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Development and application of
a machine learning-based
predictive model for obstructive
sleep apnea screening

Kang Liu1†, Shi Geng2†, Ping Shen1, Lei Zhao2, Peng Zhou1* and

Wen Liu1*

1Department of Otolaryngology, Head and Neck Surgery, A�liated Hospital of Xuzhou Medical

University, Xuzhou, China, 2Artificial Intelligence Unit, Department of Medical Equipment Management,

A�liated Hospital of Xuzhou Medical University, Xuzhou, China

Objective: To develop a robust machine learning prediction model for the

automatic screening and diagnosis of obstructive sleep apnea (OSA) using five

advanced algorithms, namely Extreme Gradient Boosting (XGBoost), Logistic

Regression (LR), Support VectorMachine (SVM), Light Gradient BoostingMachine

(LightGBM), and Random Forest (RF) to provide substantial support for early

clinical diagnosis and intervention.

Methods: We conducted a retrospective analysis of clinical data from 439

patients who underwent polysomnography at the A�liated Hospital of Xuzhou

Medical University between October 2019 and October 2022. Predictor variables

such as demographic information [age, sex, height, weight, body mass index

(BMI)], medical history, and Epworth Sleepiness Scale (ESS) were used. Univariate

analysis was used to identify variables with significant di�erences, and the dataset

was then divided into training and validation sets in a 4:1 ratio. The training set

was established to predict OSA severity grading. The validation set was used to

assess model performance using the area under the curve (AUC). Additionally,

a separate analysis was conducted, categorizing the normal population as

one group and patients with moderate-to-severe OSA as another. The same

univariate analysis was applied, and the dataset was divided into training and

validation sets in a 4:1 ratio. The training set was used to build a prediction

model for screening moderate-to-severe OSA, while the validation set was used

to verify the model’s performance.

Results: Among the four groups, the LightGBM model outperformed others,

with the top five feature importance rankings of ESS total score, BMI, sex,

hypertension, and gastroesophageal reflux (GERD), where Age, ESS total score

and BMI played the most significant roles. In the dichotomous model, RF is

the best performer of the five models respectively. The top five ranked feature

importance of the best-performing RF models were ESS total score, BMI, GERD,

age and Dry mouth, with ESS total score and BMI being particularly pivotal.

Conclusion: Machine learning-based predictionmodels for OSA disease grading

and screening prove instrumental in the early identification of patients with

moderate-to-severe OSA, revealing pertinent risk factors and facilitating timely

interventions to counter pathological changes induced by OSA. Notably, ESS

total score and BMI emerge as the most critical features for predicting OSA,

emphasizing their significance in clinical assessments. The datasetwill be publicly

available on my Github.
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1 Introduction

Obstructive sleep apnea (OSA) is characterized by recurrent
apnea and hypoventilation during sleep, leading to multi-organ
and multi-system damage. This condition is associated with
various health issues such as hypertension, coronary artery disease,
arrhythmia, heart failure, stroke, cognitive dysfunction, and type
2 diabetes, bringing a significant economic burden to patients and
society (Javaheri et al., 2017; Leng et al., 2017; Tan et al., 2018). As
living standards improve and lifestyles change, the prevalence of
OSA is on the rise globally. A study on the global prevalence of
OSA revealed that approximately 1 billion people suffer from OSA,
with some countries experiencing prevalence rates exceeding 50%.
Notably, China, with its large population base, carries the highest
number of patients (Benjafield et al., 2019).

Delays in the diagnosis and treatment of OSA can have serious
adverse effects on public health and healthcare costs, prompting
extensive research in the areas of prevention, diagnosis, and
treatment to implement effective measures for early detection
and intervention. In recent years, OSA research has emerged
as a hot topic in multidisciplinary studies, encompassing fields
such as otorhinolaryngology, stomatology, respiratory medicine,
neurology, among others. The focus has particularly been on
the selection and application of diagnostic methods. Current
diagnostic methods for OSA detection include polysomnography,
upper airway manometry, imaging tests (upper airway X-ray, CT,
MRI examination), electronic fibro-laryngoscope, sleep endoscopy,
and acoustic reflexes. Polysomnography is considered the most
reliable confirmatory test for OSA diagnosis (Neelapu et al.,
2017), providing indications about respiratory status, gas flow,
oxygen saturation, and sleep status (Cagle et al., 2023). However,
polysomnography monitoring requires subjects to be monitored in
the examination room throughout the night, and the test results
often require manual data analysis by specialized technicians,
requiring high equipment examination environment, examination,
and analysis, making it more suitable for confirming the diagnosis
of patients with typical symptoms rather than clinical screening.
Upper airway manometry is invasive, costly, and inefficient,
with poor patient compliance (Sundaram et al., 2005). Imaging
tests can only reflect the collapse of the upper airway during
the waking phase and are static examinations that cannot be
observed dynamically, often having a large gap with the sleep
phase (Bommineni et al., 2023; Kim et al., 2023). Sleep endoscopy
allows dynamic observation of the collapse of the upper airway
during the patient’s sleep, facilitating the determination of the
site and degree of obstruction more intuitively. However, the
examination is complicated, requiring close cooperation and full
monitoring by the examining physician and anesthesiologist, and
carries certain risks of anesthesia (Kent et al., 2023). Other
examination techniques, such as acoustic reflexes, are still in the
research stage and not widely carried out in the clinic (Ravesloot
and de Vries, 2011). In conclusion, current OSA screening tools
have problems such as low examination efficiency, poor patient
compliance, and high prices, which leave many patients with
OSA undiagnosed in the early to mid-stage and long-term and
potentially pathological damage without timely intervention and
treatment. Therefore, accurate screening for early and mid-stage
patients is essential. The latest guidelines from the American

Academy of Sleep Medicine (AASM) also point out that the
establishment of a clinical prediction model to screen patients with
a high probability of OSA and prioritize PSG examination can
benefit patients (Ferreira-Santos et al., 2022).

