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Toward data lakes as central
building blocks for data
management and analysis

Philipp Wieder* and Hendrik Nolte

Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), Göttingen, Germany

Data lakes are a fundamental building block for many industrial data analysis

solutions and becoming increasingly popular in research. Often associated

with big data use cases, data lakes are, for example, used as central data

management systems of research institutions or as the core entity of machine

learning pipelines. The basic underlying idea of retaining data in its native

format within a data lake facilitates a large range of use cases and improves

data reusability, especially when compared to the schema-on-write approach

applied in data warehouses, where data is transformed prior to the actual

storage to fit a predefined schema. Storing such massive amounts of raw

data, however, has its very own challenges, spanning from the general data

modeling, and indexing for concise querying to the integration of suitable

and scalable compute capabilities. In this contribution, influential papers of

the last decade have been selected to provide a comprehensive overview of

developments and obtained results. The papers are analyzed with regard to the

applicability of their input to data lakes that serve as central data management

systems of research institutions. To achieve this, contributions to data lake

architectures, metadata models, data provenance, workflow support, and FAIR

principles are investigated. Last, but not least, these capabilities are mapped

onto the requirements of two common research personae to identify open

challenges. With that, potential research topics are determined, which have to

be tackled toward the applicability of data lakes as central building blocks for

research data management.
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1. Introduction

In recent years, data lakes have become increasingly popular in various industrial

and academic domains. In particular for academia, data lakes come with the promise

to provide solutions for several data management challenges at once. Similar to Data

Warehouses (Devlin and Murphy, 1988; Inmon, 2005), data lakes aim at integrating

heterogeneous data from different sources into a single, homogeneous data management

system. This allows data holders to overcome the limits of disparate and isolated data

silos and enforce uniform data governance.
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Data Warehouses have a fixed schema, which implies a so-

called schema-on-write approach to feed data into them. Extract-

Transform-Load (ETL) processes are therefore needed to extract

the raw data from its source, transform, e.g., to clean it or to

fit it into the predefined schema, and then load it into the Data

Warehouse (El-Sappagh et al., 2011). Although there are some

known challenges when using these ETL processes (Munappy

et al., 2020), the main drawback is the loss of information

during the transformation to fit data into the fixed schema.

To prevent this information loss, which limits the reuse of

the data e.g., for research questions outside the original scope,

James Dixon proposed the data lake concept in Dixon (2010).

Here, in contrast to the schema-on-write approach of a Data

Warehouses, data is retained in its original format and a schema

is only inferred when a subsequent process reads the data, an

approach which is termed schema-on-read.

The necessity for low cost and highly scalable mass storage

with the ability to be integrated into parallelised computations

was recognized as a key feature already at the advent of data

lakes, leading to a close connection between a data lakes and

Apache Hadoop (Khine and Wang, 2018). This approach was

at some point challenged by large cloud providers like Amazon

or Microsoft and their proprietary data lake solutions like

AWS Lake Formation or Azure Data Lake (Hukkeri et al.,

2020; Aundhkar and Guja, 2021). These products introduced,

among other features, the separation of storage and compute

and offered customers the well-known cloud features like the

pay-as-you-go payment model.

Although a data lake implements a schema-on-read

semantic, some modeling is mandatory to ensure proper data

integration, comprehensibility, and quality (Hai et al., 2018).

Such data modeling typically consists of a conceptual model,

which should facilitate frequent changes and therefore should

not enforce a fixed schema (Mathis, 2017; Khine and Wang,

2018). The required metadata can be gathered by extracting

prescriptive information from the data itself, for instance by

reading out header information, or metadata can be additionally

extracted from the source along with the original raw data itself.

In addition, data can be continuously enriched with metadata

during its lifetime in the data lake, for instance by identifying

relationships among the different data sets (Hai et al., 2016;

Sawadogo et al., 2019) or by auditing provenance information.

Quite some literature exists related to the use of data lakes

in different industries (Terrizzano et al., 2015; Golec, 2019;

Hukkeri et al., 2020), particularly with the intent to manage big

amounts of data (Miloslavskaya and Tolstoy, 2016). However,

there is also huge potential for the adoption of data lakes in

research institutions. One benefit is, for example, that data

silos, which quickly arise when different research teams work

independently, can be prevented or integrated. This also enables

novel analysis approaches across an homogeneous data set,

which are not possible dealing with distributed and isolated data

silos. Another advantage is that a common data governance

can be enforced on an overarching level, like an institute or

a research project, to guarantee a predefined data quality level

while and to assist researchers to adhere to good scientific

practices.

When scaling out the usage of a data lake across an entire

research institution to be the central research data management

system, one is encountered with different use cases and users

who have a diverse skill set. In this paper we want to explore

the current state of the art of data lakes and make based on

this survey an applicability analysis of the presented works

in the context of a large research institution. For this, papers

were collected, which had unique contributions to at least one

of the topics presented below. We start in Section 2 with a

discussion about the existing Data Lake Architectures, which

offers an overview about the highest level of organization and

abstraction of a given implementation. In the following Section 3

different metadata models are presented, which lie conceptually

one layer below the general architecture, and ensure the correct

data organization in the data lake, which involves semantic

information about the data itself as well as metadata describing

the relationships among the data. One if not the most important

relationship which needs to be modeled in a data lake is the

data lineage, which is in detail discussed in Section 4. Closely

related to the topic of provenance auditing is the general ability

to perform automated data analytics workflows, ideally in a

scalable manner, on the data lake, which is discussed in the

following Section 5. In Section 6.2 two disparate data lake

users, i.e., a domain researcher and a data scientist, are used to

perform an applicability analysis of the before presented works.

In addition a comparison based on common but also topic-

specific criteria is done to extend on the generic applicability

analysis. Based on the general survey in each of these topics,

future challenges are identified.

2. Data lake architectures

As of today, a lot of development and analysis was conducted

in the area of data lake architectures, where the so-called zone

architecture (Patel et al., 2017; Ravat and Zhao, 2019), including

the pond architecture (Inmon, 2016), became the most cited

and used. These architectures have already been surveyed by

Hai et al. (2021) and Sawadogo and Darmont (2021), and a

functional architecture was proposed by both of them, and

a maturity and a hybrid architecture have been derived by

Sawadogo and Darmont (2021). These surveys, however, did

not include recent works like the definition of a zone reference

model (Giebler et al., 2020) or a data lake architecture based on

FAIR Digital Objects (FDOs) (Nolte and Wieder, 2022).
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2.1. Definition of the term data lake
architecture

The term data lake architecture was defined by Giebler

et al. (2021) to represent the comprehensive design of a

data lake, including the infrastructure, data storage, data flow,

data modeling, data organization, data processes, metadata

management, data security and privacy, and data quality. In

this data lake architecture framework, only the data security

and privacy and the data quality are considered to be purely

conceptual, whereas the other aspects include a conceptual and

a physical, i.e., system specific, dimension. As stated by Madera

and Laurent (2016) more generically, a data lake generally has a

logical and a physical organization. In this paper, we refer to the

term data lake architecture only with respect to the conceptual

organization of a data lake in the highest level of abstraction,

since this should make this work more comparable to the

existing literature, although there exists a strong dependency on

other aspects of a data lake, like the metadata modeling.

2.2. Zone architecture

The general idea to divide a data lake into different zones

arises from the necessity to automatically run standardized

pre-processing pipelines, organize the resulting pre-processed

data, and make it available to subsequent processing steps,

like reporting, Online Analytical Processing (OLAP), and

particularly advanced analytics. This is achieved by assigning

data to different zones based on the degree of processing, and

sometimes the intended future use case. Therefore, it is common

to have a raw data zone, where, according to the original idea

of a data lake, data is retained in its raw format to facilitate

repetition of processes or the application of new methods based

on the original data. Pre-processed data is then usually collected

in a dedicated zone for pre-processed, or refined data, sometimes

called staging zone (Zikopoulos, 2015) or processing zone (Ravat

and Zhao, 2019). Data that requires additional governance can

be collected in a dedicated zone of its own called trusted zone

(Zikopoulos, 2015), or sensitive zone (Gorelik, 2019).

