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We aimed to develop, train, and validate machine learning models for predicting

preterm birth (<37 weeks’ gestation) in singleton pregnancies at di�erent

gestational intervals. Models were developed based on complete data from

22,603 singleton pregnancies from a prospective population-based cohort

study that was conducted in 51 midwifery clinics and hospitals in Wenzhou

City of China between 2014 and 2016. We applied Catboost, Random Forest,

Stacked Model, Deep Neural Networks (DNN), and Support Vector Machine

(SVM) algorithms, as well as logistic regression, to conduct feature selection and

predictive modeling. Feature selection was implemented based on permutation-

based feature importance lists derived from the machine learning models

including all features, using a balanced training data set. To develop prediction

models, the top 10%, 25%, and 50% most important predictive features were

selected. Prediction models were developed with the training data set with 5-

fold cross-validation for internal validation. Model performance was assessed

using area under the receiver operating curve (AUC) values. The CatBoost-

based prediction model after 26 weeks’ gestation performed best with an AUC

value of 0.70 (0.67, 0.73), accuracy of 0.81, sensitivity of 0.47, and specificity

of 0.83. Number of antenatal care visits before 24 weeks’ gestation, aspartate

aminotransferase level at registration, symphysis fundal height, maternal weight,

abdominal circumference, and blood pressure emerged as strong predictors

after 26 completed weeks. The application of machine learning on pregnancy

surveillance data is a promising approach to predict preterm birth and we

identified several modifiable antenatal predictors.
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Introduction

Preterm birth (PTB) is the leading cause of neonatal and child mortality globally (Liu

et al., 2016). United Nations Sustainable Development Goal 3 target 3.2 aims to reduce

neonatal and child mortality to 12 per 1,000 live births and 25 per 1,000 live births,

respectively (United Nations, 2016). A recent study estimated that 10.6% of all babies

worldwide are born prematurely, with Asia accounting for 7.84 million (52.9%) PTBs. In

particular, China accounts for an estimated 1.17 million PTBs annually, highlighting an

urgent public health issue (Chawanpaiboon et al., 2019).
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Early detection of pregnant women at risk of preterm birth

helps high-risk pregnant women to receive timely preventative

interventions to reduce the risk of PTB (ACOG, 2021). Imaging

tests or invasive screening have potential as effective screening

methods, but remain experimental because of high cost, possible

harm, and low accessibility (Bahado-Singh et al., 2019; Considine

et al., 2019; Wang et al., 2019). Non-invasive screening measures

using machine learning (ML) algorithms based on large-scale

pregnancy surveillance data with multilevel information linkage

to delivery records promises to be beneficial to support clinical

decision making to predict adverse pregnancy outcomes and guide

pregnancymanagement without any extra physiological or imaging

tests (Gao et al., 2019; Sharifi-Heris et al., 2022).

Prediction models using ML algorithms to quantify the risk of

PTB have been proposed in recent years, with predictive powers

ranging from 0.6 to 0.9 (Weber et al., 2018; Koivu and Sairanen,

2020; Arabi Belaghi et al., 2021; Raja et al., 2021; Shields et al.,

2021; Lee et al., 2022; Nieto-Del-Amor et al., 2022; Sun et al., 2022).

Some ML prediction models using uterine electrohysterographic

(EHG) signals and multi-omics in the middle trimester reported a

good ability to differentiate between preterm and term birth (Tarca

et al., 2021; Mohammadi Far et al., 2022; Nieto-Del-Amor et al.,

2022; Romero-Morales et al., 2022; Espinosa et al., 2023). However,

these predictors are time consuming and costly, and are impossible

to measure in routine antenatal care in low-resource settings.

Instead, prediction models using maternal features available from

routine pregnancy care are more likely to be widely applicable

and improve pregnancy outcomes. To improve predictive power

of PTB, many popular ML algorithms have been employed and

compared with traditional regression methods and achieved high

areas under the receiver operating characteristic curve (AUC)

(Fazzari et al., 2022; Park et al., 2022; Nsugbe et al., 2023). A

number of studies found that logistic regression provided quicker

and better classification performance, and easier interpretability

than ML models in other disease settings (Kuhle et al., 2018;

Song et al., 2023). However, a study comparing deep learning

with logistic regression found that neural networks showed slightly

better predictive power of PTB than logistic regression (Goldsztejn

and Nehorai, 2023). To achieve an efficient prediction model,

feature selection is an important process to reduce dimensionality

and computing complexity, and facilitate clinical practice. There

are two conventional ways to conduct feature selection: one is

applying univariate analysis to select features which are highly

associated with the outcome (Park et al., 2022; Nsugbe et al.,

2023), another is relying on feature importance derived from

ML algorithms (Sharifi-Heris et al., 2022; Espinosa et al., 2023).

However, some known important features might be ignored when

only relying on ML-based feature importance lists (Bose et al.,

2019; Liverani et al., 2023). Moreover, predictive models are at risk

of overestimation or underestimation bias, due to inappropriate

data sources (Sun et al., 2022), confounding factors as predictors

(Raja et al., 2021), poor definition of predictors (Lee et al.,

2022), incomplete reporting of modeling processes (Shields et al.,

2021; Lee et al., 2022; Sun et al., 2022), inappropriate statistical

approaches to perform feature selection (Weber et al., 2018; Koivu

and Sairanen, 2020; Arabi Belaghi et al., 2021), and absence of

handling of imbalanced data (AlSaad et al., 2022; Fazzari et al.,

2022).

To overcome the limitations of previous studies we designed

and utilized detailed methodology to perform data pre-processing

and select predictors using feature importance derived from the

ML algorithms, combined with clinical knowledge. We aimed to

develop and validate PTB prediction models at different gestational

intervals to support application in clinical practice.