In recent years, machine learning, as a vital branch of artificial
intelligence, has found widespread applications in various fields,
including data mining, model building, and image recognition
(Choi et al., 2020). Its significant impact on medical processes has
garnered increasing attention from medical researchers due to its
remarkable effectiveness (Gutiérrez-Tobal et al., 2022). Traditional
data analysis methods rely on the perspectives and opinions
of analysts, systematically forming fixed patterns. In contrast,
machine learning has the capability to continuously and iteratively
learn, progressively enhancing model performance (Greener et al.,
2022). Moreover, machine learning disease prediction models are
particularly suited for early disease screening in large populations,
providing early indications for diseases that may require in-depth
examinations for a definitive diagnosis, thereby potentially saving
significant medical costs. The algorithmic models are not only easy
to operate and efficient but also have a broad range of applications.
Thus, fully leveraging the advantages of machine learning and
combining them with the high-risk factors of clinical diseases and
diagnostic methods can play a pivotal role in disease prediction.

Relevant machine learning models have demonstrated success
in various diseases such as diabetic retinopathy (Bora et al.,
2021), new-onset atrial fibrillation (Raghunath et al., 2021), and
lung cancer (Heuvelmans et al., 2021), bringing considerable
convenience to clinical screening and contributing to cost savings
in medical care. Building upon these observations, given the high
incidence of OSA, we aim to leverage machine learning models—
an accurate, fast, simple, and cost-effective method—to make
preliminary predictions for a large population. The goal is to
screen and diagnose as many patients with OSA in the early and
middle stages as possible, facilitating timely clinical interventions
to reverse the pathological changes caused by OSA and reduce
associated pathological burdens. Therefore, this study proposes the
utilization of five machine learning algorithms—Extreme Gradient
Boosting (XGBoost), Logistic Regression (LR), Support Vector
Machine (SVM), Light Gradient Boosting Machine (LightGBM),
and Random Forest (RF)—to gather basic information [sex, age,
height, weight, and body mass index (BMI)], medical history
(clinical symptoms and comorbid diseases), Epworth Sleepiness
Scale (ESS), and polysomnography findings.We aimed to construct
a machine learning model for the automatic screening and
diagnosis of OSA, providing a simple and fast tool for further
epidemiological investigations of OSA.

2 Methods

2.1 Study subjects

A total of 439 patients, including 102 normal patients, 100
patients with mild OSA, 95 patients with moderate OSA, and 142
patients with severe OSA, who underwent polysomnography at the
Affiliated Hospital of Xuzhou Medical University from October
2020 to October 2023 were retrospectively selected. The OSA
diagnostic criteria were taken from the Clinical Practice Guideline
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for Diagnostic Testing for Adult Obstructive Sleep Apnea: An
American Academy of Sleep Medicine Clinical Practice Guideline
(Kapur et al., 2017). Patients with the following conditions
were excluded:

1. Acute upper respiratory tract infection.
2. Unstable or decompensated cardiopulmonary disease.
3. Benign and malignant tumors.
4. Serious physical and mental diseases.
5. Recent upper airway surgery and tracheostomy.

The study received approval from the Medical Ethics
Committee of the Affiliated Hospital of XuzhouMedical University
(Approval No. XYFY-KL341-01).

2.2 Study methods

2.2.1 Polysomnography
Polysomnography is used for continuous and simultaneous

acquisition, recording, and analysis of multiple sleep physiological
indicators and pathological events during sleep. The Emboletta
sleep detection system, model: Embletta X100, was utilized
for polysomnography in this study. A designated technician
recorded patient information, facilitated the placement of the sleep
detector, and undertook the analysis and extraction of data post-
examination. Polysomnography serves as a fundamental tool for
the analysis of sleep structure and the assessment of sleep disorders,
being crucial for clinical and scientific research in sleep medicine
(Rundo, 2019).

2.2.2 Grouping criteria
The assessment of sleep apnea severity primarily relies on

the apnea-hypopnea index (AHI) (Martinez-Garcia et al., 2023).
According to the AHI, the severity of OSA is categorized into
three degrees: mild (AHI > 5–15), moderate (AHI > 15–30),
and severe (AHI > 30). The AHI is calculated as the sum of the
number of apneas and hypoventilation divided by the sleep time,
representing sleep breathing disorders [AHI = (number of apneas
+ hypoventilation)/sleep time (hour)].

2.2.3 Included variables
1) Demographic information: Age, sex, height, weight, and BMI

(Cho et al., 2016; Mokhlesi et al., 2016; Senaratna et al., 2017;
Lo Bue et al., 2020).

2) ESS: The ESS assesses subjects’ tendency to sleepiness during the
day based on eight conditions. Each condition is scored on a 0–3
scale for the likelihood of dozing or falling asleep, resulting in a
total score of 24. Interpretations include the following:

- >6: tendency to sleepiness,
- >11: significant sleepiness,
- >16: severe drowsiness.
- Conditions assessed included the following:
- When sitting and reading,
- When watching TV,

- When sitting and not moving in public (such as meetings
or theater),

- When traveling by car for 1 h without interruption,
- When sitting and talking with others,
- When sitting quietly after lunch (without drinking alcohol),
- When lying down in the afternoon to rest,
- When driving and waiting for the signal,
- Presence of significant drowsiness suggested when the total

score was >10 (Chiu et al., 2017; Gandhi et al., 2021).

3) Disease history: snoring, nocturnal awakening, morning
headache, memory and concentration loss, gastroesophageal
reflux, and morning dry mouth (yes, no) (Morrell et al., 2003;
Stark and Stark, 2015; Patel, 2019; Zhang et al., 2021).

4) Comorbid diseases: Hypertension, coronary heart disease,
arrhythmia, thyroid disease, and cerebral cardiovascular disease
(yes, no) (Petrone et al., 2016; Strausz et al., 2021; Yeghiazarians
et al., 2021; Redline et al., 2023).

2.2.4 Data preparation and cleaning
The initial step was to assess whether the proportion of missing

values in each dataset exceeds 95%. If this threshold is surpassed,
eliminate the rows and columns containing the missing values to
obtain a final dataset devoid of any missing values. For datasets
where missing values account for no more than 95%, initiate
telephone contact to enhance the information. In instances where
contact cannot be established, fill continuous variables with the
mean, rank variables with the median, and unordered variables
with the mode.