The most extensive analysis of the zone architecture was

conducted by Giebler et al. (2020), where five different data lakes

based on the zone architecture (Madsen, 2015; Zikopoulos, 2015;

Patel et al., 2017; Sharma, 2018; Gorelik, 2019; Ravat and Zhao,

2019) were analyzed with respect to their design differences,

specific features and their individual use cases in order to derive

a generic meta-model for a zone, and to specify a zone reference

model based on it. Giebler et al. identified that a zone is uniquely

defined by the characteristics of the data contained in that zone,

the intrinsic properties a zone enforces on the data, the user

groups which are intended to work in that zone, the modeling

approach to organize the corresponding metadata, and the data

sources as well as destinations. In the presented zone reference

model, Giebler et al. propose to split the zones up in a raw

zone and a harmonized zone, which is use case independent,

and a use case-specific distilled zone, which serves data to the

final delivery zone, to support reporting and OLAP tasks, and a

explorative zone to support advanced analytics. Each zone hosts

a protected area for data that requires special governance. The

actual implementation and the deployed systems can vary in

each zone, including the storage, the metadata model, and the

metadata management system itself. This entails synchronously,

that also the user interface potentially changes with each zone.

2.3. Lambda architecture

The Lambda Architecture has been proposed to enhance the

capability of a data lake to process data streams in near real-

time instead of fully ingesting hot data into the data lake and

performing batch-processing with a certain time delay (Mathis,

2017). However, retaining all raw data in its native format is the

core idea of a data lake. In order to resolve this contradiction, the

Lambda Architecture (Warren andMarz, 2015) implements two

processing streams in parallel. Here, data is being processed in

near real-time in the speed layer, whereas the batch layer ingests

data into the data lake and performs some predefined processing

steps. There have been numerous implementations proposed for

a data lake utilizing the Lambda Architecture (Hasani et al.,

2014; Villari et al., 2014; Batyuk and Voityshyn, 2016). However,

the following two particular works are presented which are

building on top of public cloud offerings.

A Lambda Architecture was used by Munshi and Mohamed

(2018) to build a data lake for smart grid data analytics using

Google’s cloud computing as Infrastructure as a Service (IaaS).

Here, the data is collected by a dedicated Data Collecting

Layer, in this particular case realized by Apache Flume1. From

there, the data is sent to the core of this specific data lake

implementation, a Hadoop Cluster. The master node stores

the data on HDFS (Borthakur, 2007), and computes arbitrary,

predefined functions using MapReduce (Dean and Ghemawat,

2008). The speed layer is implemented using Apache Spark

(Zaharia et al., 2010). The serving layer combines the output of

the batch and the speed layer and provides a batch view of the

relevant data, using e.g., Hive (Thusoo et al., 2009), Impala as

shown by Li (2014), and Spark SQL (Armbrust et al., 2015).

Similarly, Pérez-Arteaga et al. (2018) compared three

different implementations using the Software as a Service (SaaS)

offerings with a focus on serverless delivery of three different

public cloud providers, i.e., Google Cloud Platform, Microsoft

Azure, and Amazon Web Services Cloud. On AWS the speed

layer accepts data via Kinesis Data streams and processes them

using Kinesis Analytics and AWS Lambda. The results are stored

1 https://flume.apache.org/.
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in a dedicated S3-Speed-Bucket. Similarly, the batch layer uses

Kinesis Firehose to ingest data into AWS Lambda, from where

it is stored in an S3-Batch-Bucket. From here the data is read

by AWS Glue and stored in an S3-Result-Bucket. The serving

layer is realized by Athena which reads the data from both, the

S3-Result-Bucket and the S3-Speed-Bucket. In the Google Cloud

implementation, data is ingested by Pub/Sub to the speed and

the batch layer, which are both realized using Dataflow. On the

batch layer, an additional Datastore is employed to retain the

raw incoming datasets. The serving layer uses BigQuery. On

Microsoft Azure, data is received and ingested by EventHub.

The speed layer uses Stream Analytics and forwards directly into

the Serving Layer which is Cosmos DB. The batch layer also

uses Stream Analytics to store the raw data into Data Lake Store

(Ramakrishnan et al., 2017). From there it is read by Data lake

Analytics, which also stores its results in Cosmos DB.

2.4. Lakehouse

Lakehouses as described by Armbrust et al. (2021) are a

consequence of the general observation that in some cases the

raw data from a data lake is used as an input for an ETL process

to populate a data warehouse. The first step into a more unified

setup was provided by Delta lakes (Armbrust et al., 2020), which

provides ACID (atomicity, consistency, isolation, durability)

transactions on cloud object storage for tables stores. These

tables can be accessed from different systems, like Spark, Hive,

Presto (Sethi et al., 2019), and others. This approach introduces,

among other things, the advantage of still separating storage

and compute. Lakehouses offer on top of ACID transactions

direct access to the storage with traditional database semantics,

e.g., SQL, using open file formats like Apache Parquet (Vohra,

2016) or ORC 2. Therefore, a metadata layer on top of the cloud

storage can provide convenient SQL-like access to tables, while

compute-intensive, non-SQL code, like machine learning, can

directly access the files on the storage devices and thereby get

higher performance.

2.5. FAIR digital object-based
architecture

Using a FAIR Digital Object-based architecture, as proposed

by Nolte and Wieder (2022), the data lake is not divided into

different zones but realizes a flat, homogeneous, and uniform

research data management from the user’s point of view. To

allow for segregation of data with a different pedigree of

subjected processing, the FAIR Digital Object encapsulating

the corresponding data has a certain type with which the

delimitation between different data points is represented. This

2 https://orc.apache.org/.

can mean in a simple example, that in practice there is a

Scanner − XRaw data type and a Scanner − XPreprocessed data

type. This leads to amuchmore fine-grained partition of the data

lake as compared to the zone-architecture. This highly segregated

data lake, however, does not entail a correlated increase in

system complexity and administrative effort, since only one,

or a necessary subset of types of the FAIR Digital Objects

needs to be implemented and can then be further inherited

from, hereby reusing the existing implementation on the used

infrastructure. Since everything in this data lake is a FAIR Digital

Object, not only data but also including workflows and execution

environments, the user interface is completely homogeneous,

since the user interacts with these objects by calling predefined

functions. Each of these data objects is equivalently suited

as input for automated workflows or user-defined advanced

analytics. The requirement for additional governance or security

measures can be defined on a per object basis and can be globally

enforced based on the typed attributes describing the metadata

of the FAIR Digital Object.

2.6. Functional and maturity-based
architectures

The classification into functional and maturity-oriented

data lake architectures do, unlike in the case of the zone,

lambda, lakehouse, and FAIRDigital Object-based architectures,

not represent yet another design concept, but rather serve

as an improved way for classifying the different architectural

approaches. The goal is to allow for a more modular comparison

of existing data lake solutions and to better plan, the data life-

cycle as well as to help match the individual functionality of the

architectural pieces, which are building up the data lake, like

zones, or objects, on the required infrastructure.

Within a functional-based architecture classification, the

data lake is analyzed toward its operations which are performed

on the data while moving through the general data lake

workflow. Hai et al. (2021) define three layers, ingestion,

maintenance, and exploration, where corresponding functions

are then sub-grouped. A similar definition is provided

by Sawadogo and Darmont (2021), where the four main

components of a data lake are defined as ingestion, storage,

processing, querying.

Following the maturity-based architecture classification,

the degree of the processing of the data is the central

point of consideration. This classification is only helpful in

the discrimination and organization of different data sets,

however, it completely lacks consideration of workflows and

processing capabilities. However, Sawadogo and Darmont

(2021) highlight the advantage of the planning of the data

life-cycle. Therefore, a hybrid architecture was proposed by

Sawadogo and Darmont (2021) alongside the functional and
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maturity based classifications. Within this architecture, the

individual components are uniquely identified by the data

refinement and the possible functionality, that can be performed

on the specific set of data.