Materials and methods

Study design and population

A prospective population-based cohort study was conducted

in 51 midwifery clinics and hospitals in Wenzhou City located in

Zhejiang Province of China, recruiting 355,062 pregnant women at

around 12-week gestation. We included all singleton pregnancies

who delivered at <42 weeks’ gestation from 1 January 2014 to

31 December 2016. Exclusion criteria were absence of follow-up

antenatal records or birth records, multiple pregnancy (e.g, twins),

missing values of any features listed in Supplementary Table S1,

and deliveries at < 24 weeks with birthweight over 1000 g,

deliveries at > 24 weeks but with weight Z scores beyond the

range of −3 and 3 according to Intergrowth 21th standard

for newborn weight (Supplementary Figure S1) (Villar et al.,

2014). Supplementary Figure S2 shows the selection process of

participants, and a total of 22,603 singleton pregnancies with

complete data were included in the analysis. The data sets were

de-identified and we were authorized to access these datasets. The

study was approved by the ethics committee of the Second Hospital

Affiliated to Wenzhou Medical University.

Outcomes

PTB was defined as birth occurring between 24 and 36 + 6

weeks’ gestation, regardless of whether the PTB was spontaneous

or medically indicated. The gestational age at birth was determined

by ultrasound estimation at the first antenatal care visit.

Data collection

The Wenzhou maternal and child health information

management platform was used to collect health records of

pregnancy health care before, during, and after delivery. At

registration, each pregnant woman was recruited and interviewed

using a standardized questionnaire to gather demographic and

lifestyle information, pregnancy history, and medical history

by a trained obstetric doctor, and laboratory tests were taken

after fasting overnight. We collected information, including

maternal age, height, weight, education, occupation, and ethnicity.

Further, we included parity, maternal heart rate, gynecological

history, and clinically confirmed disease history, behaviors

(smoking, medicine use, alcohol use and contraception) in the

last 3 months, menstruation (length of menstrual cycle, length

of a menstrual period, age at menarche). During antenatal care

visits, vital signs, including blood pressure, Maternal Abdominal

Circumference (MAC), Symphysis Fundal Height (SFH), and
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Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP)

and weight were measured by a designated obstetric doctor,

and other additional laboratory tests if necessary. Birth records

were linked to the antenatal care database and registration

database. To increase robustness for further prediction modeling,

rare features, including smoking, alcohol use, medicine use

and contraception, that occurred in fewer than 1% of women

were removed.

Pregnancy-associated laboratory tests at registration, tested

after an overnight fast of more than 8 hours, were extracted as

potential markers of PTB. These tests comprised hemoglobin,

leukocyte count, platelet count, Fasting Blood Glucose (FBG),

Alanine Aminotransferase (ALT), Aspartate Aminotransferase

(AST), Albumin (AIB), Total Bilirubin (TBil), Serum creatinine

(Scr), serum Urea Nitrogen (BUN), urine acetone bodies, Urine

Occult Blood (ERY), Urine White Blood Cells (LEU), Urine

Glucose (UGLU), and blood type. The features ERY, LEU,

UGLU, and blood type were removed as they had >50%

missing values.

Given the percentiles of gestational weeks at the first antenatal

visit (Supplementary Table S2), the pregnancy period before 37

gestational weeks was divided into early pregnancy (< 18 weeks),

middle of pregnancy (18 to 25+ 6 weeks), and late pregnancy (26

to 36 + 6 weeks). Antenatal measurements were also encoded in

line with the gestational intervals. For example, if there were two

antenatal visits before 18 weeks, the feature of SBP1 was created

and assigned by averaging the two SBP values. The difference in

SBP, DBP, SFH, MAC, and maternal weight between pregnancy

periods was calculated to represent the absolute change between

pregnancy periods. Supplementary Table S1 lists all 49 maternal

features included as candidate predictors of PTB.

Statistical methodology

As illustrated in Figure 1, the process to construct models for

predicting PTB was performed in a number of steps:

Data cleaning, splitting, and resampling
Firstly, data cleaning involved data merging, removing cases

with missing values of features of interests, and deleting cases

with abnormal birthweights. Secondly, we divided our data of

22,603 pregnancies with complete data into training and testing

data sets according to a 70%/30% split, using stratified sampling.

The training data set was then further divided into training (80%)

and validation data sets (20%), using stratified sampling. The

training data set was used to implement feature selection and

develop the final prediction models with 5-fold cross validation

and hyperparameter tuning. The validation data set was used

to assess the performance of full-feature prediction models that

were used to select a subset of optimal features. The testing

data set was created to assess the performance of prediction

models developed using the training data set with selected optimal

features. Thirdly, to our knowledge, data involving singleton

pregnancies always contain <10% preterm births, which are

imbalanced data that lead to decreased prediction performance

using ML approaches. With imbalanced data, prediction models

tend to favor the majority class as outcome to achieve high

accuracy. Thus, we applied the over/undersampling hybrid method

and the K-nearest neighbors for the undersampling method to

balance the training data set, while keeping the testing and

validation data sets imbalanced (Zhang et al., 2010; Nieto-

Del-Amor et al., 2022). In our study, with the resampling

methods, the training data set was resamplied into balanced

data, resulting in preterm births and term births each occupying

50%, respectively.

Data engineering
Normalization (minimizing the skewedness of numeric

variables by the Yeo-Johnson method) and standardization

(centering and scaling numeric variables with zero mean and unit

variance) of all continuous features was performed to improve

model performance for the training, testing, and validation data

sets (Boehmke and Greenwell, 2019; Raju et al., 2020).

