I(Aj = Ai) × Xj, I(Ak 6=

Ai)× Xk],
(4) (Full graph) with no block decomposition, i.e., p(Yi = 1 |

L,X), and
(5) (FCI parents) model where we use the parents of Yi in the

graph that FCI outputs, i.e., fitting p[Yi = 1 | pa(Yi)].

We report relative improvements in area under the curve over the
baseline in Figure 3. All methods that account for interference
show improvement over the baseline, demonstrating the utility
of our formalization. It is also worth noting that the performance
gains are greater for higher positioned ads compared to lower
ones.

5.4. Performance in Unseen Layouts
We evaluate the performance of our models with interference
on layouts that do not appear in the training data. We limit
our training data to pageviews with 5 impressed ads and test
the models on pageviews that have more than 5 impressed ads.

Figure 4 highlights the improvement of the proposed models on
pageviews with 6, 7, and 8 impressed ads.

6. CONCLUSION

Despite the intuition that ads should not be scrutinized
independently of one another, to the best of our knowledge,
there has not been a formal analysis of interference in
advertisement placement and sponsored search marketing. In
this paper, we formalized the interference problem among
ads using the language of causal inference and counterfactual
reasoning.We proposed a framework to quantify the interference
effects by posing a graphical causal model that accounts for
potential underlying interference mechanisms. We described
several causal effects that might be of interest in ad placement
systems and discussed identification assumptions and estimation
strategies for computing these effects.We further adapted the FCI
procedure to learn the underlying mechanisms that give rise to
interference and verify the correctness of our presumed causal
structures.
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In the partial interference framework, it is often assumed that
the iid units are of the same size. The equivalent assumption
we made is that pageviews have a fixed number of impressed
ads. If sample size is not of concern, we can analyze each
pageview of size m in isolation. However, in scenarios where
data is scarce, we need alternatives to relax this restrictive
assumption. One approach is through feature engineering where
we first assume that only k nearest neighbors are interacting
with the ad itself, a Markov order of k assumption if you
will. We further need to assume the neighboring ads influence
one another in the exact similar ways, a parameter sharing
assumptions, if you will. Investigating such alternatives and
exploring other approaches opens up an interesting direction for
future work.

In this paper, we focused on the impressed ads on the search
result page, and marginalized out the ads involved in the search
engine auction. Incorporating the knowledge on how exactly
the auction optimizer works on the entire set of candidate ads
is important in determining the optimal layouts in presence
of interference. We further restricted our attention to auctions
that only yield two blocks on the final pageview. This can

be simply relaxed by allowing for the allocation treatment to
have a discrete state space. We can further group the ads that
were not impressed and treat them as a separate block, and
investigate their impact on the click yields of the other ads on
the page.

DATA AVAILABILITY STATEMENT

The aggregated data supporting the conclusions of this article
will be made available upon request. Further requests will be
assessed on a case-by-case basis to ensure compliance with
privacy agreements and other requirements. Requests to access
the datasets should be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

RN, DC, and EK contributed to conception and design of
the framework. JP organized the database. RN performed the
statistical analysis and wrote the first draft of the manuscript. All
authors contributed to manuscript revision, read, and approved
the submitted version.

REFERENCES

Bajari, P., Burdick, B., Imbens, G. W., Masoero, L., McQueen, J., Richardson, T.,
et al. (2021). Multiple randomization designs. arXiv preprint arXiv:2112.13495.
doi: 10.48550/arXiv.2112.13495

Bayir, M. A., Xu, M., Zhu, Y., and Shi, Y. (2019). “Genie: an open box
counterfactual policy estimator for optimizing sponsored search marketplace,”
in Proceedings of the Twelfth ACM International Conference on Web Search and

Data Mining, 465–473.
Bhattacharya, R., Nabi, R., and Shpitser, I. (2020a). Semiparametric inference

for causal effects in graphical models with hidden variables. arXiv preprint

arXiv:2003.12659. doi: 10.48550/arXiv.2003.12659
Bhattacharya, R., Nagarajan, T., Malinsky, D., and Shpitser, I. (2020b).

