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Current antiviral drug discovery efforts face many challenges, including

development of new drugs during an outbreak and coping with drug

resistance due to rapidly accumulating viral mutations. Emerging artificial

intelligence and machine learning (AI/ML) methods can accelerate anti-

infective drug discovery and have the potential to reduce overall

development costs in Low and Middle-Income Countries (LMIC), which in

turn may help to develop new and/or accessible therapies against

communicable diseases within these countries. While the marketplace

currently offers a plethora of data-driven AI/ML tools, most to date have

been developed within the context of non-communicable diseases like

cancer, and several barriers have limited the translation of existing tools to

the discovery of drugs against infectious diseases. Here, we provide a

perspective on the benefits, limitations, and pitfalls of AI/ML tools in the

discovery of novel therapeutics with a focus on antivirals. We also discuss

available and emerging data sharing models including intellectual property-

preserving AI/ML. In addition, we review available data sources and platforms

and provide examples for low-cost and accessible screening methods and

other virus-based bioassays suitable for implementation of AI/ML-based

programs in LMICs. Finally, we introduce an emerging AI/ML-based Center

in Cameroon (Central Africa) which is currently developing methods and tools

to promote local, independent drug discovery and represents a model that

could be replicated among LMIC globally.
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Introduction

Even with extensive access to resources, funding, and talent,

drug research and development is a complex, expensive, and

time-consuming endeavour. Despite the advances made toward

drug discovery procedures that combine traditional and modern

methods, most drugs fail to achieve regulatory approvals and

reach the market, a phenomenon known as attrition (Waring,

et al., 2015). Currently, over 90% of drug candidates fail between

phase I clinical trials and regulatory approval, resulting in

substantial loss of financial investment and resources

(Fleming, 2018).

Traditional methods of drug discovery include finding and

validating a putative drug target, followed by the development of

a target-based bioassay and identifying a lead compound that

interacts with the target with significant activity. At this stage, hit

compounds generally undergo rounds of hit-to-lead

optimization to improve stability, activity, and selectivity over

toxicity, among other parameters. Additionally, the compounds

being examined are investigated in a batch of assays to test their

abilities to produce the same observed response within living

animals (in vivo) or isolated living tissues (ex vivo) (Hughes et al.,

2011).

One avenue to reduce the cost and duration of drug

discovery is the use of in silico protocols in the early stages

of the drug research and development pipeline. In silico

methods can lower the attrition rate by identifying drug

candidates with predicted suitable therapeutic activities and

excluding compounds with undesirable traits such as

predicted toxicity or poor pharmacokinetics (Beresford

et al., 2004; Hughes J. D. et al., 2008; Hughes L. D. et al.,

2008; Gawwehn et al., 2016; Zhang et al., 2017). Approaches

like molecular docking and quantitative structure-activity

relationship (QSAR) modeling are used to identify hits in

virtual compound libraries as well as predict and optimize

molecular bioactivity (Golbraikh et al., 2016). Predictions that

can be obtained and tested experimentally for accuracy

include physicochemical properties (such as logP and

solubility) and the binding mode of a ligand (small

molecule/protein) to a target (protein). To predict ligand-

protein interactions, a high-resolution protein structure is

necessary, ideally with previous knowledge of other ligands

bound to the intended binding site. Fine-grained molecular

dynamics simulations/relaxations, for instance, can be used to

understand the atomistic details of the ideal ligand-protein

complex, which in turn leads to a reduced number of

suggested final molecules for the experimentalists

(i.e., medicinal chemists and biologists) that potentially

have better activities when compared to the starting/

reference compound. However, while modern physics-based

computational methods such as docking and molecular

dynamics simulations are able to simulate specific ligand-

target interactions, a current challenge of computational drug

discovery is the modeling of compound effects at phenotypic

and physiological levels in order to improve translation to in

vivo experiments, where issues related to efficacy and drug

absorption, distribution, metabolism excretion, and toxicity

(ADMET) may emerge (Cherkasov et al., 2014). These

predictions are generated by data-driven approaches, which

ultimately relies on the notion that similar molecules tend to

have similar activities. Limitations of such predictions are

traced to small training sets to build the models, (Zhao, 2017),

the narrow chemical space covered by these training sets

(Stouch et al., 2003), experimental data errors (Fourches

et al., 2010), and a lack of prospective experimental

validations (Tropsha, 2010). Additionally, the hypothesis

that similar compounds will have similar activities could be

limited if only based on chemical structure and target activity

(Zhang et al., 2017), potentially resulting in inaccurate

predictions in the presence of activity cliffs (Stumpfe et al.,

2019).

