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Combining training data from multiple sources increases sample size and

reduces confounding, leading to more accurate and less biased machine

learning models. In healthcare, however, direct pooling of data is often not

allowed by data custodians who are accountable for minimizing the exposure

of sensitive information. Federated learning o�ers a promising solution to

this problem by training a model in a decentralized manner thus reducing

the risks of data leakage. Although there is increasing utilization of federated

learning on clinical data, its e�cacy on individual-level genomic data has not

been studied. This study lays the groundwork for the adoption of federated

learning for genomic data by investigating its applicability in two scenarios:

phenotype prediction on the UK Biobank data and ancestry prediction on the

1000 Genomes Project data. We show that federated models trained on data

split into independent nodes achieve performance close to centralized models,

even in the presence of significant inter-node heterogeneity. Additionally,

we investigate how federated model accuracy is a�ected by communication

frequency and suggest approaches to reduce computational complexity or

communication costs.

KEYWORDS

federated learning (FL), phenotype prediction, ancestry prediction, machine learning,

data collaboration, genomics, polygenic scores

1 Introduction

Here, we describe the current trends and policies concerning genomic data, its usage

for phenotype and ancestry prediction, as well as current practices of federated learning

and privacy-enhancing mechanisms.

1.1 Availability of genomic data

The last decade has seen a rapid increase in the amount of genomic data

due to the improvement of sequencing technologies and the promise of big data

studies in healthcare. With genotyping costs going down, the pool of genomic

data also becomes less centralized as more organizations, both commercial,
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such as genetic testing companies, and non-profit, such

as biobanks, accumulate vast collections of genomes. This

decentralization, coupled with data-hungry genome-wide machine

learning approaches, raises a need for data collaboration. However,

access to genomic data is usually restricted due to its sensitive

nature and the harmful consequences of possible data leakage, such

as deanonymization and genetic discrimination (Joly et al., 2017;

Bonomi et al., 2020; Chapman et al., 2020).

Data holders may share aggregated data such as summary

statistics for genome-wide association studies (GWAS) to allow

easy access with a reduced risk of exposing sensitive information.

The summary statistics can be analyzed jointly via meta-analysis

(Evangelou and Ioannidis, 2013; Ray and Boehnke, 2018).

However, summarizing involves a loss of information which affects

model performance.

Due to new governmental policies, data custodians of large

healthcare cohorts started to store sensitive individual-level

data in secure data havens, which are accessible via trusted

research environments (UK Health Data Research Alliance

and NHSX, 2021; Kavianpour et al., 2022; Mayo et al.,

2023). Federations of such protected data silos are being

established and new federated analysis frameworks are being

developed, which allow joint analyses of data from multiple

data silos (The Global Alliance for Genomics and Health,

2016).

1.2 Phenotype prediction

Phenotype-from-genotype prediction aims to score an

individual’s genetic liability to a certain phenotype, usually, a

disease, which can identify risk groups and assist diagnostics

(Lewis and Vassos, 2020). To build a predictive model,

one has to obtain either individual-level data where each

sample has two alleles for each included genetic variant

(SNP) or summary-level data where each SNP has an

allele frequency.

Models trained on individual-level data typically yield higher

predictive performance as they learn the joint SNP distribution.

However, this sensitive data can typically be accessed only with an

approved research application.

On the other hand, summary-based models, or polygenic

scores, are trained on publicly available GWAS-derived summary

statistics and can even incorporate outputs ofmultiple GWAS using

meta-analysis. However, polygenic score models are typically based

on assumptions that reduce their applicability to samples with

ancestry different from the ancestry of the training set. For instance,

multiple studies show poor portability of polygenic scores to other

ancestry groups (Gurdasani et al., 2019; Martin et al., 2019a; Privé

et al., 2022). This is caused by inter-population differences in allele

frequency (Durvasula and Lohmueller, 2021) and variant effect size

(Shi et al., 2021), as well as different linkage disequilibrium patterns

(Amariuta et al., 2020).

In this paper, we consider only individual-level data, since

summary-level data is typically publicly available and does not

require federated learning to keep it private.

1.3 Ancestry prediction

Genetic ancestry prediction from SNPs has two common uses.

First, it is a product that genetic testing companies provide to

their customers (Kirkpatrick and Rashkin, 2017). Despite its not

purely scientific purpose, predicted ancestry is an important factor

in attracting new customers to provide their DNA samples and,

thus, increases the amount of available individual-level genetic data.