Algorithms
Random Forest (Biau, 2012), CatBoost (Prokhorenkova et al.,

2018; Wang et al., 2018), Support Vector Machine (SVM) (Noble,

2006; Gao et al., 2019), and Stacked Models (Van der Laan et al.,

2007) were used to construct prediction models with all features

to obtain permutation-based feature importance lists for feature

selection. These four algorithms plus the Deep Neural Network

(DNN) and logistic regression were used to develop PTB prediction

models. The prediction models based on the balanced training data

set were developed with 5-fold cross validation (CV). The full-

feature prediction models for feature selection were validated in the

validation data set, and the final prediction models with optimal

subsets of features were validated in the testing data set.

Random Forest, an improvement over bagging decision trees,

is an ensemble learning algorithm that produces successive

independent trees fitted on bootstrapped random subsets of data

(Biau, 2012). It creates additional randomness to select predictors

among a random subset of features by splitting nodes. The

baggingmethod combinesmultiple decision trees to achieve amore

accurate and stable result (Biau, 2012).

CatBoost comprises one of the most efficient gradient boosting

of decision trees algorithms, taking advantage of automatical

handling of categorical features and missing values in the dataset

to decrease overfitting. Compared to other gradient boosting

algorithms such as XGBoost, it structures symmetric decision trees

to enable efficient CPU (Central Processing Unit) implementation,

reducing time-consumption, and acting as a regulator to improve

overfitting (Prokhorenkova et al., 2018).

SVM is a very effective supervised machine learning algorithm

which finds an optimal hyperplane based on multidimensional

data to act as a class boundary to separate cases into different

classes (Noble, 2006). The hyperplane strives to achieve amaximum

margin between the closest points of different classes. The

SVM with radial basis function kernel is used to implement

predictive modeling.

Stacked Model, also called super learner, is an ensemble

algorithm that stacks multiple traditional ML base learners such
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FIGURE 1

Diagram of the statistical methodology. ML, machine learning; CV, cross validation; gw, gestational weeks.

as the random forests and gradient boosting to find the optimal

combination of diverse learning algorithms that make a prediction

as-good-as or better than any single MLmodel (Polley and Van Der

Laan, 2010). We applied generalized linear model, Deep Learning,

Random Forests, XGBoost, Gradient Boosting Machine as base

learners, and used the generalized linear model with non-negative

weights to implement the ensemble process of base learners with

“h2o” package in R software.

DNN, a type of deep learning, provide a multi-layer neural

network to learn data as data sets have numeric dimensions of

the features (Chollet and Allaire, 2018). DNN have widespread

applications in image classification and voice recognition (Moreira

et al., 2018; Chen and Xu, 2020). The feed-forward DNN we

used here are densely connected layers where inputs impact on

each successive layer which then affect the final output layer. To

build a feed-forward DNN, we defined a network architecture

with 4 hidden layers with the nodes ranging from 16 to 128,

followed by an output layer with 2 nodes. Each hidden layer is

activated by a Rectified linear unit (ReLU) function that is taking

the summed weighted inputs in a previous layer and transforming

them to a 0 (not fire) or > 0 (fire) if there is enough signal, and

we used the sigmoid activation function for the output layer. A

binary cross-entropy loss function and an optimizer of keras were

established to assess the DNN accuracy and automatically adjust

the weights across all the node connections to improve the overall

predictive accuracy. The specific hyper-parameter set is shown in

Supplementary Table S3.

Logistic regression (LR) is one of the most common statistical

analysis models for predicting the probabilities of binary responses.

Using the model equations, maximum likelihood estimation

estimates the parameters of a probability distribution.

Feature selection
Four ML algorithms were applied to construct 49-feature

prediction models which were employed to calculate permutation-

based feature importance that were used to generate feature ranking

lists (Altmann et al., 2010). The average importance score of each

feature was calculated by the sum of the rankings across the four

models divided by four, which was used to get the final ranking

for each feature. The discrimination performance of 49-feature

prediction models was validated in the validation data set. To

achieve a model with the fewest predictors and best predictive

power, the number of candidate predictors were selected according

to the top 10%, top 25%, and top 50% rules based on the final rank

list. 49-feature predictionmodels for feature selection, as well as the

final prediction models according to the different rules of selecting

the most important features, using the training data set, were all

tuned by the random grid search strategy for hyper-parameters

(Supplementary Table S3).

Predictive modeling
Under each rule of selecting the number of candidate

predictors, five additional predictors of maternal weight and height

at registration, parity, maternal age, and neonatal sex were added

into the prediction models if they were not in the predictor list,

considering their crucial contributions to perinatal health (Gardosi

et al., 2018). Three sequential prediction models were developed

to discriminate preterm birth from term birth, according to stage

of pregnancy: early pregnancy models aimed to predict risk of

PTB with data available before 18 weeks; Middle pregnancy models

were constructed to evaluate the risk of preterm birth with data

available before 26 weeks; Late pregnancy models are built to assess
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the risk of PTB after 26 weeks. Five–fold CV accuracy was used

in the balanced training data set to assess model performance for

internal validation.

Performance assessment and interpretation
For each ML predictive model developed with the balanced

training set, we assessed the AUC value, accuracy (Acc)

(Equation 1), sensitivity (Sen) (Equation 2), specificity (Spec)

(Equation 3) using optimal threshold values in the validation data

set. The optimal threshold value of receiver operating characteristic

(ROC) curve was assigned as the point closest to the true positive

rate of 1 and false positive rate of 0. The Acc, Sen, and Spec are

computed as follows:

Acc = TP+TN
TP+TN+FP+FN (1)

Sen =
TP

TP+FN (2)

Spec = TN
TN+FP (3)

TP and FN refer to the numbers of true positives (PTB classified as

PTB) and false negatives (PTB classified as term birth), respectively.