Data-driven drug discovery, and in particular the

application of artificial intelligence and machine learning

(AI/ML) tools, have been suggested as promising strategies

to model compound effects that cannot be simulated with

physics-based methods alone (Schneider et al., 2020;

Jayatunga et al., 2022), as well as to devise sophisticated,

more robust, and biologically relevant similarity metrics

between compounds (Fernández-Torras et al., 2022a). From

a practical perspective, AI/ML methods can be considered to

be QSAR models, where a set of predefined physicochemical

or structural descriptors of the molecules (molecular weight,

number of hydrogen bond donors, etc.) are used as predictor

variables of an activity of interest (e.g. cellular growth

inhibition). Typically, these models require substantial pre-

existing experimental knowledge (Baskin 2019), which limits

their potential to generate genuinely novel chemistries or be

applied to understudied disease areas. By contrast, modern

AI/ML algorithms, including those that can be trained with

only a few training samples (Altae-Tran et al., 2017), are self-

trained and/or can learn from multiple datasets

simultaneously (Stanley et al., 2021). Modern AI/ML

algorithms may provide a viable data-driven solution to

operate in low-data regimes. Moreover, AI/ML models for

drug discovery can perform tasks beyond bioactivity

prediction, including a broad set of techniques to capture

complex ‘omics’ profiles, the design of retrosynthesis

pathways, hit-to-lead optimization through generative

models, among many others (Schneider et al., 2020).

In principle, AI/ML approaches to drug discovery could be

applied to any disease area, ranging from non-communicable

diseases such as cancer and Alzheimer’s to communicable

diseases such as viral and bacterial infections. To this end,

access to biological and chemical data is essential (Gupta

et al., 2021). Features like structural properties, gene

expression levels and/or gene sequencing, subcellular locations
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and network topological features can be used to identify or

predict drug targets (Hu et al., 2019) as well as estimate

factors like toxicity, solubility, selectivity, and kinetics (Brown,

2020). At the moment, the majority of AI/ML tools available to

the research community have been trained on historical (public)

data collected from large chemical and bioactivity databases, as

well as ‘omics’ resources and biomedical knowledge bases.

Therefore, the availability and performance of AI/ML models

are biased, to a great extent, towards disease areas that have

traditionally received more attention and for which richer

datasets are consequently available. Indeed, infectious disease

research is hampered by the lack of validated targets, poor

molecular characterization of the pathogens and scarcity of

large screening datasets (De Rycker et al., 2018).

The amount of available data for a particular disease area is

tightly bound to research investment. The intrinsic cost and risk

of investment in drug discovery have caused pharmaceutical

companies and research funding agencies to focus on diseases for

which incentives are high, i.e. non-communicable diseases that

affect the Global North or High-Income Countries (HIC).

Currently, only 15% of the drugs in development are targeting

infectious diseases (WHO, 2022), effectively neglecting the needs

of Low and Lower Middle-Income Countries (LMIC), which

carry most of the world’s communicable disease burden. For

example, as of 2016, approved antiviral drugs targeted only about

10 of the over 200 viruses known to infect humans (de Clercq and

Li 2016), with several challenges hampering the antiviral drug

discovery pipeline, including not only lack of funding but also

lack of knowledge on viral biology (Adamson et al., 2021).