Second, due to poor polygenic score cross-ancestry portability, per-

ancestry summary statistics (Buniello et al., 2019) and polygenic

score (Lambert et al., 2021) catalogs have been established. As self-

reported ancestry is often noisy, ancestry prediction is a promising

tool to be used in phenotype prediction and pharmacogenomics

(Yang et al., 2021).

The task of predicting ancestry is closely related to inferring

genetic population structure. As ancestry differences comprise

the major part of human genetic variation, population structure

is well-described by top eigenvectors of the covariance matrix

obtained from genetic variants. As a consequence, these principal

components are commonly included in phenotype prediction

models as covariates to control for population structure (Price et al.,

2006). A common approach to estimate the ancestry of unlabeled

samples is to project it onto the principal component space of

a labeled reference panel (Privé et al., 2020), such as the 1000

Genomes Project (The 1000 Genomes Project Consortium, 2015).

1.4 Federated learning

Federated learning involves training a model locally on clients

(data nodes) and sending parameter updates to a server (central

hub) where these updates are aggregated into a new set of model

parameters which are then sent back to the clients in the next

round of training, also called a communication round (Yang

et al., 2019). Unlike conventional “centralized” machine learning,

federated learning does not require assembling data at a single

location which saves communication costs and, more importantly,

enhances data security since the client’s data is not disclosed to the

server nor to other clients.

Federated learning features different strategies, which vary in

aggregation methods on a server, in the training process on clients

and in the communication frequency between a client and a server.

Different strategies may be preferable in different data distribution

scenarios: (i) cross-device (many clients with little data) or cross-

silo (few clients with a lot of data); (ii) varying degrees of inter-

client heterogeneity (dissimilarity); (iii) unavailable or straggling

clients. This study considers the cross-silo scenario which is the

most typical for genomic data where clients, such as hospitals,

biobanks, and genetic testing companies may be dissimilar due to

differing genetic populations.

1.5 Privacy issues of federated learning

The key privacy-preserving mechanism in federated learning

is keeping the data at data silos where it is stored and sending

model parameters, instead of the data, to and from data silos. While
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sending the model parameters is more secure than transmitting

the sensitive data, this alone may not be enough to guarantee

data privacy, since the model parameters may leak information

about the data, for instance through gradient updates during the

training process (Lim and Chan, 2021; Mothukuri et al., 2021).

It has been shown that phenotype prediction in a federated

setting can be vulnerable to deanonymization attacks (Wjst,

2010). Thus, additional privacy enhancing mechanisms may be

required. These include differential privacy (Abadi et al., 2016),

secure multiparty computation (Damgård et al., 2012) and trusted

execution environments (Mo et al., 2021), see Bonomi et al. (2020)

for a comprehensive survey of privacy-preserving mechanisms.

1.6 Federated learning for genomics and
healthcare

Trusted research environments forbid moving sensitive data

out of data havens, which prevents the downloading and combining

of data from multiple sources to train conventional machine

learning models. Federated learning, on the other hand, is designed

to operate on isolated data silos. Therefore, there is a growing

demand for federated learning infrastructures for healthcare data

(Nik-Zainal et al., 2022; Alvarellos et al., 2023). Researchers have

applied federated learning to a variety of healthcare data, including

electronic health records (Vaid et al., 2021), medical images (Li

et al., 2020) and wearables (Chen et al., 2020). A number of

surveys describe the applications, prospects, challenges and privacy

concerns of federated learning in healthcare (Rieke et al., 2020; Xu

et al., 2021; Joshi et al., 2022). A number of privacy-preserving

techniques for genomic data have been proposed, such as federated

GWAS (Sadat et al., 2018; Nasirigerdeh et al., 2020) and federated

PCA for GWAS (Hartebrodt et al., 2021). However, to the best of

our knowledge, the efficacy of federated learning for predictions

from full-scale genomic data has not been extensively investigated.

Training a federated model on genomic arrays poses additional

challenges typical to omics data, such as the vast number of non-

independent features (genetic variants).

1.7 Outline and scope of the paper

The paper is structured as follows. In the Results, we first

compare federated, local and centralized models trained to predict

eight phenotypes from SNP data of the UK Biobank. In our

second experiment, we analyze the behavior of federatedmodels for

ancestry-from-genotype prediction on the highly heterogeneous

1000 Genomes data. Finally, we provide recommendations on

a training schedule by varying the number of communication

rounds and local epochs in each round depending on the system

bottleneck to achieve high accuracy. In the Section 3, we detail

the data preprocessing and model training for both experiments.

In the Section 4, we overview and analyze the results and suggest

directions for future research.