During the data processing phase, textual data is commonly
encountered. Algorithms such as LR and SVMs cannot directly
handle textual data, necessitating the conversion of textual data into
numerical form before use. For instance, {“female,” “male”} and
{“hypertension,” “coronary heart disease,” “arrhythmia,” “thyroid
disease”} represent aggregated forms of category values. Label
encoding, a prevalent method, is used when variables are numerical
or exhibit a certain logical relationship. In cases where data are
categorical, numbering using consecutive integers in the interval
[0, n-1] is adopted. For example, assigning 0 for hypertension, 1
for coronary artery disease, 2 for arrhythmia, and so forth. While
this method introduces a degree of continuity to the data, the
numbers solely represent categories, and the underlying substance
remains non-continuous. To mitigate this issue, One-Hot coding
is applied to the preprocessing of category data. This enhances
the rationality in similarity and distance calculations and facilitates
better application to relevant machine models, thereby enhancing
credibility (Qiao et al., 2019).

It is imperative in practical applications to differentiate
between data categories and determine whether they belong to
ordered or categorical information. For data types with no logical
relationship between values, such as “male” and “female,” One-Hot
coding is most suitable. In contrast, for ordered data like “mild,”
“moderate,” and “severe,” possessing a logical relationship, One-Hot
coding is still appropriate, with the numbers representing logical
relationships remaining intact throughout the coding process (Jia
et al., 2018).
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2.2.5 Optimization of parameters
The optimization of the model utilizes the Grid Search CV

(cross validation) algorithm, a two-stage process encompassing grid
search and cross-validation (Krishnan et al., 2022). Grid search
involves traversing multiple parameter combinations, earning its
title of exhaustive search. The objective is to identify optimal
parameters by iteratively adjusting them and training the learning
algorithm with the adjusted parameters. This process continues
until all possible parameters are explored, enabling the discovery
of the best combination.

The algorithm automatically organizes and combines
parameter values when dealing with smaller datasets, effectively
enhancing machine learning efficiency. The guiding principle
(Borstelmann, 2020) involves initially selecting the parameter
with the greatest impact on the model for tuning. Sequential
searches within specified value intervals are performed until the
optimal value is determined. This process is then repeated for the
next parameter with a significant influence, continuing until all
parameters are tuned and the best combination is identified.

To mitigate overfitting and underfitting, a grid search method
based on K-fold cross-validation is used. This method, combined
with K-fold cross-validation, aims to enhance the model’s
prediction accuracy. The K-fold cross-validation method (Doupe
et al., 2019) divides all samples into K parts, using one part as the
test set and the rest as the training set in each experiment. Repeating
this process K times yields K models. The average of all evaluation
indices after K experiments serves as the assessment for parameter
tuning. The model’s final parameters are determined based on the
best evaluation index. Typically, K is set to values like 5 or 10, and
in this study, K= 5 is chosen. By comparing values within each set,
the parameter yielding the highest prediction accuracy within the
selected range can be identified.

2.2.6 Introduction to algorithms
The SMOTE algorithm is a constant for unbalanced data

enrichment proposed by Chawla. The basic principle is to perform
random linear interpolation between the few class samples and
their neighbors to complete the data enrichment to achieve a
certain imbalance ratio. The imbalance ratio is the ratio of the
number of samples of few classes to the number of samples of
multiple classes in the sample set (Wang et al., 2021; Hassanzadeh
et al., 2023).

The LR model stands out as a machine learning model
known for its simplicity and good interpretability, making it
one of the most widely used methods in clinical research. This
model is transformed into an excellent classification algorithm
by incorporating a sigmoid function onto linear regression. LR
is computationally inexpensive, easy to understand, implement,
and demands minimal computational resources, making it fast
and efficient in classifying tasks. In contrast, the SVM is a robust
method for constructing classifiers. It establishes a judgment
boundary, referred to as a hyperplane, between two classes. SVM
seeks the optimal partitioning of the feature space (normal-
abnormal) with this hyperplane by maximizing the margin, which
is the distance from the plane to the support vector—the nearest
point to the plane (Peng et al., 2023).

RF, characterized by its simple structure and ease of
implementation, presents a low computational overhead and
proves effective in addressing high-dimensional problems. RF
compensates for the limitations of traditional models in handling
complex interactions. It also provides valuable information such
as important measures of variables, demonstrating advantages in
classification accuracy and stable performance (Hu and Szymczak,
2023).

XGBoost is a popular machine learning method utilizing
decision trees as the underlying learner for implementing gradient
boosting. It iteratively constructs simple regression trees by finding
partition values that minimize the prediction error among all
input variables. The iterative process involves building additional
regression trees with the same structure, where each regression
tree minimizes the residuals of the previous ones (Woillard et al.,
2021). XGBoost enhances predictions by sequentially building
trees, training each tree to address the remaining prediction error
after the previous tree. It controls the depth and complexity of
individual trees, contributing to the creation of complex and
accurate models (Docherty et al., 2021). In comparison, the
LightGBM offers advantages such as faster training efficiency,
occupying less memory space, achieving higher accuracy rates,
and supporting parallelized learning. This method iteratively trains
weak classifiers to obtain the optimal model. Additionally, it
employs a Leaf-wise leaf growth strategy based on depth limitation.
In each iteration, it identifies the leaf node with the largest splitting
gain from all current leaf nodes and splits it, thereby reducing
errors (Park et al., 2021). Two techniques, GOSS and EFB, enhance
traditional gradient boosting iterative decision trees. The GOSS
algorithm saves samples with larger gradients, while the EFB
algorithm bundles a large number of exclusive features onto much
less dense features. This combination, along with the GOSS and
EFB algorithms, efficiently handles large-scale data samples and
feature extraction, preventing unnecessary computation of zero
eigenvalues (Deng et al., 2018; Zhan et al., 2018).