Likewise, there is a need for novel antibacterial and antifungal

therapies (Perfect, 2017; De Rycker et al., 2018). Many LMIC

governments are unable to prioritize investment in scientific

innovation, with most countries dedicating less than 0.5% of their

domestic gross product to research and development activities

(UNESCO, 2020). Arguably, AI/ML methods can have the

greatest impact in settings where the cost and time to conduct

effective experiments remain prohibitive. Paradoxically, though,

these methods are not being developed in these settings precisely

because pre-existing datasets and incentives are almost

nonexistent. In addition, the shortage of skills and training in

data science, computer science, chemoinformatics and

bioinformatics in LMIC further hampers the development of

AI/ML methods in low-resourced countries. As a result, the

research inequality that characterizes drug discovery (i.e. greater

investment in non-communicable diseases that affect the Global

North and poor investment in communicable diseases that affect

the Global South) extends to AI/ML research.

In this review article, we discuss existing and potential

attempts to reverse these trends with a focus on antiviral drug

discovery on the African continent. In particular, we discuss

available data sources and their limitations while emphasizing

existing African natural products databases, an untapped

resource of novel chemical structures. In addition, we describe

new models for data sharing and highlight a set of AI/ML-based

initiatives to facilitate access to computational tools worldwide.

Finally, we present an emerging initiative for a leading drug

discovery center based in Central Africa that will capitalize on

such computational tools to provide cost-effective drugs against

infectious and communicable diseases.

Available data for antiviral drug
discovery

Availability of good quality, task-specific data is perhaps the

most important requirement for successful AI/ML modeling.

Applied antiviral drug discovery involves knowledge of viral

protein targets and their ligands, as well as phenotypic

response measurements in infected cells. Knowledge of human

targets may also be relevant, especially for host-directed therapies

and host-pathogen interaction disruption. Generally, publicly

available databases of small molecules and their bioactivities and

human targets (ChEMBL (Mendez et al., 2019), PubChem (Kim

et al., 2022) and DrugBank (Wishart et al., 2018), among others)

provide starting points for experimental testing and AI/ML

model training. In the context of research performed in

LMIC, three specific regions of the chemical space are very

interesting: natural product (NP) databases (especially from

endemic plant and marine species) (Newman and Cragg,

2020; Ebob et al., 2021), known antiviral catalogs, and

approved/advanced experimental drug databases to be used in

drug repurposing (Duran-Frigola et al., 2017). Notably, Table 1

presents a summary of the most remarkable databases for NP-

based drug discovery, as well as antiviral-oriented databases. In

Table 2 we present a selection of drug databases, with potential

for drug repurposing, along with target resources.

As shown in Table 1, there is a growing number of open

databases that provide good starting points for antiviral drug

discovery, including a rich repertoire of natural products. For

example, many of these NPs have shown antiviral potency

against SARS-CoV-2 at concentrations less than 10 µM (Ebob

et al., 2021).

However, several challenges need to be addressed to

streamline these and other datasets in computational drug

discovery pipelines (Krallinger et al., 2015; Tetko et al., 2016).

First, data redundancy between the different available

databases may cause bias in the extraction of information

from the databases and subsequent analysis (Yonchev et al.,

2018). Second, poor quality metadata hampers the

interpretation of the available information (Williams et al.,

2012; Lamy et al., 2020), and lack of computer-readable

standard formats make information extraction difficult

(Bauer-Mehren et al., 2009). Finally, links to target- and

pathogen-centered databases are typically lacking, creating

a disconnect between chemistry-centered and biology-

centered resources.
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New models for data sharing

Despite ongoing efforts by the scientific community to collect

experimental data on putative anti-infective molecules, the

scarcity of publicly available data in diseases of interest such

as antivirals hinders the development of novel AI/ML tools. An

avenue to overcome this limitation is to leverage the knowledge

accumulated over the years by pharmaceutical companies. While

TABLE 1 Natural products and antivirals databases.