In both experiments, we use well-established and accurate

models and train them using the standard FedAvg strategy on

artificially-separated datasets to provide a baseline and focus on

the analysis of federated model behavior. Here, we do not consider

additional privacy-enhancing mechanisms. Future studies may

focus on using FL with more advanced models, designing novel FL

strategies, protecting federatedmodels against the attacks, as well as

train federated models on multiple real datasets, such as biobanks.

Our main contributions are as follows. First, we show the

efficacy of federated models on genomic data. We demonstrate that

federated models can be successfully trained to achieve almost the

same performance as centralized models, which are not limited

by privacy restrictions, and by a large margin outperform local

models, trained in compliance with privacy restrictions. Second,

a clear issue for federated learning on large genomic datasets

is that it may be jeopardized by high computational load and

large amount of communication, the latter of which also increases

system vulnerability to attacks. We demonstrate how, depending

on the system bottleneck, to choose the number of local epochs,

frequency of communication between the nodes and the quality of

federated data preprocessing in order to keep performance high

in the presence of high inter-node heterogeneity. In summary,

we provide fundamental evidence of a successful use of federated

learning on genomic data which, we hope, will encourage genomic

collaboration and future research.

2 Results

In this section, we compare federated, centralized and local

phenotype-from-genotype prediction models on the UK Biobank

dataset. Further, we analyze the behavior of federated models in the

presence of high data heterogeneity on the 1000 Genomes dataset

and investigate how the performance of federated models depends

on the amount of client-server communication and the number of

epochs in a communication round. Table 1 provides a high-level

overview of the two experiments.

2.1 Phenotype prediction from UK Biobank
data

In this experiment, we mimic the situation where genomic data

is stored in multiple large silos, such as hospitals, within the same

country. We split the UK Biobank data into 19 datasets according

to sample collection centers in different parts of the UK. Some

inter-node heterogeneity is present due to the correlation between

the UK’s genetic population structure and geography (Agrawal

et al., 2020). After a standard quality control (QC), we reduced

dimensionality by conducting GWAS on each node and selecting

top SNPs. Then, we trained local, federated and centralized

Lassonet neural networks (see Section 3) of identical architecture

with selected SNPs, sex and age as features. Advanced lasso-

based models are considered to be state-of-the-art for phenotype

prediction from individual-level genomic data (Prive et al., 2018;

Qian et al., 2020). Here, we chose a basic Lasso-based model to

focus on the relative performance of federated, centralized and

local models. The experiment setup is visualized in Figure 1 and

described in more detail in the Section 3.

Figure 2 displays R2 performance of six out of 19 local models,

federated (FedAvg, 8 epochs in a communication round, see Section
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TABLE 1 Overview of the two experiments.

Prediction Phenotype-from-
genotype

Ancestry-from-
genotype

Dataset UK Biobank 1000 Genomes

Population Mostly White British 5 superpopulations

Use case for Collaboration within a

country

Cross-continental

collaboration

Node

heterogeneity

Low High

Client nodes 19 5

Node sizes 12k–42k samples 509–682 samples

Comparison Federated vs. centralized vs.

local models

Different federated models

Predictive

task

Regression Multiclass classification

Input features 10k GWAS-selected SNPs +

age + sex

20 PCs

Prediction

target

Quantitative phenotype 26 population classes

Model

description

LASSO Fully-connected MLP

Loss function Mean Squared Error + l1

penalty

Cross-entropy

Metric R2 (coefficient of

determination)

Accuracy

Validation 10-fold cross-validation:

eight folds - train, one fold -

validation, one fold - test

10-fold cross-validation:

eight folds - train, one fold

- validation, one fold - test

3) and centralized models on the same test set, for eight continuous

phenotypes. The six displayed nodes were selected, prior to model

training, to demonstrate the whole range of sample sizes. The

considered phenotypes were selected based on previous heritability

estimates (Sinnott-Armstrong et al., 2021). On each node two local

models were trained: one trained on top SNPs from local GWAS

and one trained on top SNPs frommeta-GWAS (see Section 3). The

federated models used SNPs from meta-GWAS and the centralized

models used SNPs from centralized GWAS. Local and centralized

covariates-only (sex and age) models were also trained as a baseline.

We trained local and centralized models with (i) “native”

features, i.e., SNPs derived from local and centralized GWAS, to

represent end-to-end solutions, and (ii) SNPs yielded by meta-

GWAS so that local, centralized and federated models can be

compared on exactly the same set of features. For centralized

models, performance on centralized GWAS SNPs andmeta-GWAS

SNPs was very similar for all phenotypes, thus, only the former

was included in the Figure 2. Local models tend to perform better

on meta-GWAS SNPs compared to local GWAS SNPs, most likely

because SNP selection via a local GWAS tends to yield more

false positives due to an insufficient number of samples. For local

models, we see a natural trend that performance improves as the

node size grows. Federated models outperform all local models and

get close to centralized models.