2.2.7 Evaluation metrics of the model
To evaluate the method proposed in this study for comparison

with other methods, four commonly used metrics were used,
including F1 score; specificity (true negative rate, TNR), TNR
= TN/(FP + TN); sensitivity (true positive rate, TPR), TPR =

TP/(TP+ FN); accuracy (ACC), ACC = TP+ TN/(TP + FP +

TN + FN); area under the receiver operating characteristic curve
(ROC) (AUC) (Chatterjee et al., 2020; Namkung, 2020).

Accuracy =
TP+ TN

TP+ FP+ TN+ FN

TPR =
TP

TP+ FN

TNR =
TN

TN+ FP

TP refers to the number of correctly classified positive samples,
FP refers to the number of misclassified negative samples, TN refers
to the number of correctly classified negative samples, and FN refers
to the number of misclassified positive samples. Since the two types
of samples in the dataset were not uniformly distributed, the overall
performance could be well evaluated by using accuracy, sensitivity,
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and specificity metrics; thus, we focused on AUC, which is usually
between 0.5 and 1 and is an important reference to evaluate the
model fitting effect. When the AUC value of the model is ≥0.7,
the model fits better; when the AUC is ≥0.9, the model has a very
strong predictive power and its performance is better. Furthermore,
the closer the AUC value of the model is to 1, the better the
performance. The larger the AUC, the better the performance of
the model.

2.2.8 Modeling process
The OSA prediction model utilized the LightGBM algorithm,

LR algorithm, XGBoost algorithm, RF algorithm, and SVM
algorithm. Firstly, we use the Umap algorithm to map the data into
2D and visualize the data differently using the target variable as a
color (Figure 1). Secondly, the SMOTE algorithm is used to amplify
the original data, which is 10 times that of the original data, and
the amplified data is in a balanced state (Figure 2). Then dataset
was split into an 80% training set and a 20% test set. Predictor
variables were input into each of the five algorithms to build the
respective models. Subsequently, the remaining 20% of patients
served as the test set, with predictor variables input into the models
for quadratic and dichotomous calculations. The output results
were then compared with the polysomnography results to assess
the accuracy of the models.

2.2.9 Statistical methods
Statistical analysis of the data was conducted using SPSS

25.0. The normality of measurement data was tested using the
Shapiro–Wilk test. For measurement data conforming to normal
distribution, mean ± standard deviation was used, and the
independent samples t-test facilitated group comparisons. Skewed
distributionmeasures were expressed asmedian (quartiles), and the
Mann–Whitney U and Kruskal–Wallis rank sum tests were used
for dichotomous and quadratic group comparisons, respectively.
Count data were presented as the number of cases, with group
differences assessed using the chi-squared (χ²) test. A significance
level of P < 0.05 was considered statistically significant.

The prediction model was developed using LightGBM in
Python with the Scikit-learn package. For two types of models, 80%
out of patients were randomly chosen in a 4:1 ratio as the training
set, while the remaining 20% served as the test set.

Five models, namely LR, SVM, XGBoost, LightGBM, and
RF, were constructed using the training set. Model reliability
was assessed using the test set, with the AUC chosen as the
evaluation metric. A larger AUC indicated better predictive
model performance.

3 Results

3.1 Four classification models

3.1.1 Comparison between groups of each basic
variable of the four classifications

In the cohort of 439 patients across the four classification
models, the distribution was as follows: 1,096 classified

as normal, 1,117 as mild, 1,090 as moderate, and 1,087 as
severe. Significant differences (P < 0.05) were observed among
the four groups in terms of the following basic variables:
sex, age, BMI, significant snoring, nocturnal awakening,
memory and attention impairment, gastroesophageal reflux,
morning dry mouth, total ESS score, Coronary heart disease,
Arrhythmia, Thyroid disease, Cerebrovascular disease and
hypertension (Table 1).

3.1.2 Parameters of five prediction models for
four classifications

In the four-classification model, the data comparison between
the training set and the test set and the selection of the optimal
parameters by the grid search algorithm are shown in the
Tables 2, 3.

3.1.3 Comparison of evaluation metrics of the
five models

For the four classification models, utilizing 20% (88 cases) as
the test set for validation, the AUC ranking of the five algorithms is
as follows: LightGBM > RF SVM > XGBoost > LR. The accuracy
ranking is LightGBM > RF > SVM > XGBoost > LR. LightGBM
exhibiting the highest sensitivity among them. The specificity
ranking was as follows: LightGBM > RF > SVM= XGBoost > LR.

Specifically, the accuracy of LightGBM was 0.93 (AUC =

0.97); LR achieved an accuracy of 0.71 (AUC = 0.83); XGBoost
attained an accuracy of 0.81 (AUC = 0.91); SVM showed an
accuracy of 0.84 (AUC = 0.94); RF achieved an accuracy of 0.88
(AUC = 0.95) (Table 4, Figure 3). Across the four classifications,
the AUC values for all five models were higher than 80%, with
LightGBM outperforming LR, XGBoost, RF, and SVM in each
evaluation index.

3.1.4 Importance ranking of the variables
Regarding the importance rankings of statistically different

variables, there were variations in the feature importance
rankings among RF, LR, XGBoost, RF, and SVM. In particular,
the top five feature importance rankings for LightGBM,
which exhibited the best evaluation index, were Age,
BMI, ESS total score, hypertension, and gastroesophageal
reflux (refer to Figure 4). Notably, Age, ESS total score
and BMI stood out as the most prominent factors in
determining importance.

3.2 Binary classification model

3.2.1 Comparison of basic variables in
dichotomous classification

Within the 3,390 patients in the dichotomous model,
comprising 1,718 individuals in the moderate-to-severe OSA group
and 1,672 in the normal group, notable differences were identified
between the two groups. These distinctions encompassed sex,
age, BMI, significant snoring, nocturnal awakening, memory and
attention loss, gastroesophageal reflux, morning dry mouth, total
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FIGURE 1

Visualize the data using the Umap algorithm: (A) binary classification; (B) multi-categorization.

FIGURE 2

Comparison of data before and after amplification: (A) before amplification; (B) after amplification; (C) before amplification; (D) after amplification.
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TABLE 1 Comparison of various parameters between groups with di�erent degrees of OSA (four categories).