TN and FP refer to the numbers of true negatives (term births

classified as term births) and false positives (term births classified

as PTB), respectively.

We selected the best-fitting model with the highest AUC values,

and the highest accuracy in cases of similar AUC values (± 0.02) in

the testing data set. Calibration curves were plotted for the final

optimal predictive model, developed with the balanced training set,

to show predicted vs. observed outcomes with the testing set.

To provide interpretation for the best-fitting model, we applied

Shapley Additive Explanations (SHAP) values to evaluate each

predictive feature using the testing data set (Williamson and Feng,

2020). As a tool for visualizing the effect of individual features

on the model results, SHAP values enable clinical practitioners

to distinguish the key factors contributing to the risk of disease.

The odds ratio (OR) and 95% confidential interval (CI) were

calculated using univariate logistic regression in the cohort of

22,603 pregnancies to indicate the association of the predictors

derived from the best-fitting model with PTB.

Software used
Data pre-processing was conducted in R (version 4.3.1). DNN

models were run in Python (version 3.1, using “tensorflow”

and “keras” packages), while the other ML models were run

in R (version 3.6.1) (“h2o” package for random forests and

stacked model; “catboost” package for CatBoost; “e1071” package

for SVM). Cross validation was performed with the “caret”

package, and SHAP values were calculated using the “fastshap”

package. The ROC-AUC curves were plotted by the “pROC” and

“ROCR” packages.

Results

Maternal characteristics at registration

After matching registration data, antenatal visit data, and

birth data, 225,523 singleton pregnancies had health records in

each of the three data resources (Supplementary Figure S2). After

removing pregnancies withmissing values of features of interests (n

= 202,873) and births with abnormal birthweight (n = 47), 22,603

singleton pregnancies with 946 (4.2%) PTBs were retained. Table 1

shows the maternal features, including demographics, laboratory

tests, and clinical history, collected at registration.

Maternal measurements during antenatal
care visits

The level of systolic blood pressure (SBP) in middle and late

pregnancy was higher in the PTB group than in the full-term

group (all P < 0.001), with higher increases in SBP levels during

pregnancy (diffSBP13, 4.0 vs. 3.0, P= 0.005) (Table 1). The diastolic

blood pressure (DBP) levels at all three gestational intervals were

higher in the PTB group than in the full-term group (all P < 0.01),

with higher increases in DBP levels during pregnancy (diffDBP13,

1.45 vs. 1.00, P = 0.007). The increases of symphysis fundal

height (SFH) andmaternal abdominal circumference (MAC) in late

pregnancy were more in pregnant women who delivered full-term

birth than those who delivered preterm (all P < 0.001) (Table 1).

The maternal characteristics of the PTB group and the full-term

group in the training set balanced by the hybrid resampling or

under-sampling are shown in Supplementary Table S5.

Feature selection

Supplementary Table S6 presents the model performances of

four ML algorithms with all 49 features using the balanced

training data set. The highest AUC value was achieved in the

CatBoost model developed using the training data set balanced

with hybrid resampling (the AUC value: 0.679), and in the

Stacked model developed using the training data set balanced

with the under-sampling technique (the AUC value: −0.692).

Supplementary Tables S7, S8 list the permutation-based feature

importance with hybrid resampling or under-sampling. The top

five features derived from models using the training data set

balanced by hybrid resampling were: SFH3, diffMAC23, diffSFH23,

DBP3, and FBG. The top five features derived from models

using the training data set balanced by under-sampling were:

SFH3, diffSFH23, diffMAC23, neonatal sex, and hemoglobin. The

predictors of PTB selected according to the different inclusion rules

were combined with five additional features of maternal weight

and height at registration, maternal age, neonatal sex, and parity

to develop prediction models (Supplementary Table S9).

Model performance

Under different rules (top 10%, top 25%, top 50%) to select the

number of included predictors, early, middle, and late pregnancy

models were constructed considering the predictors available at

different gestational intervals (Table 2, Supplementary Table S10).

The ROC curves for all models in the training and validation data

sets are illustrated in Figure 2 and Supplementary Figures S3–S5.

Among all predictive models, the late pregnancy models performed
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TABLE 1 Maternal characteristics in 22,603 singleton pregnancies in the complete data set.

Features Full-term birth Preterm birth P-values∗

No. 21,657 946

No. of antenatal visits, median (P25, P75) 9 (7, 11) 7 (5, 8) <0.001

No. of antenatal visits before 24 gestational weeks, median (P25, P75) 2 (1, 3) 1 (0.2) <0.001

Ultrasound gestational weeks at the first visit, median (P25, P75) 16.00 (13.00, 17.00) 16.00 (13.00, 17.00) 0.055

Gestational age at childbirth, median (P25, P75) 39.43 (38.71, 40.14) 36.00 (34.86, 36.57) <0.001

Occupation at registration, n (%) 0.611

Farmer or fishermen 8,259 (38.1) 377 (39.9)

Employee 2,645 (12.2) 107 (11.3)

Business and service industry 2,478 (11.4) 113 (11.9)

Households 5,642 (26.1) 230 (24.3)

Others 2,633 (12.2) 119 (12.6)

Education, n (%) 0.045

Primary school and below 965 (4.5) 56 (5.9)

Secondary school and high school 13,273 (61.3) 590 (62.4)

College and above 7,419 (34.3) 300 (31.7)