2.2 Ancestry prediction from 1000
Genomes data

Despite its lower clinical significance than predicting complex

traits from genotype, we now consider ancestry-from-genotype

prediction models. They can be trained using a smaller number of

samples and are lighter and less computationally expensive, which

allows us to conduct extensive simulations to investigate federated

learning in more detail. Here, we mimic the situation where genetic

testing companies from different parts of the world collaboratively

predict ancestry and split the 1000 Genomes Project data into 5

isolated nodes based on sample superpopulation (African, Native

American, East Asian, European, Southern Asian), thus getting

high inter-node heterogeneity. After a standard QC, we reduced

dimensionality by applying federated PCA (Hartebrodt and

Röttger, 2022) to pruned SNPs and then trained local, federated and

centralizedmultilayer perceptrons (MLPs) of identical architecture.

The experiment setup is visualized in Figure 3 and described in

more detail in the Section 3.

Our goal here is to investigate the performance of federated

models as a function of communication between the clients

(nodes) and the server in the presence of significant cross-client

heterogeneity. For this, we compare FedAvg strategies with a

different number of epochs in a round of communication. The

training process of federated models is displayed in Figure 4.

Figure 4A compares the validation loss of the centralized and

federated models. Federated models show a clear trend that the

more communication between the server and the clients, i.e., the

more rounds and the fewer local epochs in each round, the faster

the convergence is. For the centralized model, convergence was

fast, however, it started from a higher loss value because of the

random class assignment in a multiclass classification initialization:

a centralized model solves a problem for 26 classes whereas each of

the five superpopulation nodes has fewer classes (26 in total).

Figure 4B shows the evolution of the client training loss

of the FedAvg model with 32 local epochs in a round of

communication. Here, the peaks correspond to the initial

evaluation of the aggregated parameters sent from the server

to the client. Parameter aggregation on the server results in

an increase of the local loss as the aggregated parameters

are a weighted average of parameters optimized on different

data distributions (due to inter-node heterogeneity), then

the loss starts decreasing as the model starts fitting to the

local data.

2.3 Practical considerations of
server-client communication

Figure 5 shows the accuracy of federated models as

functions of the number of total epochs (computational

complexity) and rounds (communication). In compliance

with Figures 4A, 5A shows that for heterogeneous data,

increasing communication between the clients and the server

leads to higher accuracy. On the other hand, Figure 5B shows

that for a limited number of rounds, it is beneficial to train

locally for a larger number of epochs. Thus, depending
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FIGURE 1

The workflow of phenotype prediction from UKB data. Data is split into nodes and undergoes per-node variant QC. Then, within a cross-validation

loop dimensionality is reduced by selecting the most significant SNPs via a local or meta-GWAS. Finally, models are trained.

on what is the bottleneck of the system, communication or

computational complexity, different federated learning strategies

may be preferable.

A fully federated solution requires all data to be prepared in

a federated manner as well. In the case of ancestry prediction,

dimensionality reduction is usually conducted via PCA, thus,

we first pruned SNPs as displayed in Figure 3 to decrease

computational load and then utilized federated PCA using

the P-stack algorithm as described in Hartebrodt and Röttger

(2022). The amount of communication used in federated PCA

linearly depends on the number of input SNPs which affects

the model accuracy. Hence, if communication is limited, one

can spend more on the PCA step by including more SNPs or

use more communication rounds for model training. Figure 6

shows our rationale behind choosing the pruning parameters

that determine the number of input SNPs for federated PCA.

We also validate the federated PCA approach and show that

the centralized classifier performs similarly on federated and

centralized PCs.

3 Methods

In this section, we describe the federated learning strategies

used in this study and then detail the data preprocessing and model

training and evaluation for both experiments.

3.1 Federated learning strategies

This study aims to assess the applicability of federated

learning to genomic data. In this paper, we consider

only “global” models that aim to perform well on all

varieties of data split between isolated datasets. A survey of

personalization methods for federated models is provided in

Kulkarni et al. (2020).