Parameters Normal (n =
1,096)

Mild (n = 1,117) Moderate (n = 1,090) Severe (n = 1,087) P

Male 812 1,029 959 1,048 <0.001

Age 37 (29, 49) 41 (32, 51) 45 (34, 53) 42 (33, 53) <0.001

BMI 23.51 (22.05,
25.74)

25.34 (23.75, 27.04) 25.44 (24.16, 26.97) 28.73 (26.50, 30.39) <0.001

Snoring 995 1,113 1,087 1,084 <0.001

Waking up at night with suffocation 523 761 825 806 <0.001

Morning headache 227 409 395 397 <0.001

Loss of memory and concentration 508 966 869 887 <0.001

Gastroesophageal reflux 160 576 363 590 <0.001

Dry mouth 410 1,010 1,025 998 <0.001

ESS total score >10 0 165 213 463 <0.001

Hypertension 177 404 275 577 <0.001

Coronary heart disease 85 62 44 143 <0.001

Arrhythmia 135 159 57 113 <0.001

Thyroid disease 112 135 155 39 <0.001

Cerebrovascular disease 46 104 213 158 <0.001

ESS score, hypertension, and cerebrovascular disease (P < 0.05)
(refer to Table 5).

3.2.2 Parameters of five prediction models for
dichotomous classification

In the binary classificationmodel, the data comparison between
the training set and the test set and the grid search algorithm are
used to select the most important parameters in the Tables 6, 7.

3.2.3 Comparison of evaluation indicators of five
models

In the binary classification model, utilizing 20% of the dataset
(678 cases) as the test set for validation, the AUC rankings of the
five algorithms are as follows: RF > LightGBM = LR > XGBoost
> SVM. The accuracy ranking is RF > SVM > LR > XGBoost
> LightGBM. For sensitivity, the ranking is RF = SVM > LR >

XGBoost > LightGBM, and for specificity, it is RF > XGBoost =
SVM > LightGBM > LR.

The prediction accuracy of LightGBM was 0.85 with an AUC
of 0.92, LR achieved an accuracy of 0.88 and an AUC of 0.94,
XGBoost had a prediction accuracy of 0.86 with an AUC of 0.93,
SVM showed an accuracy and AUC of 0.90 and 0.96. respectively,
and RF outperformed with an accuracy and AUC of 0.91 and 0.96
respectively (Table 8, Figure 5). In the binary classification model,
all five algorithms exhibit AUC values exceeding 90%, indicating
high predictive performance. RF stands out with superior AUC,
accuracy, sensitivity, and specificity than LR, XGBoost, LightGBM,
and SVM.

TABLE 2 Training and validation (four categories).

Parameters Training
(n = 3, 512)

Validation
(n = 878)

P

Male 3,079 769 0.896

Age 40 (32, 58) 41 (32, 58) 0.515

BMI 25.84 (23.65, 27.72) 25.68 (23.62, 29.81) 0.261

Snoring 3,416 863 0.084

Waking up at night
with suffocation

2,339 576 0.576

Morning headache 1,137 291 0.664

Loss of memory
and concentration

2,560 670 0.040

Gastroesophageal
reflux

1,352 337 0.951

Dry mouth 2,979 740 0.690

ESS total score 675 163 0.659

Hypertension 1,158 275 0.351

Coronary heart
disease

271 63 0.589

Arrhythmia 372 92 0.922

Thyroid disease 363 88 0.785

Cerebrovascular
disease

419 102 0.797

3.2.4 Ranking of the importance of each variable
The importance rankings of variables such as sex, age,

BMI, significant snoring, nocturnal awakening, memory and
attention loss, gastroesophageal reflux, dry mouth in the morning,
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drowsiness, hypertension, and cerebrovascular diseases varied
among LightGBM, LR, XGBoost algorithm, RF, and SVM. The
top five feature importance rankings for RF, which exhibited the
highest evaluation indicators, were ESS total score, BMI, age,
gastroesophageal reflux, and sex (Figure 6). Notably, the total ESS
score and BMI emerged as particularly crucial variables in the

TABLE 3 Parameters of each model of the four classifications.

Model Parameters

LR ‘C’: 0.1

SVM ‘C’: 0.1, ‘gamma’: 0.1, ‘kernel’: ‘poly’

RF ‘max_depth’: 7, ‘n_estimators’: 100

XGBoost ‘learning_rate’: 0.1, ‘max_depth’: 3, ‘n_estimators’: 50

LightGBM ‘learning_rate’: 0.1, ‘max_depth’: 3, ‘n_estimators’: 150

TABLE 4 Comparison of prediction performance of five models with four

classifications.

Evaluation
indicators

LightGBM XGBoost SVM LR RF

AUC 0.97 0.91 0.94 0.83 0.95

Accuracy 0.93 0.81 0.84 0.71 0.88

Sensitivity 0.96 0.85 0.92 0.72 0.94

Specificity 0.91 0.78 0.78 0.70 0.84

F1 0.93 0.79 0.84 0.68 0.88

The meaning of the bold values is to highlight the evaluation indicators of the optimal model.

predictive performance of the model. The overall flow chart of this
study is shown in the figure below (Figure 7).

4 Discussion

Polysomnography is widely recognized as the gold standard
for diagnosing OSA, yet its use for OSA screening is hindered
by operational complexities, time requirements, and economic
costs. In response to these limitations, various life scales, such
as the ESS, Quebec sleep questionnaire, and the OSA-18 scale
for children, have been used in clinical settings to complement
polysomnography. The ESS, comprising subjective sleepiness
questions in eight conditions, is widely used despite its subjective
nature, as its reliability and validity have been established (Pitre
et al., 2023). However, the advent of computer machine learning
models has revolutionized disease prediction by integrating and
analyzing both subjective and objective indicators. While these
models have shown success in predicting diseases like diabetic
retinopathy (Bora et al., 2021), new-onset atrial fibrillation
(Raghunath et al., 2021), and lung cancer (Heuvelmans et al., 2021),
there is a scarcity of studies focusing on machine learning for
generating OSA risk prediction models.