3. Metadata models

Proper metadata management is key to prevent that a data

lake turns into a data swamp and thus is the most important

component to ensure a continuous operation and usability

(Walker and Alrehamy, 2015; Khine and Wang, 2018). Due to

the generally flat hierarchy and the requirement to store any data

in its native format, there is always the risk of losing the overall

comprehensibility of the data lake. This comprehensibility is

lost, if data cannot be found or the relationship to other data

sets cannot be retrieved. One of the most severe consequences

of this is the inability to define concise queries to select

the data one is looking for in a fine-grained manner. As a

consequence, numerous metadata models and systems tailor-

made for usage in data lakes have been proposed. These models

and systems originate from different use cases and represent

various viewpoints, and therefore differ regarding their feature

sets. From this wide variety of available options, a few distinct

works have been selected and are discussed in the following

sections.

3.1. Data vault

Data modeling in a data vault was proposed by Linstedt

in the 1990s and published in the 2000s to allow for a more

agile metadata evolution, i.e., the continuous development

of the metadata schema, in data warehouses, compared to

star or a snowflake schemata (Lindstedt and Graziano, 2011).

This ensemble modeling uses traditionally relational database

systems and combines the third normal form with the star

schema. All data is stored in three different types of tables.

Hubs describe a business concept and are implemented as lists

of unique keys, and can be populated by different data sources.

Links describe relationships between the aforementioned hubs.

Satellites contain all attributes which describe the properties of

a hub or a link. Evolving the data vault over time then mainly

implies adding additional satellite tables to links and hubs.

Therefore, there is no need to migrate existing tables, which

facilities the continuous addition of metadata over time.

Due to these characteristics of the data vault concept, it was

also applied in data lakes. Nogueira et al. (2018) explained the

definition of a data vault for a specific use case and discussed

the advantages of porting it to a NoSQL database by comparing

benchmark results compared to a SQL database. They also

exemplify how new data sources can be added by defining

new hubs, links, and particularly satellites. Giebler et al. (2019)

proposed to split the one central, data lake-wide data vault up

into three distinct sub-data vaults: the Raw Vault, the Business

Vault, and theDataMart, whereby the latter does not necessarily

need to be modeled in a data vault, but could also be a flat

table, or a star schema. The authors reported that the agile

approach along with the ability to make incremental updates

serves well the needs for a data lake implementation. However,

they pointed out that it can be hard to enforce business rules

across the independent sub-data vaults, which they use, that

managing ambiguous keys can not finally be solved, and that

high-frequency data can critically inflate satellites.

3.2. GEMMS

GEMMS is proposed by Quix et al. (2016) as a Generic and

Extensible Metadata Management System with a particular focus

on scientific data management and, in this context, specifically

for the domain of live sciences. The key component of GEMMS

is an abstract entity called Data Unit, which consists of raw data

and its associated metadata. It is stated, that the main advantages

are, flexibility during ingestion and a user interface that abstracts

singular files. These Data Units can be annotated with semantic

metadata according to a suitable ontology. However, the core is

described with structure metadata. Mappings are only discussed

for semi-structured files, like CSV, XML, or spreadsheets,

however, it seems straightforward to extend this in other use

cases.

3.3. MEDAL and goldMEDAL

A graph-based metadata model was presented by Sawadogo

et al. (2019), where a subset of data, called an object, is

represented as a hypernode that contains all information about

that particular object, like the version, semantic information,

or something called representations. Representations present

the data in a specific way, for instance as a word cloud for

textual data. There is at least one representation required per

object, which is connected to this object by a Transformation.

These representations can be transformed, which is represented

as a directed edge in the hypergraph. This edge contains

information about the transformation, i.e., a script description

or similar. Data versioning is performed at the attribute level

of these hyperedges connecting two different representations.

Additionally, it is possible to define undetected hyperedges

representing the similarity of two objects, provided that the two

data sets are comparable.

This approach was revised by Scholly et al. (2021). Here,

the concept was simplified to only use data entities, processes,

links, and groupings. Processes also generate new data entities,

dropping the rather complicated idea of representations. These
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concepts are again mapped on a hypergraph. Both models

require global metadata, such as ontologies or thesauri.

3.4. CODAL

The data lake, and in particular the utilized metadata

model called CODAL (Sawadogo et al., 2019) was purpose-

built for textual data. It combines a graph model connecting

all ingested data sets with a data vault describing an individual

data set. One core component is the xml manifest, which is

divided into three parts: i) atomic metadata, ii) non-atomic

metadata, and iii) a division for physical relational metadata.

Metadata of the first category can be described as key-value

pairs, whereas non-atomic metadata only contain references to a

specific entity on a different system, they are "stored in a specific

format in the filesystem" (Sawadogo et al., 2019). Additional

information about the link strength which is modeling the

relational metadata is stored in a dedicated graph database. Here,

each node represents one document with a reference to the

corresponding xml manifest.

3.5. Network-based models

A network-based model, which extends the simple

categorization by Oram (2015) into three distinct types of

metadata, i.e., Business Metadata, Operational Metadata, and

Technical Metadata, was proposed by Diamantini et al. (2018)

to improve the data integration of different data sources

ingesting heterogeneous and unstructured data into the data

lake. Here, the notion of objects, or nodes in the resulting

graph, are used as well, which are defined by the corresponding

source typology. Based on these objects, links are generated,

containing a structural, a similarity or a Lemma (Navigli and

Ponzetto, 2012) relationship. In this approach, a node is not

only created for each source but also for each tag used in the

structural relationship modeling. Lexical similarities are derived

if two nodes have a common lemma in a thesaurus, while

string similarities are computed using a suitable metric, in that

particular case N-Grams (Peterlongo et al., 2005) was used.

Similar nodes are merged. Due to this merge, synonyms in user

queries can be detected and appropriately handled.

3.6. CoreKG

CoreKG (Beheshti et al., 2018) contextualizes the metadata

in the data catalog. To this end, four features has been identified

to constitute this curation service (Beheshti et al., 2017b):

Extraction, Enrichment, Linking and Annotation. The Extraction

functionality extracts information from the raw data containing

natural language, like the names of persons, locations, or

organizations. Enrichment first provides synonyms and stems

from the extracted features by using lexical knowledge bases like

WordNet (Miller, 1995). These extracted and enriched features

then need to be linked to external knowledge bases, likeWikidata

(Vrandečić, 2012). This enables CoreKG to understand, if, for

instance, the name of a certain politician was extracted, to link

against the corresponding country that politician is active in, i.e.,

to set it into context. Additionally, users can also annotate the

data items.

3.7. GOODS

GOODS is the internal data lake of Google (Halevy et al.,

2016a,b). It is unique compared to all other systems presented

since it gathers all its information in a post-hoc manner. This

means, that the individual teams continue working with their

specific tools within their established data silos, while GOODS

extracts metadata about each dataset by crawling through the

corresponding processing logs or storage-system catalogs. The

central entity of this data lake is a data set, which can be

additionally annotated by users or a special data-stewardship

team. These datasets are then connected by a knowledge graph

(Singhal, 2012) to represent their relationships. Within these

relationships, the dataset containment enables to split up data

sets, as it allows for bigtable column families (Chang et al., 2008)

to be a data lake entity themselves, along the entire bigtable. Due

to efficient naming conventions for file paths, GOODS can build

up logical clusters, depending on whether they are regularly, e.g.,

daily, generated, if they are replicated across different compute

centers or if they sharded into smaller data sets. In addition,

the data sets are linked by content similarity as well. Since

the entire data lake contains more than 20 billion data sets

with the creation/deletion of 1 billion data sets per day, no

pairwise similarity can be performed. Instead, locality-sensitive

hash values are generated for individual fields of the data set are

generated and compared.