Intuitively, we expect a good federated model to perform

considerably better than the local models, trained on data in a single

node, and slightly worse than a centralized model that trains on

all of the data together. In this case, a federated model delivers all
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FIGURE 2

R2 of observed vs. predicted phenotype of local, federated and centralized models evaluated on the same test set on UK Biobank data split by

assessment center. Facets correspond to the phenotypes. The x-axis shows six of 19 local nodes, selected to represent a range of node sizes, in

increasing size order, which is the same for each phenotype. The number of training samples in each node is indicated in the x-axis labels, which

bubble size also corresponds to. Color corresponds to the model type. Each dot corresponds to the median across 10-fold cross-validation for each

performance metric, and the intervals shown are 0.1–0.9 quantiles obtained by dropping the largest and smallest of 10 values.

benefits of federated learning at the cost of a small reduction in

performance compared to a centralized model.

Here, we consider the FedAvg strategy (McMahan et al., 2017)

with a different number of epochs in a communication round. In

our case, where the number of clients is low, the pseudocode is

displayed in Algorithm 1.

In the presence of significant inter-node heterogeneity, i.e.,

when the local data distribution on the clients is different from

the global distribution, the global model tends to overfit to local

data causing “client drift” that slows or prevents convergence

(Li et al., 2019). Client drift can be decreased by limiting

the amount of training on a client in a single round, i.e.,

increasing communication between a client and a server. In this

paper, we utilize FedAvg with different amounts of server-client

communication by varying the number of communication rounds

K but keeping the total number of local epochs KE constant.

3.2 The UK Biobank dataset and data
processing

An overview of our data processing pipeline for experiments

on the UK Biobank dataset can be seen in Figure 1. All samples

underwent quality control using PLINK (Chang et al., 2015) to

remove individuals with an insufficient number of genotyped

variants (6% missingness cutoff) and related samples with a KING

(Manichaikul et al., 2010) cutoff 0.0884 corresponding to second-

degree relatives. For local and federated but not centralized models,

the data was split into 19 datasets according to the data collection

center (UKB data-field 54). Data collection centers with less than

10k samples were excluded. The size of the datasets after QC ranged

from 12.1k (Barts) to 42.1k (Bristol), for a total of 441k samples.

See Supplementary Table 1 for the exact breakdown of node sizes.

For each dataset separately, variant QC was conducted by filtering
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FIGURE 3

The workflow of ancestry prediction from 1,000 Genomes data. Data was split into nodes according to sample superpopulation. The union of

variants pruned on each node was taken for all nodes to have the same features. Federated/centralized PCA was used to further decrease

dimensionality. Finally, federated and centralized models were trained.

FIGURE 4

Loss behavior of federated and centralized models. FedAvg strategy with 1, 2, 4, 8, 16, 32 epochs/round was used. (A) Validation loss of federated

models with a di�erent number of communication rounds. For each model and epoch, a median loss over 10-fold cross-validation is shown. (B) The

training process of a 32-epochs-in-round model on a client. Every 32nd epoch contains two points: one before the start of the epoch when the

client receives parameters from the server and one after the first epoch of a round.
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FIGURE 5

Validation accuracy as a function of complexity and communication. FedAvg strategy with 1, 2, 4, 8, 16, 32 epochs/round was used. Each shown

value is a median over 10-fold cross-validation. (A) Accuracy of federated models as a function of the total number of epochs. (B) Accuracy of

federated models as a function of the amount of communication between the server and the clients. The dashed line corresponds to the amount of

communication used by federated PCA.

FIGURE 6

Centralized model accuracy as a function of the number of SNPs used for dimensionality reduction via centralized and federated PCA. Solid/dashed

line corresponds to train/validation model accuracy, and blue/red corresponds to centralized/federated PCA. Shaded areas correspond to 0.1–0.9

quantiles based on 10-fold cross-validation. Vertical dashed lines correspond to the number of SNPs we chose to be used in downstream analysis.

out variants by rarity (5% minor allele fraction cutoff), missingness

(2% cutoff), and a Hardy-Weinberg equilibrium p-value threshold

of 10e-6. Each dataset was split into 10 folds for cross-validation

where at each time eight folds are used as training data, one as

validation data (to be used for regularization parameter selection),

and one as test data. Next, we reduced dimensionality by selecting

the 10,000 most significant SNPs with a GWAS conducted on the

training data using age, sex, and 20 principal components from

SNPs as covariates. These 10,000 SNPs were combined with age and

sex as the input features for our predictive model. For experiments

with federated models, feature selection was done by performing

a random-effects meta-analysis, which we chose over a fixed-effect

analysis due to better predictive performance on the 9 phenotypes

we considered. The meta-analysis was performed using PLINK by

aggregating information from the GWAS reports of the individual

datasets and then selecting the top 10,000 SNPs.

3.3 Phenotype prediction model

We implemented a LASSO model for phenotype prediction.