Our study aimed to leverage machine learning prediction
models to identify patients with OSA at an early stage.
Consequently, the selected factors needed to be accurate, fast,
simple, and easily interpretable without necessitating extensive
ancillary tests. We collated patient demographic information,
medical history, ESS, and other subjective and objective indicators.
Employing five algorithms—LightGBM, LR, XGBoost, SVM, and

FIGURE 3

ROC curves of four classification and five models.
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FIGURE 4

Ranking chart of the importance of variables of five algorithms in the four-classification OSA classification model. (A) LightGBM; (B) LR; (C) XGboost;

(D) SVM; (E) RF.

RF—we compared the AUC, accuracy, sensitivity, and specificity
of these models to establish an automatic screening and diagnostic
machine learning prediction model for patients with OSA.

Our study aimed to employ machine learning models for
accurate screening of early to mid-stage patients. In the four
classifications, to identify models more suitable for the early
screening of patients with mild-to-moderate OSA, we categorized
the study population into four groups based on AHI: normal,
mild, moderate, and severe. Among the five quadruple classification
grading models, the LightGBM model demonstrated the best
performance (AUC = 0.97, accuracy = 0.93, sensitivity = 0.96,
and specificity = 0.91). The AUC of LightGBM outperformed

RF, SVM, LR, and XGBoost, with all other indices also showing
relatively favorable results. This superiority aligns with findings
in other pharmaceutical fields, where Zhang et al. (2019)
concluded that LightGBM outperformed SVM and XGBoost
in predicting various toxicity or activity-related endpoints for
large compound libraries in the pharmaceutical and chemical
industries. The top five importance rankings of each variable
in the LightGBM model were Age, BMI, ESS total score,
hypertension, and gastroesophageal reflux, with the Age, ESS total
score and BMI being the most prominent. This alignment with
the clinical characteristics of OSA reinforces the relevance of
these variables.
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TABLE 5 Comparison of parameters between the non-OSA group and the

moderate-to-severe OSA group (dichotomous classification).

Parameters Non-OSA
(n=1,672)

OSA
(n=1,718)

P

Male 1,243 1,594 <0.001

Age 36 (30, 49) 43 (34, 53) <0.001

BMI 23.53 (22.16,
25.69)

27.18 (25.38,
29.61)

<0.001

Snoring 1,538 1,712 <0,001

Waking up at night with
suffocation

814 1,224 <0.001

Morning headache 348 592 0.067

Loss of memory and
concentration

760 1,358 <0.001

Gastroesophageal reflux 231 803 <0.001

Dry mouth 1,052 1,595 <0.001

ESS total score 0 567 <0.001

Hypertension 294 770 <0.001

Coronary heart disease 128 153 0.649

Arrhythmia 207 157 0.509

Thyroid disease 168 111 0.631

Cerebrovascular disease 84 256 0.025

In the context of the four classifications, various scholars
have reported diverse results, albeit with less-than-satisfactory
outcomes. For instance, Mencar et al. (2020) utilized data
encompassing demographic characteristics, spirometry values, gas
exchange parameters (PaO2, PaCO2), and symptoms (ESS and
snoring) from 313 patients with OSA. They established SVM and
RF OSA grading prediction models, achieving low performance
with an AUC of 65, a sensitivity of 44.7, and an accuracy of 39.9
for SVM and an AUC of 63.7, a sensitivity of 44.1, and an accuracy
of 44.1 for RF. Similarly, Bozkurt et al. (2017) employed clinical
data, including age, sex, BMI, neck circumference, smoking status,
clinical symptoms, and physical examination, to build LR and
RF four-category classification prediction models. The AUC for
LR and RF was reported as 0.84 and 0.81, respectively, slightly
outperforming the models established in this study. This could
be attributed to the inclusion of physical examination parameters
in their study, leading to more comprehensive and fuller raw
data. Physical examinations such as neck circumference, waist
circumference, tonsil size, and tongue size play a crucial role in OSA
diagnosis (Lim et al., 2014; Wysocki et al., 2016). Future studies
might enhance the accuracy of four-category model predictions
by incorporating simple and readily available physical examination
indices like waist circumference, neck circumference, pharyngeal
cavity, heart rate, and blood pressure.

In the dichotomous classification model, each machine-
learning model exhibited excellent screening efficacy. This model,
focusing on the presence or absence of OSA, surpassed the multi-
classification model in terms of performance. Many current disease
prediction models emphasize this binary classification due to its
superior performance. The gold standard for OSA diagnosis is

TABLE 6 Training and validation (dichotomous classification).

Parameters Training
(n=2,712)

Validation
(n = 678)

P

Male 2,279 558 0.275

Age 40 (32, 51) 41 (32, 51) 0.515

BMI 25.71 (23.70,
27.73)

25.68 (23.62,
27.45)

0.261

Snoring 2,597 653 0.517

Waking up at night with
suffocation

1,632 406 0.888

Morning headache 758 182 0.565

Loss of memory and
concentration

1,711 407 0.141

Gastroesophageal reflux 850 184 0.033

Dry mouth 2,129 518 0.237

ESS total score 453 114 0.945

Hypertension 846 218 0.630

Coronary heart disease 219 62 0.366

Arrhythmia 301 63 0.174

Thyroid disease 226 53 0.662

Cerebrovascular disease 274 66 0.775

TABLE 7 Parameters of each model of binary classification.

Model Parameters

LR ‘C’: 0.1

SVM ‘C’: 1, ‘gamma’: 0.01, ‘kernel’: ‘rbf ’

RF ‘max_depth’: 6, ‘n_estimators’: 70

XGBoost ‘learning_rate’: 0.02, ‘max_depth’: 2, ‘n_estimators’: 50

LightGBM ‘learning_rate’: 0.01, ‘max_depth’: 2, ‘n_estimators’: 50

the polysomnography examination, where the AHI is a crucial
indicator of disease severity. However, diagnosing patients with
mild OSA remains controversial due to various physiological
state changes, such as fatigue, sleeping position, upper airway
inflammation, and external stimulants like tobacco and alcohol
(Coelho et al., 2022). Patients with moderate-to-severe OSA, on
the other hand, have more consistent diagnoses. Zerah-Lancner
et al. (2000) showed that AHI is a reliable parameter for estimating
OSA severity, particularly with a sensitivity of 100% for AHI
≥ 15, indicating high sensitivity in subjects with moderate or
severe disease. Patients with moderate-to-severe OSA experience
more severe clinical manifestations, such as sleep fragmentation,
producing physical symptoms such as drowsiness and fatigue,
and psychological symptoms such as stress, and organ damage
compared with patients with mild OSA (Santos et al., 2017; Yan
et al., 2022). The association with cardiovascular morbidity is more
pronounced in moderate-to-severe cases, emphasizing the need to
screen patients with suspected moderate or severe OSA for further
diagnosis (Gottlieb and Punjabi, 2020; Sánchez-de-la-Torre et al.,
2023). The necessity to screen patients with suspected moderate
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TABLE 8 Comparison of prediction performance of five binary

classification models.