3.8. Constance

Constance (Hai et al., 2016) is a data lake service, which

extracts explicit and implicit metadata from the ingested data,

allows semantic annotations and provides derived metadata

matching and enrichment for a continuous improvement of

the available metadata, and enables inexperienced users to

work with simple keyword-based queries by providing a query

rewriting engine (Hai et al., 2018). As it is typically done in data

lakes, data is ingested in raw format. The next step is to extract

as much metadata from it as possible, which is for structured

data like XML easier since schema definitions can be directly

extracted. In the case of semi-structured data, like JSON or CSV

files, a two step process called the Structural Metadata Discovery
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is necessary. First, it is checked, whether or notmetadata is either

encoded in the raw file itself, like a self-describing spreadsheet

or if metadata is encoded in the filename or file path. In a

second step, relationships are tried to be discovered during

the lifetime of the data lake between the different datasets, for

instance, based on the frequencies of join operations. Semantic

Metadata Matching is provided by a graph model and should

use a common ontology. In addition, schemata can be grouped

based on their similarity, which is useful in highly heterogeneous

data lakes.

4. Provenance

One of the generally most important metadata attribute in

the context of linked data is provenance (Hartig and Zhao,

2010). Data provenance or the data lineage hereby contains

information about the origin of a dataset, e.g., how it was created,

by whom, when it was created, etc. There has been an effort

by the W3C to standardize the representation of provenance

information by the use of an OWL2 ontology, as well as a

general data model, among other documents to complete their

specification called PROV (Belhajjame et al., 2013; Missier et al.,

2013). Provenance is also becoming increasingly important in

science, as it is a natural way to make scientific work more

comprehensible and reproducible. This can be exemplified by

the adaption of research objects (Bechhofer et al., 2010) and

reusable research objects (Yuan et al., 2018), focusing even

more on precise provenance information and repeatability of

computational experiments. Apart from this, provenance is

considered key in data lakes, to organize, track and link data

sets across different transformations and thereby ensure the

maintainability of a data lake.

4.1. CoreDB and CoreKG

CoreDB (Beheshti et al., 2017a) and CoreKG (Beheshti

et al., 2018) are data lake services with a main emphasis on a

comprehensive REST API, to organize, index and query data

across multiple databases. At the highest level, the main entities

of this data lake are data sets, which can be either of type

relational or of type NoSQL. In order to enable simultaneous

querying capabilities the CoreDB web service is itself in front

of all the other employed services. On this layer, queries are

translated between SQL and NoSQL. A particular focus is

lineage tracing of these entities. The recorded provenance is

hereby modeled by a directed acyclic graph, where user/roles

and entities are nodes while connecting edges represent the

interaction. This employed definition is given by the Temporal

Provenance Model (Beheshti et al., 2012) and can answer, when,

from where, by whom, and how a data set was created, read,

updated, deleted, or queried.

4.2. GOODS

GOODS metadata model has a particular focus on

provenance (Halevy et al., 2016a,b). In order to build up the

provenance graph, production logs are analyzed in a post-hoc

manner. Then the transitive closure is calculated to determine

the linkage between the data sets themselves. Since the data-

access events in those logs are extremely high, only a sample

is actually calculated and the transient closure is reduced to a

limited amount of hops.

4.3. Komadu-based provenance auditing

Suriarachchi and Plale (2016a,b) proposed a data lake

reference architecture to track data lineage across the lake

by utilizing a central provenance collection subsystem. This

subsystem enables stream processing of provenance events

by providing a suitable Ingest API along with a Query

API. In order to centrally collect provenance and process it,

Komadu (Suriarachchi et al., 2015) is used. Hereby, distributed

components can send provenance information via RabbitMQ

and web service channels. These single events are then

assembled into a global directed acyclic provenance graph,

which can be visualized as forward or backward provenance

graphs. Using this central subsystem, the need for provenance

stitching (Missier et al., 2010) is circumvented.

4.4. HPCSerA

A data lake use case is described in the work of Bingert et al.

(2021). Here, a user specifies a so-called job manifest, which

unambiguously describes the job, which should be computed.

This includes the actual compute command, the compute

environments which are provided by Singularity containers

(Kurtzer et al., 2017), git repositories which should be cloned

and potentially build at run-time, environment variables, user

annotations, and most importantly the input and expected

output data. This job manifest, written as a json document,

is then sent to the data lake, which is here represented by

a dedicated web application, which is taking control of the

actual synchronization with the underlying services, like the

high performance compute cluster or the databases. The data

lake generates all necessary scripts, which are divided into

three phases: i) pre-processing, run, and post-processing. These

scripts are submitted to the compute cluster, where within the

pre-processing step the compute environment is built on the

front-end, and data from a remote S3 storage is staged on a

fast parallel file system. Within this step, all possible degrees of

freedom, like the input data, or the git commit, are recorded and

submitted to the data lake, where it is being indexed. Due to

this mechanism, jobs are later on searchable and a provenance
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graph is automatically created, which connects the artifacts via

the job manifest as edges to their input or raw data. Due to

this recording, as well as the wrapping job manifest, each job is

precisely reproducible since one can submit the exact same job

without any unknowns.

4.5. JUNEAU

JUNEAU is build on top of Jupyter Notebooks, by replacing

its backend and customizing the user interface (Zhang and

Ives, 2019). It is therefore specifically targeted at data scientists

who are already familiar with Jupyter Notebooks. The main

constituents of the data lake are tables, or data frames, of which

transformations are tracked. Herefore, the notebook itself is

considered to be the workflow, and each executed cell within is

a task. The provenance information is captured, when the code

within a cell is transmitted to the used kernel. Based on this, the

notebook is reformatted into a versioned data flow graph, where

procedural code is transformed into a declarative form (Ives

and Zhang, 2019). Using a modified top-k threshold algorithm

(Fagin et al., 2003), similar data sets can be found with respect to

the individual provenance.

4.6. DCPAC

In order to manage automotive sensor data, Robert Bosch

GmbH has built a data lake (Dibowski et al., 2020). Although the

paper mainly focuses on their extensive DCPAC (Data Catalog,

Provenance, Access Control) ontology to build their semantic

layer, a dedicated data processing mechanism is provided. Data

processing is done using containerized applications, which can

access data in the data lake, and either create a new data resource

from it or curate existing data sets. The semantic data catalog is

updated via Apache Kafkamessages. Hereby, new data items are

integrated and their provenance is automatically recorded.

4.7. DataHub

DataHub (Bhardwaj et al., 2014) combines a dataset

version control system, capable of tracking which operations

were performed on which dataset by whom as well as their

dependencies, with a hosted platform on top of it. Hereby

DataHub uses tables which contain records as their primary

entities. Records consist of a key, along with any number of

typed, named attributes. In the case of completely unstructured

data, only the key could then refer to an entire file, in the

case of structured or semi-structured files like XML or JSON,

the schema can be (partially) modeled into this record. These

individual tables can then be linked to form data sets under

specification of the corresponding relationships. The version

information of a table or data set is managed using a version

graph i.e., a directed acyclic graph where the nodes are data sets

and the edges contain provenance information. In order to query

multiple versions at a time, a SQL-based query language called

VQL is provided, which extends SQL about the knowledge that

there are different tables for the different versions of a data set.

Along with DataHub, ProvDB (Miao et al., 2017; Miao

and Deshpande, 2018) is being developed. It incorporates a

provenance data model (Chavan et al., 2015) which consists

of a Conceptual Data Model and a Physical Property Graph

Data Model. The first model considers a data science project as

working directory where all files are either of type ResultFile,

DataFile, or ScriptFile. These files can be further annotated by

properties, i.e., JSON files. This model is then mapped onto

a property graph, where the edges represent the relationship,

e.g., parenthood. Provenance ingestion is possible threefold.