LASSO is a regularized linear model, with the MSE loss plus

l1 penalty (Tibshirani, 1996). LASSO excels in high-dimensional

problems, such as phenotype prediction from multiple SNPs,

because LASSO loss is convex and has a built-in feature selection

(Hastie et al., 2015), which makes it fast to optimize and more

interpretable. LASSOmodels are commonly used on large genomic
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1: procedure SERVER-SIDE

2: Initialize ω← ω0 ⊲ Initialize model weights

3: for r ∈ 1, ..,R do

4: for k ∈ 1, ..,K do <in parallel>

5: ωk
r ← Client-side(k, ω) ⊲ Parallel local

optimization

6: end for

7: ω←
∑K

k=1
nk
n ωk

r ⊲ Weighted average of client

weights

8: end for

9: end procedure

10: procedure CLIENT-SIDE(k, ω)

11: for i ∈ 1, ..,E do

12: for batch b do

13: ω← ω − η∇F(ω, b) ⊲ Batch gradient descent

14: end for

15: end for

16: return ω

17: end procedure

Algorithm 1. FedAvg for a small number of clients. K—number of clients,

nk—number of samples on kth client, R—number of communication

rounds, E—number of local epochs in a round, η—local learning rate.

datasets and are solved iteratively to save memory consumption

(Prive et al., 2018; Lello et al., 2019; Qian et al., 2020). A LASSO

problem can be solved using coordinate descent (Lello et al., 2019)

or gradient descent. We chose to solve LASSO using gradient

descent because it can be easily implemented on top of existing

deep learning and federated learning frameworks, such as PyTorch

(Paszke et al., 2019) and Flower (Beutel et al., 2020).

However, with gradient descent, the LASSO problem can only

be solved for a single value of the regularization parameter λ.

Since λ determines model performance and generalization ability,

one typically trains multiple models with different values of λ and

selects the one with the best validation metric. We implemented

this procedure as a linear neural network which efficiently trains

LASSOmodels with a range of λ values in parallel and offers built-in

model selection. We call this implementation Lassonet.

For each cross-validation fold, all local models were trained

and validated on a single corresponding node, federated models

were trained and validated on all nodes but in isolation, whereas

centralized models were trained and validated on train and

validation sets from all nodes merged together. For each cross-

validation fold, all models were tested on exactly the same

“centralized” test set that consisted of test sets from all nodes

merged together.

Centralized and local Lassonet models were trained using

PyTorch and PyTorch Lightning (Falcon et al., 2020) on the Zhores

cluster node with Nvidia V100 GPU with 16 GB VRAM and up to

160 GB of RAM (Zacharov et al., 2019).We used the SGD optimizer

with learning rate 5e-3, learning rate decay 0.99, batch size 16

and trained Lassonet for 256 local epochs for each run on the UK

Biobank data. We implemented federated models using the Flower

framework. Here, we aggregated validation loss from models with

the same λ across clients each round, and then chose themodel with

the best validation loss to be evaluated on the test set.

3.4 The 1000 Genomes Project dataset and
data processing

The 1000 Genomes array contains about 750 thousand genetic

variants (SNPs) of 2,624 samples of 26 genetic populations

belonging to five superpopulations of East Asians (EAS), Southern

Asians (SAS), Europeans (EUR), Africans (AFR), and Native

Americans (AMR).

Our data processing workflow sketched in Figure 3 was

performed in the following order. First, we conducted variant QC

in PLINK keeping genetic variants with minor allele frequency

>5% and missing call rates <2%. Next, we split the samples

into five isolated nodes according to sample superpopulations.

See Supplementary Table 2 for the exact breakdown of node sizes.

Then, we conducted sample QC on each node separately in

PLINK keeping non-related (KING relatedness cutoff 0.0884 that

corresponded to second-degree relatives) samples with missing call

rates <6%.

Next, we reduced dimensionality by first pruning variants

on each node separately in PLINK, then taking a union of the

remaining variants across the nodes to get a single variant set (only

variant IDs are communicated between nodes) yielding about 65

thousand SNPs. Then, data on each node was split into 10 folds

for cross-validation where at each time eight folds are used as

training data, one as validation data (to be used for early stopping

during model training) and one as test data. Finally, we conducted

federated PCA and, alternatively, centralized PCA on the training

set and extracted the top 20 principal components. To reduce the

dimensionality of validation and test sets, we projected them onto

the training PC space. The influence of the pruning strictness and

the federated vs. centralized PCA is displayed in Figure 6.