Evaluation
indicators

LightGBM XGBoost SVM LR RF

AUC 0.92 0.93 0.96 0.94 0.98

Accuracy 0.85 0.86 0.90 0.88 0.91

Sensitivity 0.77 0.79 0.87 0.84 0.87

Specificity 0.93 0.94 0.94 0.92 0.96

F1 0.84 0.85 0.90 0.87 0.91

The meaning of the bold values is to highlight the evaluation indicators of the optimal model.

or severe OSA for further diagnostic confirmation is crucial.
Therefore, this study employed a dichotomous classification
approach, categorizing normal populations as one group and
patients with moderate-to-severe OSA as another group. This
strategy aimed to enhance the prediction model’s effectiveness
in screening for moderate and severe OSA. In the dichotomous
LR model, AUC was 0.94, indicating a high prediction accuracy
of OSA (88%). This underscores the effectiveness of the LR
model in analyzing indicators, with sex being identified as the
most significant factor. Comparisons with previous studies reveal
noteworthy findings. Zou et al. (2013) achieved an AUC of 0.96
using the LRmodel with the ESS scale, anthropometric parameters,
and lowest oxygen saturation. Saaresranta et al. (2016) developed a
screening model with 93% sensitivity but low specificity, leading
to a high number of false positives. Xu et al. (2019), using
the LASSO approach, attained a lower efficacy (0.75 and 0.78
AUC for predicting moderate and severe OSA). Notably, our
study’s incorporation of both anthropometric variables and clinical
features, including medical history, likely contributed to the
heightened predictive power of our model. In the dichotomous
LR model, the ranked importance of each variable’s characteristics
was as follows: drowsiness, BMI, age, coronary heart disease and
morning dry mouth. This highlights the relevance of these factors
in predicting OSA.

The dichotomous SVM model demonstrated an AUC of 0.96,
all indicators were better than LR. In comparison to previous
studies, Liu et al. (2017) utilized anthropometric characteristics by
SVM, achieving a prediction rate with an AUC of 0.85 for OSA
severity. Sharma and Sharma (2016) applied the SVM algorithm to
detect sleep apnea based on single-lead electrocardiogram signals,
reporting superior results with an AUC of 0.97, a sensitivity of
0.95, a specificity of 1.00, and an accuracy of 0.97. However,
their method’s limitation was the need for an operator with
expertise in electrocardiogram signal extraction, making evaluation
challenging. Contrasting conclusions were drawn by Manoochehri
et al. (2018), who used age, neck circumference, ESS score, snoring,
and other risk factors to establish an SVM vs. LR model for
obstructive sleep apnea diagnosis. They found SVM to be superior
to LR, with an accuracy of 0.79, a sensitivity of 0.71, and a
specificity of 0.84, all lower than the present study. Notably, the top
three SVM importance rankings for dichotomous categories were
consistent with LR and in the same order: ESS score, BMI and age,
suggesting the consistent performance of these variables across LR
and SVMmodels.

In this study, the RF model exhibited superior performance
in dichotomous classification, achieving an impressive AUC of
0.98 and an accuracy of 0.91. This aligns with findings from
Hajipour et al. (2020), who compared LR and RF models using
acoustic features, sex, weight, BMI, and neck circumference.
Despite regularization efforts to enhance LR’s generalization and
prevent overfitting, RF still outperformed regularized LR in
accuracy, specificity, and sensitivity by 3.5%, 2.4%, and 3.7%,
respectively. The study suggests that when dealing with large
datasets requiring rapid real-time screening, regularized LR is a
preferable choice due to its relatively fast and accurate classification
results. Contrastingly, Wu et al. (2022) utilized hypoxia-related
genes and biomarkers to construct an RF model for OSA
diagnosis, yielding a lower AUC of 0.667. Notably, their OSA
samples exclusively comprised obese cases, a crucial factor in
differentiating OSA. This might explain the disparity between their
RF model and the current study. Tsai et al. (2022) employed
waist circumference, neck circumference, BMI, and visceral fat
level to establish risk models for predicting moderate to severe
OSA using LR, k-nearest neighbor, Bayesian, RF, SVM, and
XGBoost. The RF model, applied to the moderate-severe category,
demonstrated an accuracy of 84.74% and an AUC of 90.41%,
highlighting its robust performance. This aligns with the current
study, where the RF model stood out with an AUC of 0.98
and an accuracy of 0.91 among the dichotomous models. As
the top-performing model among dichotomous models, the RF
model emphasized the importance of objective variables. The
top five variables—drowsiness, BMI, gastroesophageal reflux, age,
and morning dry mouth—include two highly objective factors
(age and BMI) compared to LR and SVM, underscoring the
significance of objective variables in the prediction model. The
XGBoost model in dichotomous classification exhibited a robust
performance with an AUC of 0.93, an accuracy of 0.86, a sensitivity
of 0.79, and a specificity of 0.94. While it ranked as the less
accurate and sensitive among the five models in this study, its
higher AUC and specificity make it a promising candidate for
future investigations. The study by Ye et al. (2023) included
involving 3,139 children with suspected OSA used age, sex,
BMI, hypoxia index, mean nocturnal heart rate, and fastest heart
rate as predictive features for diagnosing mild, moderate, and
severe OSA. XGBoost demonstrated AUCs of 0.95, 0.88, and
0.88, with classification accuracies of 90.45%, 85.67%, and 89.81%,
respectively. This study regarded XGBoost as a superior performer.
Conversely, Kim et al. (2021) utilized clinical symptoms and
anthropometric variables, concluding that XGBoost had the lowest
OSA prediction performance with sensitivity, specificity, and AUC
of 78.69%, 73.91%, and 0.80, respectively. Inconsistencies among
these findings may stem from variations in variables, populations,
and regions chosen by each study, introducing inevitable biases into
the data.