Gynecologic surgery history, n (%) 872 (4.0) 64 (6.8) <0.001

Maternal complications, n (%) 69 (0.3) 21 (2.2) <0.001

Maternal age at registration, median (P25, P75), years 26.00 (24.00, 30.00) 27.00 (24.00, 31.00) <0.001

Age at menarche, median (P25, P75), years 14.00 (13.00, 15.00) 14.00 (13.00, 15.00) 0.404

Length days of a menstrual cycle, median (P25, P75), days 30.00 (28.00, 30.00) 30.00 (28.00, 30.00) 0.003

Days for a menstrual period, median (P25, P75), days 5.00 (4.00, 6.00) 5.00 (4.00, 6.00) 0.002

Parity, n (%) <0.001

0 12,084 (55.8) 470 (49.7)

1 9,159 (42.3) 448 (47.3)

>1 414 (1.9) 28 (3.0)

Maternal height, median (P25, P75), cm 160.00 (156.00, 163.00) 158.00 (155.00, 162.00) <0.001

Maternal weight, median (P25, P75), kg 52.00 (48.00, 57.00) 52.50 (48.00, 58.00) 0.086

Maternal hear rate, median (P25, P75), times per minute 80.00 (75.00, 85.00) 80.00 (75.00, 85.00) 0.762

Hemoglobin, median (P25, P75), 109/L 124.00 (118.00, 131.00) 125.00 (119.00, 132.00) 0.001

Leukocyte, median (P25, P75), 109/L 7.90 (6.80, 9.30) 8.10 (7.00, 9.50) 0.002

Platelet, median (P25, P75), 109/L 214.00 (185.00, 246.00) 222.00 (189.00, 254.75) <0.001

FBG, median (P25, P75), mmol/L 4.67 (4.40, 4.97) 4.69 (4.41, 4.98) 0.252

ALT, median (P25, P75), U/L 13.00 (10.00, 19.00) 14.00 (10.00, 21.00) <0.001

AST, median (P25, P75), U/L 17.00 (14.00, 20.00) 17.00 (14.00, 21.00) 0.044

AIB, median (P25, P75), g/L 41.80 (39.70, 44.00) 41.80 (39.50, 44.00) 0.511

TBil, median (P25, P75), umol/L 8.80 (6.90, 11.30) 8.70 (6.80, 11.40) 0.705

Scr, median (P25, P75), umol/L 46.00 (41.00, 55.00) 46.00 (41.00, 56.00) 0.227

BUN, median (P25, P75), mmol/L 2.70 (2.30, 3.20) 2.77 (2.30, 3.30) 0.118

SBP1 110.00 (102.00, 118.00) 110.50 (102.00, 119.88) 0.066

SBP2 110.33 (103.25, 119.00) 112.00 (104.50, 120.00) <0.001

SBP3 113.17 (106.75, 119.67) 114.75 (108.00, 121.24) <0.001

(Continued)
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TABLE 1 (Continued)

Features Full-term birth Preterm birth P-values∗

DBP1 67.00 (61.00, 72.00) 68.00 (62.00, 73.00) 0.002

DBP2 66.00 (60.67, 71.00) 67.00 (61.54, 72.00) <0.001

DBP3 67.80 (63.50, 72.25) 69.12 (64.25, 74.00) <0.001

WEIGHT1 54.26 (7.48) 54.67 (7.97) 0.105

WEIGHT2 57.63 (7.53) 58.07 (8.14) 0.081

WEIGHT3 63.39 (7.87) 63.12 (8.46) 0.314

SFH2 21.50 (20.00, 23.00) 21.50 (20.00, 23.00) 0.142

SFH3 30.00 (28.80, 31.25) 29.06 (27.50, 30.40) <0.001

MAC2 83.00 (79.00, 87.50) 84.00 (80.00, 88.50) <0.001

MAC3 92.00 (88.33, 96.00) 91.50 (87.40, 96.00) 0.019

diffSBP12 0.50 (−5.00, 7.00) 1.00 (−5.00, 8.50) 0.021

diffSBP23 2.17 (−3.33, 7.50) 2.04 (−3.38, 8.00) 0.766

diffSBP13 3.00 (−3.50, 9.40) 4.00 (−3.23, 11.19) 0.005

diffDBP12 −0.50 (−5.00, 4.00) 0.00 (−4.63, 4.00) 0.110

diffDBP23 1.75 (−2.00, 5.67) 2.17 (−2.15, 6.25) 0.156

diffDBP13 1.00 (−3.80, 5.80) 1.45 (−3.00, 7.00) 0.007

diffWEIGHT12 3.25 (2.25, 4.50) 3.25 (2.25, 4.50) 0.625

diffWEIGHT23 5.62 (4.17, 7.17) 4.81 (3.38, 6.33) <0.001

diffWEIGHT13 9.00 (7.05, 11.03) 8.04 (6.25, 10.50) <0.001

diffSFH23 8.64 (7.17, 10.00) 7.50 (5.75, 9.00) <0.001

diffMAC23 8.80 (6.75, 10.90) 7.25 (5.40, 9.33) <0.001

Data were median (P25, P75) or mean (SD). SD, standard deviation. For definitions of features see Supplementary Table S1.
∗Comparing feature distribution between preterm birth and full-term birth is implemented with rank sum test for continuous variables and chi-square test for categorical variables.