The first option is to prefix shell commands with provdb ingest

which then forwards audited information to different specialized

collectors. Secondly, users can provide annotations. Lastly, there

are so-called File Views, which allow defining virtual files as a

transformation on an existing file. This can be the execution of a

script or of an SQL query.

5. Support for workflows and
automation

Although the first major challenge in building a data lake

is the aforementioned metadata management, scaling toward

big amounts of data (automated) operation and manageability

of the data lake become increasingly important. For example,

the extraction of metadata related to data, which is being

ingested in a data lake, requires a scalable solution and highly

automated processes that best can be integrated into work-

or data flows wherever necessary (Mathis, 2017). As in the

case of metadata extraction, it is also here sometimes more

comfortable to split a complicated analysis up into a workflow

consisting of different steps. This has the additional advantage

that different parallelization techniques (Pautasso and Alonso,

2006; de Oliveira et al., 2012) can then be applied to improve the

scalability of the implemented analysis.

5.1. KAYAK

KAYAK (Maccioni and Torlone, 2017, 2018) offers so-called

primitives to analyze newly inserted data in a data lake in an ad-

hocmanner. KAYAK itself is a layer on top of the file system and

offers a user interface for interactions. The respective primitives

are defined by a workflow of atomic and consistent tasks and

can range from inserting or searching for a data set in the data

lake, to computing k-means, or performing an outlier analysis.

Tasks can be executed either by KAYAK itself, or a third party
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tool can be triggered, like Apache Spark (Zaharia et al., 2016) or

Metanome (Papenbrock et al., 2015). Furthermore, tasks can be

sub-divided into individual steps. By defining a directed acyclic

graph, which consists of consecutive dependent primitives, so-

called pipelines can be constructed with KAYAK. Here, output

data is not immediately used as input for a consecutive primitive,

but output data is first stored back into the data lake and

the corresponding metadata in the data catalog is updated.

Users can define a time-to-action to specify the maximum

time they are willing to wait for a result or preview, or they

define a tolerance, which specifies the minimal accuracy they

demand. A preview is a preliminary result of a step. In order

to enable these features, each step has to expose a confidence to

quantify the uncertainty of the correctness of a preview, and a

cost function to provide information about the necessary run-

time to achieve certain confidence. KAYAK enables the parallel

execution of steps by managing dependencies between tasks.

These dependencies are modeled as a directed acyclic graph

for each primitive. By decomposing these dependency graphs

into singular steps, these can be scheduled by a queue manager.

It enables the asynchronous execution of tasks by utilizing a

messaging system to schedule these tasks on a task executor,

which is typically provided multiple times on a cluster to allow

for parallel processing.

5.2. Klimatic

Klimatic (Skluzacek et al., 2016) integrates over 10,000

different geo-spatial data sets from numerous online

repositories. It accesses these data sets via HTTP or Globus

GridFTP. This done in a manner that allows to capture

path-based provenance information and can therein identify

relevant data sets based on file extensions, like NetCDF or CSV.

It then pre-processes these heterogeneous data sets to integrate

them into this single, homogeneous data lake while ensuring

topological, geo-spatial, and user-defined constraints (Elmasri

and Navathe, 1994; Cockcroft, 1997; Borges et al., 1999). The

pre-processing is done automatically within a three-phase

data ingestion pipeline. The first step consists of crawling and

scraping, where Docker containers are deployed in a scalable

pool. These crawlers retrieve a URL from a crawling queue

and then process any data found at that URL, while adding

newly discovered URLs back into the crawling queue. Using this

approach it is already enough to start with a limited amount

of initial repositories, like those of the National Oceanic and

Atmospheric Administration or the University Corporation

for Atmospheric Research. After these data sets have been

successfully discovered, these are submitted to a extraction

queue. Elements of this queue are then read by extractor

instances, and also Docker containers which can be elastically

deployed. These extract metadata with suitable libraries/tools,

like UK Gemini 2.2, and then load the extracted metadata into a

PostgreSQL database. Using these automated processes, a user is

for instance able to query for data in a certain range of latitudes

and longitudes, and Klimatic will estimate the time needed to

extract all data from the different data sets within the specified

range, and will then provide the user with an integrated data set

using focal operations (Shashi and Sanjay, 2003).

6. Discussion: Selected use cases
and resulting challenges

In this section, two different use cases or user groups,

which can be considered to be representative of larger research

institutions, are presented. Based on these use cases the

previously discussed data lake systems are being analyzed for

their applicability in these use cases. In addition, for each section,

the presented systems are analyzed and compared to each other.

for this, 4 standard criteria are chosen. The Generalitymeasures

how easily the presented system can be used to cover all kinds

of different (research) data. The Administrative Effort estimates,

how much work is needed to host the system and necessary

backend services without actually doing the domain research

itself. This is covered by the Ease of Use, where the accessibility

from a pure user’s perspective is analyzed. Lastly, since data lakes

are also commonly used in the context of big data, the Scalability

is a crucial criterion to estimate the worth of deployment. In

addition to these four criteria, more topic-specific criteria might

be added with regard to the actual focus in the particular section.

6.1. User groups

In the following two disparate user groups are presented,

which mainly differ in their technical proficiency.

6.1.1. Data scientists

In this use case, mainly data scientists with an above-average

technology understanding are interacting with the data lake.

Their motivation to use a data lake can come from a big data

background, where a massive amount of data should be stored

and processed, as well as standardizing processes and their

provenance auditing to enhance the reproducibility of their

experiments. Hereby, data scientist have the knowledge to work

with SQL, NoSQL, and graph databases, and to interact with

mass storage like CEPH (Weil et al., 2006). In order to perform

their computations, they rely on ad-hoc, local execution of code,

e.g., in Juypter Notebooks but need to massively scale out their

computations in a later stage. Therefore, they need to be able

to either work in a cloud environment or on high-performance

compute clusters, which are much more cost efficient and are

purpose-built for large parallel applications.
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6.1.2. Domain scientist

In this use case, mainly domain scientists are using the data

lake. It can be assumed, that they are working in a laboratory,

or something similar in their respective field. Their motivation

to use a data lake is driven by the general necessity of having

proper research data management. These users are generally

less experienced in dealing with more complicated applications

like databases and are generally not required to program large

applications or efficient, parallel code for high-performance

compute clusters. Data lineage does not only need to be recorded

based on digital transformations, i.e., monitoring which artifacts

were created by which processes based on which input data, but

also along measurements and analysis steps that are happening

in laboratories, or comparable. Here, a data lake should be

able to manage all experiment data and associated data, e.g.,

an electronic notebook corresponding to an experiment, and

track for instance a sample across the creation and subsequent

measurement cycle.

6.2. Applicability analysis of the
presented data lakes

The following applicability analysis of the previously

presented data lakes will be done based on the two provided use

cases as well as their perceived administrative effort.

6.3. Architecture

6.3.0.1. Zone architecture:

The Zone Architecture divides a data lake into different zones

to allow for some organization of different data types, which

allows for easier automation of repetitive tasks. These zones can

be physically implemented on different machines. Users do not

necessarily have access to all zones, which means, that they can

for instance not directly access raw data, on their own. This

entails an administrative effort to serve all users. Additionally,

there is no assistance for domain scientists and built-in guidance

for reproducible analysis for data scientists by design.

6.3.0.2. Lambda architecture:

The Lambda Architecture has some similarities with the

zone architecture but has generally a reduced complexity. The

rather rigidly coupled batch and speed layers prevent an agile

development by scientists but are ideally suited to provide

production systems of established workflows while maintaining

all raw data sets for later reuse.

6.3.0.3. Lakehouse:

The Lakehouse adds a valuable metadata layer on top of

an object store and facilitates the advantage of the separation

of storage and compute. This, however, entails a limited set of

supported file formats and therefore use cases. The completely

flat hierarchy and homogeneous usage make this architecture

well suited for data scientists and domain scientists alike.