Differentiable causal discovery under unmeasured confounding. arXiv preprint
arXiv:2010.06978. doi: 10.48550/arXiv.2010.06978

Bhattacharya, R., Malinsky, D., and Shpitser, I. (2019). “Causal inference under
interference and network uncertainty,” in Uncertainty in Artificial Intelligence:

Proceedings of the... Conference. Conference on Uncertainty in Artificial

Intelligence, volume 2019 (NIH Public Access).
Bisht, K., and Susan, S. (2021). “Weighted ensemble of neural and probabilistic

graphical models for click prediction,” in 2021 the 5th International Conference

on Information System and Data Mining, 145–150.
Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D. X., Chickering, D. M.,

Portugaly, E., et al. (2013). Counterfactual reasoning and learning systems: the
example of computational advertising. J. Mach. Learn. Res. 14, 3207–3260.

Cheng, H., and Cantú-Paz, E. (2010). “Personalized click prediction in sponsored
search,” in Proceedings of the Third ACM International Conference on Web

Search and data Mining, 351–360.
Cheng, H., Zwol, R. V., Azimi, J., Manavoglu, E., Zhang, R., Zhou, Y., et al. (2012).

“Multimedia features for click prediction of new ads in display advertising,” in
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 777–785.
Chickering, D. M. (2002). Optimal structure identification with greedy search. J.

Mach. Learn. Res. 3, 507–554.
Colombo, D., and Maathuis, M. H. (2014). Order-independent constraint-based

causal structure learning. J. Mach. Learn. Res. 15, 3741–3782.
Effendi, M. J., and Ali, S. A. (2017). Click through rate prediction for contextual

advertisment using linear regression. arXiv preprint arXiv:1701.08744.
doi: 10.48550/arXiv.1701.08744

Harshaw, C., Sävje, F., Eisenstat, D., Mirrokni, V., and Pouget-Abadie, J. (2021).
Design and analysis of bipartite experiments under a linear exposure-response
model. arXiv preprint arXiv:2103.06392. doi: 10.48550/arXiv.2103.06392

Hill, D. N., Moakler, R., Hubbard, A. E., Tsemekhman, V., Provost, F., and
Tsemekhman, K. (2015). “Measuring causal impact of online actions via natural
experiments: application to display advertising,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
1839–1847.

Huang, Y., and Valtorta, M. (2006). “Pearl’s calculus of intervention is complete,”
in Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence,
13–16.

Hudgens, M. G., and Halloran, M. E. (2008). Toward causal
inference with interference. J. Am. Stat. Assoc. 103, 832–842.
doi: 10.1198/016214508000000292

Johari, R., Li, H., Liskovich, I., and Weintraub, G. Y. (2022). Experimental
design in two-sided platforms: an analysis of bias. Manag. Sci.
doi: 10.1287/mnsc.2021.4247

Lauritzen, S. L. (1996). Graphical Models. Oxford, UK: Clarendon.
Nabi, R., Kanki, P., and Shpitser, I. (2018). “Estimation of personalized effects

associated with causal pathways,” in Uncertainty in Artificial Intelligence:

Proceedings of the... Conference. Conference on Uncertainty in Artificial

Intelligence, Vol. 2018 (NIH Public Access).
Nabi, R., Malinsky, D., and Shpitser, I. (2019). “Learning optimal fair policies,” in

International Conference on Machine Learning (PMLR), 4674–4682.
Nabi-Abdolyousefi, R. (2015). Conversion rate prediction in search engine

marketing (Ph.D. thesis).
Ogburn, E. L., and VanderWeele, T. J. (2014). Causal diagrams for interference.

Stat. Sci. 29, 559–578. doi: 10.1214/14-STS501
Pearl, J. (2009). Causality. Cambridge: Cambridge University Press.
Pouget-Abadie, J., Aydin, K., Schudy, W., Brodersen, K., and Mirrokni, V. (2019).

“Variance reduction in bipartite experiments through correlation clustering,”
in 33rd Conference on Neural Information Processing Systems (NeurIPS 2019)

(Vancouver, BC).
Pouget-Abadie, J., Parkes, D. C., Mirrokni, V., and Airoldi, E. M. (2018).