FBG, Fasting blood glucose; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; AIB, Albumin; TBil, Total bilirubin; Scr, Serum creatinine; BUN, Serum urea nitrogen; DBP,

diastolic blood pressure; SBP, systolic blood pressure; SFH, symphysis fundal height; MAC, maternal abdominal circumference.

best, with the highest AUC value achieved by the CatBoost model

(the AUC value: 0.703, 95%CI: 0.672, 0.733; Accuracy: 0.811) with

predictors selected by the top 50% rule (Figure 3, Table 2). The

hyper-parameter settings for the best-fitting CatBoost model are

shown in Supplementary Table S11. All models based on early and

middle pregnancy predictors performed less well, irrespective of the

top rule according to which the predictors were selected. Among

the prediction models with AUC values over 0.680, the highest

sensitivity was achieved by the LR-based late pregnancymodel (Sen:

0.617) with predictors selected by the top 10% rule. The calibration

curves for the best-fitting late pregnancy Catboost models using

either resampling method are shown in Supplementary Figure S6.

SHAP values represent the contribution of each included

predictor on an individual’s prediction of PTB. SHAP values based

on the CatBoost-based late pregnancy model in which predictors

were selected by the top 50% rule, with the median absolute

SHAP values used to rank feature importance, are shown in

Figure 4. The ten highest impact features were DBP3 (median

absolute SHAP value: 0.075), diffSFH23 (0.066), diffMAC23

(0.065), diffWEIGHT23 (0.050), AST (0.032), SFH3 (0.030),

length days of a menstrual cycle (0.026), diffWEIGHT13 (0.021),

number of antenatal visits before 24 weeks (0.019), and diffSBP13

(0.016) (Supplementary Table S12). Among the ten highest impact

predictors, the level of DBP in the late pregnancy period (DBP3),

AST level at registration, more than 4 antenatal visit before

24 weeks, and increase in SBP during the whole pregnancy

(diffSBP13) were associated with increased risk of PTB, whereas

higher level in SFH3, diffSFH23, diffMAC23, diffWEIGHT23,

and diffWEIGHT13 were associated with decreased risk of PTB

(Supplementary Table S13).

Discussion

This study used ML algorithms to establish prediction models

for PTB across three gestational intervals, applying feature selection

that synthesized multiple rankings of feature importance derived

from the ML models. Our study developed a Catboost-based

model with predictors from the routine antenatal care available

after 26 completed weeks, achieving an accuracy of over 0.8.

Addition of features that are strongly associated with preterm

birth, such as previous PTB history, pregnancy hypertension

syndromes, gestational diabetes, and ultrasound measurements,

including cervical length, into the current best-fitting model, is

likely to further improve the model using the CatBoost algorithm

and could lead to improved evaluation of the risk of PTB
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TABLE 2 Validation performance of models by six machine learning algorithms in predicting preterm birth with hybrid resampling.

Models Top 10% rule Top 25% rule Top 50% rule

5-CV
Acc in
training
set

Testing set 5-CV
Acc in
training
set

Testing set 5-CV
Acc in
training
set

Testing set

AUC (95%
CI)

Acc Sen Spe Optimal
threshold

AUC (95%
CI)

Acc Sen Spe Optimal
threshold

AUC (95%
CI)

Acc Sen Spe Optimal
threshold

Early pregnancy models (<18 gestational weeks)

CatBoost 0.984 0.550

(0.516, 0.584)

0.586 0.500 0.590 0.499 0.919 0.571

(0.539, 0.603)

0.425 0.721 0.412 0.451 0.950 0.580

(0.547, 0.614)

0.653 0.473 0.661 0.481

Random

Forests

0.997 0.525

(0.492, 0.558)

0.325 0.745 0.306 0.137 1.000 0.565

(0.533, 0.597)

0.769 0.215 0.790 0.204 1.000 0.565

(0.533, 0.597)

0.692 0.402 0.706 0.174

Stacked

model

0.997 0.528

(0.495, 0.561)

0.354 0.725 0.337 0.098 1.000 0.532

(0.499, 0.565)

0.543 0.523 0.544 0.150 1.000 0.533

(0.500, 0.565)

0.312 0.775 0.290 0.108

DNN 0.532 0.543

(0.515, 0.572)

0.519 0.560 0.516 0.062 0.647 0.543

(0.510, 0.575)

0.364 0.732 0.347 0.001 0.886 0.543

(0.510, 0.575)

0.364 0.732 0.347 0.001

SVM 0.942 0.506

(0.472, 0.540)

0.486 0.557 0.483 0.088 0.959 0.517

(0.483, 0.552)

0.615 0.440 0.623 0.195 0.800 0.567

(0.533, 0.601)

0.448 0.685 0.438 0.321

LR 0.550 0.610

(0.576, 0.644)

0.722 0.446 0.735 0.461 0.581 0.591

(0.557, 0.625)

0.711 0.416 0.724 0.536 0.577 0.584

(0.550, 0.618)

0.684 0.446 0.695 0.544

Middle pregnancy models (<26 gestational weeks)

CatBoost 0.942 0.556

(0.523, 0.589)

0.288 0.826 0.263 0.417 0.957 0.589

(0.554, 0.623)

0.740 0.423 0.755 0.494 0.972 0.600

(0.567, 0.632)

0.451 0.725 0.438 0.463

Random

Forests

0.999 0.546

(0.514, 0.578)

0.700 0.379 0.715 0.155 1.000 0.567

(0.536, 0.599)

0.660 0.430 0.670 0.301 1.000 0.570

(0.538, 0.601)

0.851 0.215 0.880 0.254

Stacked

model

0.999 0.537

(0.504, 0.570)

0.667 0.393 0.680 0.221 1.000 0.558

(0.526, 0.590)

0.804 0.255 0.829 0.235 1.000 0.538

(0.506, 0.571)

0.453 0.621 0.446 0.134

(Continued)
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TABLE 2 (Continued)