6.3.0.4. FAIR-DO based architecture:

The FAIR Digital Object-based Architecture offers a fine-

grained refinement based on the types which also have a

clear abstraction, increasing the general comprehensibility. The

administrative effort is decreased, since new data types are

derived from existing ones and general data lake functionalities

only need to be implemented once for the parent objects,

afterwards they can be reused in user space. The flat architecture

does not intrinsically restrict access and offers a homogeneous

interface across all stages. This allows to implement a customized

but homogeneous user interfaces for domain researchers

covering the entire life cycle of a certain experiment. Meanwhile,

can data scientists work with the well-known abstraction

of objects they are familiar with from the object-oriented

programming paradigm. The possibility to globally enforce data

governance based on the typed attributes of these FAIR Digital

Objects is well suited to integrate different data sources or silos

into a single research data management system.

6.3.0.5. Functional and maturity-based architectures:

The classification in either functional-based,maturity-based,

or hybrid data lakes undermines the importance to sort data

based on their refinement, i.e., on the degree of processing

they were subjected to, while also stretching the importance

to formulate activities on the data lake as functions. This

has the advantage of a high standardization which eases

the administrative overhead while guaranteeing minimal data

quality and adherence to institutional policies. It is hard to

distinguish here between domain researchers and data scientists

since it is not clear how actual implementations of these concepts

would respect the different needs of those user groups.

6.3.0.6. Qualitative comparison:

Looking at the four presented architectures one can do a

qualitative comparison as shown in Table 1. As discussed, the

zone architecture has the highest complexity of all four of them,

therefore lacking in administrative effort and ease of use, but

it has a high generality. The Lambda architecture reduces the

complexity compared to zone architecture, and is, therefore,

easier tomaintain and use, but is not as versatile applicable, since

it mainly serves production systems with established workflows.

Similar arguments can be found for the lakehouse, which can

only support limited file formats. The FAIR Digital Object-

based architecture has a high generality since it can wrap any

existing file. Always offering Digital Objects to interact with

is comfortable for the users but requires more administrative

work, particularly at the beginning. One can also see that all

architectures fulfill the general requirement for a data lake to be

scalable.
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TABLE 1 Comparing the four presented architectures.

Architecture Generality
Administrative

effort

Ease

of use
Scalability

Zone + – – +

Lambda 0 + + +

Lakehouse 0 + + +

FAIR-DO + 0 + +

Putting the presented architectures into the context of

the overall evolution of data lakes which were in their first

years mostly realized using Hadoop clusters and the associated

software stack (Khine and Wang, 2018), one can see a clear

development toward more abstracted systems. The first level

of abstraction was proposed by Functional-based architectures,

which can also be mapped on Zone architectures by associating

a certain functionality with a certain zone. This idea was greatly

advanced by the FAIR-DO-based Architecture where the users

don’t see the actual system they are working on, but only

trigger the execution of predefined functions using a REST

API. This approach will lower the entry barrier, particularly

for domain researchers, while restricting the general risk of

a loss of consistency across the data lake. The general idea

to organize the data in the data lake regarding their pedigree

of subjected processing has clearly convinced, as it is also a

fundamental part of the newer architectures, i.e., the FAIR-DO

based Architecture, and the Maturity-based architecture. Since

the lambda architecture only offers the serving layer, this is also

true here. Although there was the strive in data lakes to separate

storage and compute, the importance of storage performance

becomes more important in the recent developments around

lakehouses. Here, in future work, one should include active

storage into the entire concept. Promising ideas are shown by

Chakraborty et al. (2022), which extends the capabilities of a

Ceph cluster.

6.3.1. Metadata models

6.3.1.1. Data vault:

Although Data Vaults may seem old at first glance, they

actually offer a generic and flexible way of modeling diverse

data sets into a single model. However, designing a proper Data

Vault is very challenging and requires deep knowledge about

data modeling in general as well as about the usage of databases.

Therefore, this model rather seems to be more suited for data

scientists than domain researchers, while the administrative

overhead depends on the used system.

6.3.1.2. GEMMS:

The Generic and Extensible Metadata Management System

was particularly designed for research data. The concept of a data

unit seems straightforward, however, semantic annotations are

only possible with a suitable ontology. Although this increases

the quality of the resulting metadata catalog, resulting in

challenges like ontology merging by administrators and the

effort of domain researchers to get their vocabulary into these

ontologies is a drawback. There was also no example provided,

of how this model can be used in conjunction with unstructured

data.

6.3.1.3. MEDAL and goldMEDAL:

Also in these models, global metadata like ontologies and

thesauri are necessary. The improved version of goldMEDAL

seems matured, as it only uses straight forward concepts as

data entities, processes, links, and groupings. More unintelligible

concepts like representations have been dropped. The presented

implementation usedNeo4J, which is within the defined realm of

data scientists. An open challenge seems to be the integration of

fully automated processes with adherence to global governance

to ensure data quality and to guide inexperienced users through

the data lake.

6.3.1.4. CODAL:

CODAL was purpose-built for textual data, it, therefore,

lacks the capacity to scale to generic use cases. The combination

of a Data Vault with a graph database along with the usage of

XML documents seems only suited for experienced users, i.e.,

data scientists. Combining these two models seems powerful

for the specific use case, however, entails a corresponding

administrative overhead.

6.3.1.5. Network-based models:

This model is also a graph-based model, which aims to

integrate heterogeneous and particularly unstructured data into

a single research data management system. The notion of

objects, represented as nodes, offers the necessary versatility,

to adapt to different use cases. The required definition

of the corresponding source typology might not be easily

implementable for domain scientists, but the overhead of

including experienced administrators for the initial setup seems

reasonable. However, the powerful relationship modeling using

structural, similarity and Lemma relationships will introduce

quite some maintenance overhead. This model, therefore, seems

more appropriate for well-experienced data scientists who can

ensure correct implementation and operation.

6.3.1.6. CoreKG:

This data model was discussed in detail for the case of data

containing natural language. The proposedmodel and presented

workflow to implement this model are very convincing with the

big restriction, that it is only meaningful and implementable for

text documents containing natural language. Once the workflow

is set up, it seems useful for data scientists as well as domain

researchers.
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6.3.1.7. GOODS:

GOODS builds up a data catalog in a post-hoc manner. It

creates data setswhich are enriched with information within logs

and user annotations. These data sets are then connected by a

knowledge graph to represent their relationships. Although the

idea to build up a data lake in a post-hoc manner seems very

promising for any larger institution, it is connected with large

challenges. Each log format and naming convention, also on the

file path level, needs to be understood by the data lake. This

requires for instance domain researchers to strictly follow global

data governance, which usually requires additional auditing.

Also on an administrative site, such a setup is as difficult to

implement as it is compelling to have. Accessing all systems from

one central data lake also comes with certain security risks which

need to be addressed, increasing the complexity even more.

Therefore, as impressive as this internal data lake of Google is,

it is most likely out of reach for other, much smaller research

institutions.

6.3.1.8. Constance:

The presented metadata model in Constance was applied

to structured and semi-structured data, where metadata was

automatically extracted from the raw data itself or in the full

file path. This approach lacks the ability to upload an associated

metadata file. This could be done by a domain researcher who

uploads an electronic lab book containing all metadata of a

certain experiment. If this metadata needs to be indexed to

enable a semantic search over it, such a mechanism needs to be

provided. Furthermore, the usage of ontologies enables semantic

metadata matching on the one side, while on the other side

this might be hard to implement. Problems here are, that rather

data scientists are trained to use them compared to domain

researchers and that the broader a data lake becomes, the more

likely the introduction of an additional ontology becomes, which

then might require complicated merges of ontologies (Noy and

Musen, 2003; Hitzler et al., 2005). Therefore, this approach

seems more feasible for data scientists who are operating on a

restricted set of data sources.

6.3.1.9. Qualitative comparison:

In Table 2 a qualitative comparison of the eight discussed

models is provided. In addition to the previously used criteria,

Similar Dataset Exploration and Semantic Enrichment is added.