Optimizing cluster-based randomized experiments under a monotonicity
assumption. arXiv preprint arXiv:1803.02876. doi: 10.1145/3219819.3220067

Richardson, T. S., Evans, R. J., Robins, J. M., and Shpitser, I. (2017). NestedMarkov
properties for acyclic directed mixed graphs. arXiv preprint arXiv:1701.06686.
doi: 10.48550/arXiv.1701.06686

Frontiers in Big Data | www.frontiersin.org 11 June 2022 | Volume 5 | Article 888592

https://doi.org/10.48550/arXiv.2112.13495
https://doi.org/10.48550/arXiv.2003.12659
https://doi.org/10.48550/arXiv.2010.06978
https://doi.org/10.48550/arXiv.1701.08744
https://doi.org/10.48550/arXiv.2103.06392
https://doi.org/10.1198/016214508000000292
https://doi.org/10.1287/mnsc.2021.4247
https://doi.org/10.1214/14-STS501
https://doi.org/10.1145/3219819.3220067
https://doi.org/10.48550/arXiv.1701.06686
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Nabi et al. Interference in Sponsored Search Advertising

Richardson, T. S., and Robins, J. M. (2013). “Single world intervention graphs
(SWIGs): a unification of the counterfactual and graphical approaches to
causality,” in Center for the Statistics and the Social Sciences, University of

Washington Series. Working Paper (Washington, DC).
Richardson, T. S., and Spirtes, P. L. (2002). Ancestral graph Markov models. Ann.

Stat. 30, 962–1030. doi: 10.1214/aos/1031689015
Robins, J. M. (1986). A new approach to causal inference inmortality studies with a

sustained exposure period-application to control of the healthy worker survivor
effect.Math. Model. 7, 1393–1512. doi: 10.1016/0270-0255(86)90088-6

Robins, J. M., Rotnitzky, A., and Scharfstein, D. O. (2000). “Sensitivity analysis
for selection bias and unmeasured confounding in missing data and causal
inference models,” in Statistical Models in Epidemiology, the Environment, and

Clinical Trials (Springer), 1–94.
Rubin, D. B. (1980). Randomization analysis of experimental data: the

fisher randomization test comment. J. Am. Stat. Assoc. 75, 591–593.
doi: 10.2307/2287653

Scharfstein, D. O., Nabi, R., Kennedy, E. H., Huang, M.-Y., Bonvini, M.,
and Smid, M. (2021). Semiparametric sensitivity analysis: unmeasured
confounding in observational studies. arXiv preprint arXiv:2104.08300.
doi: 10.48550/arXiv.2104.08300

Shalizi, C. R., and Thomas, A. C. (2011). Homophily and contagion are generically
confounded in observational social network studies. Sociol. Methods Res. 40,
211–239. doi: 10.1177/0049124111404820

Shaparenko, B., Çetin, Ö., and Iyer, R. (2009). “Data-driven text features for
sponsored search click prediction,” in Proceedings of the Third International

Workshop on Data Mining and Audience Intelligence for Advertising, 46–54.
Sherman, E., and Shpitser, I. (2018). “Identification and estimation of causal effects

from dependent data,” in Advances in Neural Information Processing Systems,
9424–9435.

Shpitser, I. (2013). Counterfactual graphical models for longitudinal mediation
analysis with unobserved confounding. Cogn. Sci. 37, 1011–1035.
doi: 10.1111/cogs.12058

Shpitser, I., and Pearl, J. (2012). Identification of conditional interventional
distributions. arXiv preprint arXiv:1206.6876. doi: 10.48550/arXiv.1206.
6876

Shpitser, I., and Pearl, J. (2006). “Identification of joint interventional distributions
in recursive semi-Markovian causal models,” in Proceedings of the 21st National

Conference on Artificial Intelligence.
Sobel,M. E. (2006).What do randomized studies of housingmobility demonstrate?

causal inference in the face of interference. J. Am. Stat. Assoc. 101, 1398–1407.
doi: 10.1198/016214506000000636

Spirtes, P. L., Glymour, C. N., Scheines, R., Heckerman, D., Meek, C., Cooper, G.,
et al. (2000). Causation, Prediction, and Search. MIT Press.