Models Top 10% rule Top 25% rule Top 50% rule

5-CV
Acc in
training
set

Testing set 5-CV
Acc in
training
set

Testing set 5-CV
Acc in
training
set

Testing set

AUC (95%
CI)

Acc Sen Spe Optimal
threshold

AUC (95%
CI)

Acc Sen Spe Optimal
threshold

AUC (95%
CI)

Acc Sen Spe Optimal
threshold

DNN 0.532 0.534

(0.501, 0.566)

0.356 0.752 0.337 0.030 0.876 0.530

(0.496, 0.563)

0.278 0.812 0.253 2.519∗10−19 0.781 0.536

(0.503, 0.569)

0.381 0.705 0.366 0.056

SVM 0.904 0.517

(0.484, 0.551)

0.567 0.487 0.570 0.266 0.827 0.528

(0.494, 0.561)

0.457 0.604 0.451 0.273 0.909 0.561

(0.526, 0.596)

0.773 0.322 0.793 0.645

LR 0.560 0.578

(0.544, 0.612)

0.740 0.376 0.757 0.547 0.573 0.587

(0.552, 0.621)

0.673 0.473 0.683 0.540 0.576 0.594

(0.559, 0.628)

0.725 0.443 0.738 0.560

Late pregnancy models (<37 gestational weeks)

CatBoost 0.996 0.635

(0.601, 0.668)

0.724 0.480 0.735 0.438 0.950 0.680

(0.647, 0.713)

0.736 0.537 0.745 0.536 0.955 0.703

(0.672, 0.733)

0.811 0.470 0.827 0.478

Random

Forests

1.000 0.658

(0.630, 0.687)

0.903 0.232 0.934 0.310 1.000 0.673

(0.646, 0.701)

0.895 0.238 0.925 0.298 1.000 0.661

(0.633, 0.689)

0.884 0.258 0.912 0.239

Stacked

model

1.000 0.657

(0.629, 0.685)

0.936 0.141 0.973 0.457 1.000 0.652

(0.624, 0.681)

0.892 0.252 0.821 0.317 1.000 0.668

(0.640, 0.695)

0.916 0.184 0.950 0.363

DNN 0.772 0.540

(0.507, 0.572)

0.626 0.530 0.630 0.001 0.876 0.594

(0.560, 0.628)

0.722 0.399 0.737 3.946∗10−5 0.992 0.540

(0.507, 0.572)

0.428 0.668 0.417 6.431∗10−9

SVM 0.902 0.577

(0.542, 0.612)

0.601 0.527 0.604 0.306 0.876 0.609

(0.575, 0.643)

0.549 0.638 0.545 0.330 0.901 0.610

(0.576, 0.644)

0.722 0.446 0.735 0.461

LR 0.631 0.687

(0.655, 0.719)

0.673 0.617 0.676 0.550 0.634 0.689

(0.657, 0.721)

0.709 0.594 0.714 0.567 0.640 0.690

(0.658, 0.722)

0.782 0.507 0.795 0.618

AUC, area under the curve; DNN, deep neural networks; LR, logistic regression; SVM, support vector machine; 5-CV, five-fold cross validation.

Each prediction model includes the predictors according to its own rule of feature selection, with additional five features of parity, maternal age and height and weight at register, and the neonatal sex.

The top 10% predictors include SFH3, diffMAC23, diffSFH23, DBP3, and FBG.

The top 25% predictors include SFH3, diffMAC23, diffSFH23, DBP3, FBG, leukocyte, hemoglobin, beats, BUN, and platelet.

The top 50% predictors include SFH3, diffMAC23, diffSFH23, DBP3, FBG, leukocyte, hemoglobin, beats, BUN, platelet, TBil, AIB, length days of a menstrual cycle, number of visiting before 24 gestational weeks, diffSBP13, diffWEIGHT12, diffWEIGHT23, SFH2,

AST, diffWEIGHT13, diffSBP23, age at menarche, and diffDBP23.
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FIGURE 2

Receiver operating characteristic curves of six prediction models, developed using the training data set balanced by hybrid resampling, validated in

the testing data set. DNN, deep neural networks; SVM, support vector machine.

FIGURE 3

Bar plots comparing area under the receiver operating characteristic curve (AUC) values across all prediction models stratified by di�erent rules for

selecting the number of predictors and pregnancy intervals. (A) Early pregnancy, (B) Middle pregnancy, (C) Late pregnancy. The horizontal red dotted

line indicates an AUC value of 0.5.

during pregnancy. The high-impact predictors found by our

study could feed future, more efficient ML algorithms to achieve

better predictive power. In addition, our findings indicate that

obstetric doctors should particularly monitor the frequency of

antenatal visits before 24 weeks, change in maternal blood pressure,

weight, symphysis fundal height and abdominal circumference in

late pregnancy.

We used electronic health records to feed the ML models,

adding new models for predicting PTB. Compared with previous

similar studies, some other prediction models with AUC values >

0.80 outperformed the model we developed (AUC: 0.703), but the

study design, the predictors, and the analysis processes used by

other studies are more likely to lead to overestimation of model

performance and clinical implications (Arabi Belaghi et al., 2021;
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FIGURE 4

Catboost-based SHAP values of the late pregnancy model using the top 50% predictors in the testing data set. (A) SHAP values for individuals in the

testing data set were predicted and plotted for each predictor. (B) Bar plot of the median absolute SHAP values for each predictor. SHAP, Shapley

additive explanations.