3.5 Federated PCA for dimensionality
reduction

The standard way to reduce dimensionality for ancestry-

from-genotype prediction is by using the principal component

transformation as it is well-known that PCs of genetic variants

retain genetic population structure in the dataset (Patterson et al.,

2006). The federated models we used in this study require client

datasets to have the same feature space, therefore the PCs have to be

obtained collaboratively. Since computing PCs centrally discloses

the data and therefore compromises the purpose of downstream

federated learning, we employed the federated PCA approach.

We utilized the P-STACK method as described in Hartebrodt

and Röttger (2022), which involved sending a local eigenvalues

vector and an eigenvector matrix from each client to the server.

Further, the server stacks local PCA components and then performs

a singular value decomposition (SVD) of the obtained joint matrix.

To perform an exact PCA, we used the maximum available number

of eigenvectors on each client, which equals the number of client

samples minus one. When the number of PCs is fixed, the size

of the eigenvector matrix depends only on the number of genetic

variants. We used PLINK to prune genetic variants, i.e., removed

variants in close linkage disequilibrium. Pruning was conducted

on each individual node and then a union of remaining on each
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node variants was taken. This allowed us to reduce communication

costs for federated PCA and significantly shrink RAM consumption

while running SVD on the server. When SVD is completed, the

resulting eigenvector matrix is sent back to the clients after which

each client is able to perform the PC transformation into the joint

feature space.

3.6 Ancestry prediction model

Due to the fact that cross-populational differences are captured

well by top principal components, any reasonably good model

trained on the first 20 PCs will predict ancestry accurately. Since

the goal of our experiment is to analyze the behavior of a generic

federated model, we trained a standard multi-layer perceptron

neural network on these 20 federated PC features.

We used a fully-connected neural network with two hidden

layers of size 800 and 200, respectively, 20 input and 26 output

neurons, the total of 182K parameters, and the selu activation

function. The model outputted raw scores of a sample belonging to

the each of 26 populations. The cross-entropy loss was used, which

is standard for multiclass classification due to its properties of

being smooth and convex, making it fast to optimize with gradient

descent (Jung, 2022). Similarly to the phenotype prediction

experiment, 10-fold cross-validation was used, with the train set

consisting of eight folds and the validation and test sets consisting

of one fold each. We trained the model for 16384 local epochs with

batch size 64, learning rate 0.1 and exponential learning rate decay

with γ 0.9999. We trained it on CPU-only machines with 4 CPUs

and 8–16 GB of RAM.

4 Discussion

The promise of federated learning for healthcare, and genomics

in particular, is a result of two powerful trends. First, machine

learning models require a lot of data to train and their applicability

depends on the diversity of the training dataset. Training the

model on diverse data obtained from multiple sources reduces

confounding by population genetics, experimental design, etc. and

generally improves performance on external data. Second, the

growing awareness of the sensitivity of healthcare data and the

harmful consequences of its leakage encourages data custodians to

restrict data access, e.g., by requiring an application approval and

then granting access only within a trusted research environment

(Mansouri-Benssassi et al., 2021; Kavianpour et al., 2022). This

makes merging multiple datasets at a single location challenging,

thus discouraging training conventional centralized models.

Nevertheless, the applicability of federated learning to

individual-level genomic data has not been studied extensively.

In this paper, we analyzed the behavior of federated models in

two scenarios: phenotype-from-genotype prediction on the UK

Biobank data and ancestry-from-genotype prediction on the 1000

Genomes Project data. We first showed that federated models are

almost as accurate as centralized models and considerably more

accurate than local models for predicting multiple phenotypes

from genomic data.

It would have been interesting to split UKB to nodes by

ethnic background and see how FL performs in the presence

of higher node heterogeneity. However, non-European nodes in

UKB would have less than 10000 samples which may not be

enough to make robust predictions of complex phenotypes. On

the other hand, even hundreds of samples are enough to make

accurate ancestry predictions, due to the fact that ancestry has

much more genetic variation than complex phenotypes. Therefore,

we moved to ancestry prediction using the 1000 Genomes dataset

which features fewer samples but higher population diversity.

By splitting the data by sample superpopulations we achieved

high inter-node heterogeneity. We showed that in this setting,

frequent communication between the server and the clients plays a

crucial role in achieving fast convergence and showing performance

similar to that of the centralized model. We also demonstrated that

depending on whether computational time or communication is a

bottleneck of the system, FedAvg with different numbers of epochs

in a round should be preferred.

In both of our experiments, the main reason for federated

models not reaching the performance level of centralized models is

data heterogeneity across the nodes, also called client dissimilarity.