Tchetgen, E. J. T., and VanderWeele, T. J. (2012). On causal inference
in the presence of interference. Stat. Methods Med. Res. 21, 55–75.
doi: 10.1177/0962280210386779

Van der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007). Super learner. Stat.
Appl. Genet. Mol. Biol. 6, 25. doi: 10.2202/1544-6115.1309

Verma, T., and Pearl, J. (1990). “Equivalence and synthesis of causal models,” in
Proceedings of the 6th Conference on Uncertainty in Artificial Intelligence.

Wang, X. (2020). “A survey of online advertising click-through rate prediction
models,” in 2020 IEEE International Conference on Information Technology,

Big Data and Artificial Intelligence (ICIBA), Vol. 1, (Chongqing: IEEE),
516–521.

Xiong, C., Wang, T., Ding, W., Shen, Y., and Liu, T.-Y. (2012). “Relational click
prediction for sponsored search,” in Proceedings of the Fifth ACM International

Conference on Web Search and Data Mining, 493–502.
Yin, D., Cao, B., Sun, J.-T., and Davison, B. D. (2014). “Estimating ad group

performance in sponsored search,” in Proceedings of the 7th ACM International

Conference on Web Search and Data Mining, 143–152.
Zeng, S., Bayir, M. A., Pfeiffer, I. I. I., J. J., Charles, D., and Kiciman,

E. (2021). “Causal transfer random forest: combining logged data and
randomized experiments for robust prediction,” in Proceedings of the

14th ACM International Conference on Web Search and Data Mining,
211–219.

Zhang, J. (2008). On the completeness of orientation rules for causal discovery
in the presence of latent confounders and selection bias. Artif. Intell. 172,
1873–1896. doi: 10.1016/j.artint.2008.08.001

Zhang, K., Peters, J., Janzing, D., and Schölkopf, B. (2012). Kernel-based
conditional independence test and application in causal discovery. arXiv

preprint arXiv:1202.3775. doi: 10.48550/arXiv.1202.3775
Zhang, Y., Dai, H., Xu, C., Feng, J., Wang, T., Bian, J., et al. (2014). Sequential click

prediction for sponsored search with recurrent neural networks. arXiv preprint
arXiv:1404.5772. doi: 10.48550/arXiv.1404.5772

Conflict of Interest: JP, DC, and EK were employed by Microsoft Corporation.
The research was conducted while RN was an intern at Microsoft Research.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Nabi, Pfeiffer, Charles and Kıcıman. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Big Data | www.frontiersin.org 12 June 2022 | Volume 5 | Article 888592

https://doi.org/10.1214/aos/1031689015
https://doi.org/10.1016/0270-0255(86)90088-6
https://doi.org/10.2307/2287653
https://doi.org/10.48550/arXiv.2104.08300
https://doi.org/10.1177/0049124111404820
https://doi.org/10.1111/cogs.12058
https://doi.org/10.48550/arXiv.1206.6876
https://doi.org/10.1198/016214506000000636
https://doi.org/10.1177/0962280210386779
https://doi.org/10.2202/1544-6115.1309
https://doi.org/10.1016/j.artint.2008.08.001
https://doi.org/10.48550/arXiv.1202.3775
https://doi.org/10.48550/arXiv.1404.5772
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Causal Inference in the Presence of Interference in Sponsored Search Advertising
	1. Introduction
	2. Preliminaries and Setup
	3. Ad Placement in the Presence of Interference
	3.1. Sources of Interference in Ad Placement

	4. Interference Effects Among Ads
	4.1. Causal Effects of Interest
	4.2. Identification Assumptions
	4.3. Estimation of Causal Effects
	4.4. Verifying and Learning Causal Structure

	5. Experiments
	5.1. Calculation of Interference Effects
	5.2. Learning the Causal Structure Using FCI
	5.3. Improvements in Click Prediction
	5.4. Performance in Unseen Layouts

	6. Conclusion
	Data Availability Statement
	Author Contributions
	References