The first one describes the possibility to find new data in a

data lake that is similar to data a user already has found.

This is for instance for statistical analysis like machine learning

important, to be able to increase the input data set. Semantic

Enrichment describes the possibility to, ideally continuously,

add semantic information to data in the data lake to improve

the findability. Implementing and using a data vault on top

of a SQL or NoSQL database requires a manageable amount

of time. In addition, it is scalable, one can describe generic

entities and their relations, and allows for evolution over time,

therefore enabling not a continuous but a discrete semantic

enrichment. GEMMS was not yet by default extended to support

any file type, and the use of ontologies has certain disadvantages,

like ontology merging and user consultation. It is also not

completely clear how similar data sets can be found and how

a continuous semantic enrichment can be performed. MEDAL

is a rather complicated model, with a steep learning curve.

Relying on Representation which is derived by transformation

will probably limit the usage scenarios. Similarity links allow

for easy dataset exploration and allow for semantic enrichment.

The revised version goldMEDAL improves, compared to

MEDAL, usability by dropping the complicated Representation

and Transformation relationship and reducing it to simpler

Processes. CODAL was purpose-built for textual data, and thus

lacks generality. In addition, relying on a filesystem limits

scalability. Updating semantic metadata in an xml file, however,

allows for continuous semantic enrichment, and connecting

all data entities with nodes representing relationships allows

for a good dataset exploration. The network-based models

can describe generic data, but however, the more complicated

notion of source typologies decreases the ease of use. Using

N-Grams to compute similarities, similar data sets can be

detected. Structural metadata can be randomly added to allow

for semantic enrichment. CoreKG is again a purpose-built

metadata model for textual data, therefore it is not generalizable.

setting up the full curation service requires some administrative

effort, but offers afterwards an easy and powerful model. The

enrichment and linking service enable continuous data curation

and exploration. GOODS requires that necessary metadata is

encoded in log files or in storage-system catalogs, which limits

the generality. The administrative effort here is enormous,

however, the ease of use for the users is great since no change

to their data silos and employed techniques is necessary. The

capability to scale across dozens or hundreds of data centers

is leading and the integration into an existing knowledge

graph enables similar dataset explorations. The evaluation of

semantic enrichment is difficult due to the high velocity of

the data. Constance offers a generic metadata model, however,

the structural metadata discovery did not explicitly include

unstructured data like images. The query rewriting engine eases

the use drastically and offers similar dataset exploration and

semantic enrichment.

To summarize, the discussed metadata models offer diverse

approaches for data modeling. However, there are common

patterns across these models. All of these models have an

atomic entity around which the entire modeling evolves. In

order to harmonize these different atomic entities, in some

models called objects, ontologies are commonly utilized. This

increases the entry barrier, particularly for domain researchers,

and can always lead to the necessity to perform ontology

merging. These models also always employed amethod tomodel

relationships between their atomic entities, or aggregations of

them. As a general observation, one can state that a proper
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TABLE 2 Comparing the nine presented metadata models.

Model Generality
Administrative

effort

Ease

of use
Scalability

Similar dataset

Exploration

Semantic

enrichment

Data Vault + 0 0 0 + 0

GEMMS 0 0 – 0 – 0

MEDAL 0 0 – 0 + +

goldMEDAL 0 0 0 0 + +

CODAL - 0 0 - + +

Network Models + 0 – 0 + +

CoreKG - – + 0 + +

GOODS 0 – + + + 0

Constance 0 0 + 0 + +

metadata model for data lakes has to offer some means to

describe, also semantically, its entities on its own, as well

as their relationship toward each other. This has led to the

simultaneous usage of different database systems, i.e., SQL,

NoSQL, and Graph databases, within a single data lake, which

introduced the challenge to query these different systems with

a single user query. More powerful query-rewriting engines

and/or suitable meta-languages which support the integration of

semantic meaning within this process is one of the challenges

metadata modeling in data lakes is currently facing. In addition,

semantic metadata extraction from particularly unstructured

data, like images, is also a key challenge to improve the usability

and adoption of data lakes.

6.3.2. Provenance

6.3.2.1. CoreDB(KG):

The employed Temporal Provenance Model is suitable for

data scientists and domain researchers, although it is not a

widely used standard. However, no details about the technical

implementation and the versatility are given. Therefore, no final

assessment of the actual applicability is possible.

6.3.2.2. GOODS:

Apart from the already discussed challenges of employing a

post-hoc analysis to populate a central data lake, an additional

challenge arises when using this approach to gather provenance

information: The used analysis software needs to write suitable

logs. Since this is not the case for all scientific software, this

approach is hard to implement for domain researchers, while

data scientists might be able to cope with that issue when using

self-written code or wrappers around existing software suits.

Interestingly, onlyGOODS calculates the transitive closure of the

provenance graph, which seems very useful.

6.3.2.3. Komadu:

This data lake implementation offers a dedicated Ingest

API which uses a RabbitMQ messaging queue, to retrieve

lineage information about the performed processing steps.

The transparent assembly of these singular tasks to a global

provenance graph is comfortable and useful. As in the GOODS

discussion, data scientists can use custom build software or write

wrappers around existing ones to utilize the messaging system.

Domain researchers will probably have a hard time when their

scientific software suit does not support this kind of provenance

auditing.

6.3.2.4. HPCSerA:

Here, users are required to describe their analysis they want

to run in a job manifest. This job is then executed on an

HPC system. By using Singularity containers and enabling the

dynamic build and integration of arbitrary git commits, this

integrates well with a typical HPC workflow. These systems

are often used by data scientists, which benefit here from

transparent provenance auditing of completely generic jobs and

the ability to re-run a previous analysis to reproduce the results.

This mechanism can also be extended for better Cloud support,

however, there is a lack of an ad-hoc analysis with a similar

provenance auditing, which might be important for domain

researchers.

6.3.2.5. JUNEAU:

This modification for Jupyter Notebook offers an ad-hoc

experience for users, who are working with Python and with

tabularized data. Since Jupyter Notebook is broadly utilized by

data scientists and domain researchers alike, it is generally

suited for both groups. However, this approach only works

for tabularized data and only supports Python which is

limiting the possible use cases. In addition, this presented data

lake implementation fell short of detailed data and metadata

handling and mainly focused on ad-hoc processing. It remains

unclear, howwell this implementation is able to serve as a central

research data management system for a variety of data sources

and user groups.
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6.3.2.6. DCPAC:

Data lineage in DCPAC is recorded by custom build

containers which send messages to Apache Kafka. This approach

requires users to containerize their applications and implement

a messaging mechanism. This is a suitable method for data

scientists but is challenging for domain researchers. particularly

for domain researchers, it would be necessary to check the

messages for quality and consistency.

6.3.2.7. DataHub:

This platform which offers a data set version control

system is a good solution for all researchers. The representation

of the provenance within a version graph is interesting and

straightforward. In addition, the possibility to use ProvDB

offers more detailed modeling capabilities on the basis of files.

The ingestion of the provenance data, however, is not generic

enough. Using the shell command, will not offer a suitable depth,

for instance, to offer full reproducibility, while on the other

hand, the file views are only suitable for data scientists familiar

with SQL. The third provided option, i.e., user annotations, is

very error prone and is therefore unsuited as a guideline for good

scientific practice.

6.3.2.8. Qualitative comparison:

In Table 3 a qualitative comparison of the seven discussed

models is provided. In addition to the previously used criteria,

Reproducibility is added. This specifies, whether based on

the gathered provenance information, a result can always be

reproduced, which becomes increasingly relevant for scientific

publications. CoreDB/CoreKG offers a RestAPI and thereby an

easy-to-use interface and the distinction between the types SQL

and NoSQL offers a great generality. However, the employed

Temporal Provenance Model is not an established standard

and is not aimed to guarantee reproducibility, but rather

comprehensibility. GOODS relies on production logs, based on

which heuristics are used to calculate the provenance graph. It

is aimed for scalability and efficiency, not for reproducibility.