When a federated model trains on a client, it overfits to local data;

then as fitted parameters from different clients get aggregated, the

result may differ from the update of the corresponding centralized

model, a phenomenon called client drift. Client drift can be

decreased by increasing communication between the client and

the server by decreasing the number of epochs of local training in

a communication round (between parameter updates), as shown

in Figures 4A, 5A. Another factor influencing client drift when

training on heterogeneous data is the number of nodes, and

correspondingly the degree of fragmentation of the data between

the nodes, as federated training can become less stable with a

larger number of nodes (Li et al., 2019). We did not observe this

in our experiments, likely because of the genetic homogeneity of

the White British UK Biobank participants and the low number of

nodes in the 1000 Genomes experiment.

Federated learning is a quickly developing field of research and

new strategies continue to emerge, including those aiming to tackle

client drift and improve convergence in case of high inter-node

heterogeneity, such as SCAFFOLD (Karimireddy et al., 2020) and

FedDyn (Acar et al., 2021). These novel strategies make the training

process more stable and may be preferable if communication

between the clients and the server is limited or when the number

of heterogeneous clients is large. However, they require additional

testing, as FedAvg with frequent communication, one or two

epochs in a round, is a difficult baseline to beat.

In both experiments, we used a single dataset artificially split

into several independent nodes. On the one hand, this is an

advantage as the uniform data collection process allows us to limit

the influence of environmental and experimental confounders and

focus on the relative performance of the models. On the other

hand, in a real scenario, using multiple independently collected

datasets may require additional work to unify features and outputs

across datasets. For example, predictions from genomic data may

require SNP imputation or another solution if different datasets

have different sets of genetic variants; similarly, ancestry and

phenotypes may be defined or collected differently in different

experiments. Another issue that may be encountered in a real
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scenario is that if independent datasets are isolated in trusted

research environments, their joint analysis requires these TREs

to allow sending information packets back and forth. In case of

federated learning these packets would be relatively small (the size

of the model) but frequent.

Federated learning enables data collaboration in genomics

which may help solve several important problems. First, combining

multiple datasets increases sample size which improves overall

model accuracy and enables the prediction of rare diseases and

inclusion of rare variants, which typically have larger effect sizes

(Bodmer and Bonilla, 2008). Second, the vast majority of healthcare

data currently comes from people of European descent, which

makes models trained on this data biased toward Europeans,

adding to the healthcare inequality of people around the world

(Genetics, 2019; Martin et al., 2019b). Federated learning allows to

include smaller datasets of different ancestries in the analysis and,

thus, reduce the bias.

Being one of the first papers to explore federated learning

on genomic data, this study has a limited scope. First, here we

assume the trustworthiness of the parties. This is a reasonable

assumption if data custodians, such as biobanks, give access to data

upon application approval. However, data collaboration between

different entities may require implementing additional privacy-

enhancing mechanisms, as federated learning does not fully protect

against privacy leakage. Second, we used basic machine learning

models and the standard FedAvg strategy to keep things simple and

focus on the relative performance of federated vs. centralized vs.

local models. Depending on a specific problem, fine-tuned models

may yield higher absolute performance; other FL strategies may

achieve faster convergence with less communication. Third, as

mentioned previously, establishing a real data collaboration may

involve additional work to harmonize features and outputs between

parties. Fourth, here we focused only on building a single “global”

model, whereas some parties in data collaboration may require

“personalized” models that prioritize their data (Kulkarni et al.,

2020). We hope that these issues will be addressed in future studies.

5 Conclusions

Despite its promise, the applicability of federated learning to

individual-level genomic data has not been sufficiently investigated.

We filled this gap by training and analyzing federated models

in two important scenarios: phenotype-from-genotype prediction

and ancestry-from-genotype prediction. In the first experiment,

on the UK Biobank data, we mimicked the scenario where data

is collected within a single country and is distributed across

data collection centers, for example, different hospitals. In the

second experiment, on the 1000 Genomes data, we explored the

potential of cross-continental collaboration and suggested how

to maintain high performance despite high heterogeneity of the

data. We showed that federated models consistently achieve high

performance close to that of centralized models for the prediction

of multiple phenotypes and ancestry, even in the presence of

significant inter-node heterogeneity. For heterogeneous nodes, we

investigated the dependency of federated models convergence on

the amount of communication between the server and the nodes

and provided recommendations on which schedule to choose if

communication or computational time is a bottleneck. We also

showed how federated prediction models can be integrated with

federated data processing steps such as dimensionality reduction

by federated PCA. This study encourages the adoption of federated

models in healthcare, which has the potential to enable global data

collaboration and train less biased models that represent diverse

genetic ancestries.
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