Speiser, 2021; Sun et al., 2022). Arabi Belaghi et al. (2021) proposed

a prediction model during the second trimester which achieved an

AUC of 0.80 with artificial neural networks, but their predictors

were selected by univariate logistic regression instead of the state-

of-the-art ML algorithms, and the predictor maternal complication

they used was not defined. Sun et al. developed a prediction model

using Random Forest and obtained an AUC value of approximate

0.90, but the non-nested 1:1 case-control study design used could

produce great overestimation of the model performance (Sun et al.,

2022). Another study added preconception thyroid-stimulating

hormone (TSH) levels into prediction models, obtaining the AUC

value of 0.812, however, measurement of preconception TSH levels

is not included in routine items of preconception examination

and therefore prevented its inclusion in our models (Sun et al.,

2021).

This study found similar model performance to predict PTB

at different pregnancy periods across differing ML algorithms.

Stacked Model did not perform better than other individual

algorithms. Some important predictors such as gestational diabetes

and previous PTB were not included, which possibly resulted

in loss of model performance. The AUC value of the CatBoost

model was the highest among all ML algorithms. The CatBoost

model outperformed the current state-of-the-art implementations

of Gradient Boosting Decision Trees to address categorical features

without converting them into number, and modify classical

gradient boosting algorithms to achieve an unbiased gradient to

relieve the overfitting problem (Dorogush et al., 2018). Some

researchers reported that CatBoost models achieved outstanding

predictive power in gestational diabetes mellitus, suggesting that

this algorithm has advantages in the field of neonatal and pregnancy

science (Kumar et al., 2022; Zhang andWang, 2022). Moreover, we

found that the predictive power of CatBoost was best after 26 weeks’

gestation with the AUC of 0.70, suggesting that there may be room

for providing preventative and therapeutic interventions to reduce

the risk of PTB after 26 gestational weeks.

We found that the risk of PTB was associated with more than

four antenatal care visits before 24 weeks. Given that the frequency

of antenatal care visits before delivery may be a confounding

influence, we analyzed the frequency of antenatal visits before 24

weeks’ gestation - the minimum value of gestational age at birth in

our study data set - to assess its relationship with PTB. Compared

with 2 to 4 antenatal care visits, singleton pregnancies with >

4 visits before 24 weeks were associated with increased risk of

PTB. Notably, singleton pregnancies with > 4 visits of antenatal

care before 24 weeks’ gestation might be attributable to maternal

complications or mental health problems (Nath et al., 2017; Kumar

and Dhillon, 2021).

We found that the level of AST at registration was associated

with PTB. It has been previously reported that serum AST, a

hematological measurement to evaluate liver function, is associated

with PTB (Zhuang et al., 2017). The cause of high level of AST

during pregnancy may be specific or non-specific liver diseases,

indicating a potential risk of abnormal liver function that is

highly related to adverse perinatal outcomes (Liu et al., 2022). A
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retrospective study that investigated the trajectories of AST levels

during normal pregnancy found the AST level mostly remained

unchanged during pregnancy, and indicated that monitoring of

AST levels during pregnancy could help early recognition and

diagnosis of impaired liver function (Ushida et al., 2022).

Our study has a number of strengths. We analyzed over

20,000 singleton pregnancies with complete data to develop ML

models to predict preterm birth. The large sample from one site

allowed us to develop robust predictive models, with less bias

due to a consistent procedure of data collection. We report the

whole process of data pre-processing (data cleaning, splitting, and

resampling) and data engineering to reduce statistical bias and

improve predictive power. The use of multiple ML algorithms for

feature importance ranking and feature selection is the unique

highlight of this study, compared with most studies using a single

ML algorithm or univariate correlation to perform feature selection

(Koivu and Sairanen, 2020; Arabi Belaghi et al., 2021; Speiser,

2021; Zhao et al., 2021). We are the first to use multiple ML

algorithms to conduct feature selection in this field, referring to

a principle from ensemble models that an ensemble approach

outperforms any individual model (Dietterich, 2000). The feature

importance list is not identical across different ML algorithms,

so considering multiple ML algorithms to produce the final

ranking by averaging multiple feature importance scores reduces

potential ranking variance derived from different algorithms.

Last but not least, to our knowledge, this is the first study to

use the CatBoost algorithm to predict PTB, and the CatBoost

algorithm performed overall better than other ML algorithms and

logistic regression.

Our study has some limitations. Firstly, the predictive ability

of the optimal CatBoost model was modest, with an AUC value

of slightly over 0.70, mainly due to the lack of some important

predictors such as previous PTB history and gestational diabetes

mellitus. Second, the indices collected from maternal blood and

urine tests at registration had limited power to predict PTB, apart

from AST. Third, we divided the pregnancy period before 37

weeks into three time intervals that limited the deep learning

ability of DNN to achieve their maximum predictive performance

(Zhang et al., 2022). Fourth, we did not have information on

the length of the uterine cervix, which is a known predictor

of PTB. Fifth, although we used hybrid and under-sampling

methods in the training data set to improve model performance,

we did not balance the validation and testing sets to assess model

performance, as some previous studies did (Nieto-Del-Amor et al.,

2022; Kyparissidis Kokkinidis et al., 2023). Finally, there may

have been misclassification and selection bias in our electronic

health record-based study. However, preterm birth was defined

according to the gestational age determined by the ultrasound

scan at the first antenatal visits, thereby limiting the potential for

outcome misclassification.

Conclusion

The CatBoost-based PTB prediction model is a promising

predictive tool to help decision making for physicians in clinical

practice, including decisions regarding referral to a preterm

birth clinic, ultrasound assessment of the cervical length, and

administration of preventative interventions, such as progesterone.

The number of antenatal care visits before 24 weeks’ gestation,

AST at registration, symphysis fundal height, maternal weight,

abdominal circumference, and blood pressure were identified as

strong predictors after 26 completed weeks. The model may be

improved and developed further with additional strong predictors.
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