Komadu relies on a RabbitMQ messaging, it is therefore not

generally applicable. The provided RestAPI is a useful user

interface. However, reproducibility relies on the quality of the

messages, thus it is depending on the analytics job running, and

is independent of the data lake itself. The data lake which uses

HPCSerA can execute arbitrary scripts and it offers a RestAPI to

work with. Its strength lies in its transparent lineage auditing on

an HPC system by using Job Manifests. By storing and linking

all entities, every artifact can be reproduced. The inclusion

of HPC systems makes this setup very scalable. JUNEAU is

extremely user-friendly by building directly on top of the well-

known Jupyter Notebooks. Therefore it lacks generality and

scalability since it depends on data frames and is limited to

the resources of a single notebook. The transparent lineage

recording during the submission of the code in a cell to

the kernel allows reproducibility. DCPAC works on arbitrary

data, however the usage of an extensive ontologies requires

users to familiarize with it. The usage of Docker containers

is scalable, and offers a fair reproducibility. DataHub can deal

with any kind of data and offers a comfortable graphical

user interface. The, although limited, provenance information

in conjunction with the version control of the data allows

for decent reproducibility. In conclusion, while all previously

discussed data lake implementations share the common idea

of building a global provenance graph, there exists a wealth

of different provenance models and auditing methods. In the

future, data lakes should focus more on established models

for provenance representation, to enhance interoperability.

Furthermore, from the fact that each data lake implementation

found a unique provenance auditing approach, it becomes

clear that in each case a specific processing mechanism was in

mind, like an HPC system in HPCSerA or a Jupyter Notebook

in JUNEAU. This means, that not a single data lake offered

provenance auditing capabilities over the entire life cycle of a

data-driven project for generic applications. A future challenge

here is, to support provenance auditing in ad-hoc analytics, like

within a Jupyter Notebook, as well as in larger computations

that run in a Cloud or HPC environment and integrate this

into a homogeneous, global provenance graph, ideally in a

reproducible manner. These single tasks need then to be linked

to workflows, with the same provenance granularity. A similar

challenge here is to support generic applications, without relying

on a built-in messaging or logging functionality.

6.3.3. Support for workflows and automation

6.3.3.1. KAYAK:

KAYAK offers a very sophisticated mechanism to implement

parallelizable and automatable workflows. The decomposition of

an abstract workflow into tasks which can then be combined to

primitives and finally can be chained to entire pipelines, requires

some prior knowledge. Although powerful, it is rather suited for

data scientists, and not so much for domain researchers, since

the above decomposition of established scientific software suits

into these entities is not straightforward. Furthermore, although

the idea of a tolerance and a time-to-action is very useful on a data

lake, this is only suitable for a subset of methods that are iterative

by nature. From the viewpoint of a generic scientific application,

this might simply add additional overhead and increase the entry

barrier. Therefore, this well-designed data lake is mostly suitable

for experienced data scientists.

6.3.3.2. Klimatic:

The automated processing capabilities of Klimatic are based

on Docker containers. The generic approach to split up a

pipeline into distinct stages which are linked by dedicated

queues can be adopted to serve other use cases as well. Although

it was only used for data set exploration within this particular

implementation, also data analysis pipelines could be set up
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TABLE 3 Comparing the seven provenance models.

Implementation Generality
Administrative

effort

Ease

of use
Scalability Reproducibility

CoreDB/CoreKG + 0 + + 0

GOODS 0 – + + –

Komadu - 0 + 0 0

HPCSerA + 0 + + +

JUNEAU – 0 + – +

DCPAC + 0 0 + 0

DataHub + 0 + 0 +

using this approach. This would require building containers that

are pushing back their output into a certain queue, or the current

data lake implementation can be extended to offer a generic

wrapping method that accepts arbitrary containers and then

orchestrates the communication with the queuing system. One

can see, how this data lake can be extended to also serve domain

researchers from other sciences as well.

6.3.3.3. Qualitative comparison:

In Table 4 a qualitative comparison of the two discussed

processing concepts is provided. KAYAK has a scalable and

parallelizable approach to executing a workflow. Since user-

defined Primitives are supported, it is also very generic. In

addition, the user interface on top of the filesystem eases the

use, however, the entire execution model with its depth of

options requires some time to familiarize with it. Klimatic

presents a specific use case and it is not completely clear

how generalizable the general approach is. Setting all queues

and ingestion pipelines up for the first time requires some

administrative effort but is, therefore, more comfortable for

users to use. The usage of remote Docker hosts to serve multiple

workers which get their jobs from a queue is also very scalable.

In conclusion, there is only a limited amount of work

focusing on workflows and automation for processes on data

lakes. The challenge here is to incorporate a scalable back-end

to support the compute-intensive operations associated with

big data. Using portable containers is a well-suited approach.

Future developments, however, would largely benefit from a

modularized approach allowing to integrate different back-ends

in a suitable manner, i.e., to have native support for individual

machines, as well as for Cloud and HPC environments. This

extends explicitly to the employed workflow engines, which

should similarly prevent a lock-in effect, as envisioned by CWL

(Amstutz et al., 2016).

7. Summary and outlook

This paper presents and summarizes the most relevant

papers connected to data lakes and analyzes the past

TABLE 4 Comparing the two workflow and automation tools.

Imple

mentation
Generality

Administrative

effort

Ease

of use
Scalability

KAYAK + 0 0 +

Klimatic 0 – + +

developments to identify future challenges. This is done

with a particular focus on the applicability for larger research

institutions which are characterized by diverse user groups,

which are for simplicity represented by domain researchers and

data scientists within this paper.

One can see in Section 2, that there is a trend toward

an abstraction of the underlying systems. This allows to

conceptually model the data life-cycle and increases the

usability by defining a certain functionality within this life-cycle.

Furthermore, by only exposing predefined functions to users the

consistency of the data lake can be ensured, even when used by

inexperienced users. To increase the general user group of a data

lake, it is important, that the metadata model is similarly easy to

use and yet generic enough to be suitable for diverse use cases.

In Section 3 it was seen, that there is the general need to

model relationships between some atomic data lake entities.

In addition, these atomic entities also need to be described by

semantic metadata, which will be more intuitive, particularly

for domain researchers. The most important challenge here is,

to find a metadata model, which offers a low entry barrier for

domain researchers to fill in their data, but offers a enough depth

to for experienced users to utilize the sophisticated methods for

special use cases, as they are presented.

By analyzing the papers which are presented in Section

4 it becomes clear, that there is the open quest to develop

a uniform provenance auditing mechanism which is able to

capture homogeneous lineage information along the entire

project life-cycle, reaching from first ad-hoc scripts to large-scale

parallel applications.

Also, in Section 5 there is a clear trend toward containerized

applications to enable processing on data lakes. The advantages
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are many-fold, reaching from portability to an increased

reproducibility. The provided mechanisms to allow for parallel

and asynchronous executions are convincing. The next future

challenge can be identified to enable these methods to use

different back-ends, reaching from single systems, to public or

private clouds, and HPC systems.

The concluding analysis in Section 6 took more different

criteria into account and compared the presented data lake

systems based on the criteria. Here one could see, that there is no

single data lake system, which fulfills all requirements. Instead,

most of the systems are to some extend purpose built systems,

which are compromising in some aspects to better exceed at

other. In addition, two different user groups from the view point

of a larger research institution were defined in Section 6.1. Based

on these user groups a more subjective analysis was done, with

the purpose to motivate the general accessibility of this user

group to certain data lake implementation. This might be useful

in order to improve systems to attract more user, wich is the

largest challenge currently in data lake development. However,

it would have also the largest benefit, to get diverse user groups

excited of the idea of data lakes. This will lead to an increased

influx of new (meta-) data and methods, and the integration of

previously siloed data will enable novel analysis which have not

been possible before.
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