In the dichotomous model, most of the variables in the
XGBoost and LightGBM models were underutilized by the
models, which was inconsistent with most clinical experience.
The most crucial variable in the XGBoost model in dichotomous
classification was the total ESS score, reflecting drowsiness and
aligning with the clinical manifestations of OSA. The LightGBM
model, despite being less utilized in OSA studies, demonstrated
exceptional performance just in quadruple classifications. In the
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FIGURE 5

ROC curves of the five models of binary classification.

dichotomous study, LightGBM achieved an impressive AUC of
0.92. Additionally, in the quadruple classifications, LightGBM
outperformed other algorithms, emphasizing its superiority in OSA
screening and diagnosis. Given these findings, further exploration
and research on LightGBM are warranted to harness its potential
in OSA prediction models. A study by Shi et al. (2022) focused on
predicting OSA-related hypertension using risk prediction models,
including LR, LightGBM, XGBoost, AdaBoost, Bagging, and
multilayer perceptron. LightGBM emerged as the top performer
with an AUC of 0.885 and accuracy of 0.713. Notably, three
variables—BMI, dry mouth, and sleepiness—were identified as
significantly more important in LightGBM’s dichotomous model.

In both dichotomous and quadruple classifications, the top five
characteristics of importance encompassed three indicators: BMI,
age, and total ESS score. This consistent ranking underscores the
pivotal role these indicators play in influencing OSA predictive
outcomes. Drowsiness, reflected in the total ESS score, emerged
as the most crucial characteristic parameter for predicting OSA,
suggesting its significance as a primary risk factor for differentiating
moderate-to-severe OSA. Although only a subset of OSA patients
reports excessive sleepiness (Gottlieb et al., 2010), its high
prevalence among severe OSA (Lee et al., 2020), cases underscores
its importance in clinical assessment (Saaresranta et al., 2016). BMI
ranked second in importance, highlighting obesity as a significant
risk factor for OSA. Obesity contributes to reduced lung volume,
pharyngeal diameter reduction, and fatty deposits in the pharyngeal
wall, all contributing to airway narrowing (Carneiro-Barrera et al.,
2022). Age also featured prominently as important parameters,
with older populations and males being more prone to OSA. The

correlation between age and OSA (Liu et al., 2022) is attributed
to relaxed nasopharyngeal muscles and increased susceptibility to
sleep apnea hypoventilation syndrome with age.

The study developed and validated machine learning models
for predicting OSA severity using a four-category OSA graded
prediction model and a two-category OSA screening prediction
model. LightGBM demonstrated the best performance in the
graded prediction model with an AUC of 0.97, indicating some
grading ability. However, its clinical application and scalability
need further exploration. In screening prediction models, all five
algorithms, especially RF, performed well in predicting patients
with suspected OSA, with RF achieving the highest AUC of
0.98. This suggests potential for large-scale implementation in
clinical and community settings. Comparative analysis between
dichotomous and quadruple classification models showed higher
metrics in dichotomous classification, emphasizing its effectiveness
in predicting OSA.

Limited studies exist on predicting OSA severity (Eiseman
et al., 2012), and further research is needed in diverse settings.
Machine learning is expected to play a key role in developing
clinically useful digital healthcare for OSA and other sleep
disorders. The study is based on a retrospective analysis of
clinical data, which may introduce biases or limitations in data
collection and interpretation. The evaluation of the machine
learning models may be influenced by the specific metrics
chosen, and additional validation on external datasets could
provide further insights into the model’s performance and the
next step will be additional validation in a wider range of
people. The dataset relied more on subjective data, such as
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FIGURE 6

Ranking chart of the importance of variables of five algorithms of the binary classification OSA screening model. (A) RF; (B) SVM; (C) LR; (D)

LightGBM; (E) XGboost.

the ESS rating scale and medical history, limiting the inclusion
of objective parameters. Future research should aim to balance
subjective and objective data. Including objective indicators like
nasal and pharyngeal cavities, heart rate, blood pressure, and
physical examination results will enhance the comprehensiveness
of the OSA dataset. The sample size in the study is considered
insufficient, affecting the generalizability of model predictions.
Conducting studies with larger and diverse samples will validate
the generalizability of the developed models across different

populations and settings. The number of studies related to
OSA severity prediction is limited, indicating a need for more
extensive research in this area. Encouraging and conducting
additional studies on OSA severity prediction will advance the
understanding of the factors influencing OSA progression and
severity. This could include longitudinal studies and investigations
in varied settings. The study acknowledges that OSA severity is a
relatively new target, and more research is needed in larger and
diverse settings. Continuing to explore the integration of machine
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FIGURE 7

Overall framework flowchart.

learning techniques in digital healthcare for OSA and other
sleep disorders and collaborating with healthcare professionals
will ensure the applicability and effectiveness of these models in
clinical practice.

5 Conclusion

In conclusion, the study evaluated four classification and
grading prediction models for OSA, finding that LightGBM
demonstrated better performance and displayed some grading
ability for OSA severity. However, there is a recognized need for
additional indicators to enhance the accuracy of these models.
In the context of dichotomous screening prediction models, all
five algorithms exhibited effective predictions for patients with
suspected OSA. Notably, RF stood out with the best prediction
effect, achieving an AUC of 0.98. The superior performance of RF
suggests its potential for widespread adoption and promotion in
clinical and community settings. The study highlighted the pivotal
role of three variables—BMI, age, and drowsiness—in influencing
the prediction results of OSA. Recognizing the significance of these
variables underscores their crucial contribution to the accuracy and
effectiveness of OSA prediction models.
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