Database Description
of the database

Weblink References

AfroDB database A collection of NPs from African medicinal plants with
known bioactivities

http://african-compounds.org/
about/afrodb/

Ntie-Kang et al. (2013)

African Natural Database (ANPDB) A database of NPs from African medicinal plants and
other source species collected in Africa. The data also
includes biological activities from the literature

http://african-compounds.org/
anpdb/

Ntie-Kang et al. (2017);
Simoben et al. (2020)

AfroCancer NPs from African sources with anticancer properties http://african-compounds.org/
about/afrocancer/

Ntie-Kang et al. (2014a)

Afrotryp 3-D chemical structures from medicinal plants in Africa
with therapeutic properties against Trypanosoma species

http://african-compounds.org/
about/afrotryp/

Ibezim et al. (2017)

AfroMalariaDB Collection of antimalarial compounds from African NPs
identified from the literature

http://african-compounds.org/
about/afromalariadb/

Onguéné et al. (2014)

Antiviral Peptide Database (AVPdb) Experimentally validated peptides that target over
60 human viruses

http://crdd.osdd.net/servers/
avpdb

Qureshi et al. (2014)

Benzylisoquinoline Alkaloid Database (BIAdb) Alkaloids as a source of therapeutic agents https://webs.iiitd.edu.in/
raghava/biadb/

Singla et al. (2010)

Collection of Open Natural Products
(COCONUT)

An open access database containing more than
411,000 NPs

https://coconut.
naturalproducts.net/

Sorokina et al. (2021)

Collective Molecular Activities of Useful Plants
(CMAUP) database

Summarises the biological activities of traditional
medicinal plants worldwide. Includes metadata on human
target proteins and disease indications

http://bidd.group/CMAUP/ Zeng et al. (2019)

DrugVirus.info Database of experimentally tested Broad Spectrum
Antivirals

https://drugvirus.info/ Ianevski et al. (2022)

naturaL prOducTs occUrrence databaSe
(LOTUS) online

An open source project for Natural Products (NPs)
storage, search and analysis

https://lotus.
naturalproducts.net/

Rutz et al. (2021); Rutz
et al. (2022)

Naturally Occurring Plant-based Anti-cancer
Compound-Activity-Target database (NPACT)

Compounds isolated frommedicinal plants that have been
reported to have anti-cancer activities via either in vitro or
in vivo testing

http://crdd.osdd.net/raghava/
npact/

Mangal et al. (2013)

Natural Product Activity and Specie Source
(NPASS) database

Contains curated NPs, specie sources, and their respective
biological activities with their targets

http://bidd.group/NPASS/ Zeng et al. (2018)

Nuclei of Bioassays, Ecophysiology and
Biosynthesis of Natural Products Database
(NuBBEDB)

A database covering chemical and biological information
from Brazilian biodiversity

https://nubbe.iq.unesp.br/
portal/nubbe-search.html

Pilon et al. (2017)

Pan-African Natural Product Library
(p-ANAPL)

Compounds isolated frommedicinal plants in Africa, with
samples available for testing

http://african-compounds.org/
about/p-anapl/

Ntie-Kang et al. (2014b)

SistematX A natural products database, highlighting the locations of
species from which compounds are isolated

https://sistematx.ufpb.br/ Scotti et al. (2018); Costa
et al. (2021)

South African Natural Compounds Database
(SANCDB)

Isolated compounds from flora and marine organisms
found in South Africa

https://sancdb.rubi.ru.ac.za/ Diallo et al. (2021)

Streptome Database (StreptomeDB) NPs and mutasynthesized NPs from streptomycetes
species

http://www.pharmaceutical-
bioinformatics.org/streptomedb

Moumbock et al. (2021)

SuperNatural II A large collection of NPs from diverse sources http://bioinformatics.charite.de/
supernatural

Banerjee et al. (2015)

Traditional Chinese Medicine Integrated
Database (TCMID)

A repertoire of compounds from Chinese medicinal plants http://bidd.group/TCMID/ Huang et al. (2018)

Traditional Chinese medicine (TCM)
Database@Taiwan

3D structures of isolated compounds from Chinese
traditional plants, including molecular docking results

http://tcm.cmu.edu.tw/about01.
php?menuid=1

Chen, (2011)

ZINC library antiviral Open access database of NP compounds available in the
market for in silico testing

https://zinc15.docking.org/ Sterling and Irwin, (2015)

Small Molecule Antiviral Compound Collection
(SMACC)

Curated database of potential broad-spectrum antivirals https://smacc.mml.unc.edu/ Martin et al. (2022)
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the discovery of anti-infectives may not have been a top priority

for many companies, it is clear that they still treasure the majority

of data in this domain, sometimes resulting in remarkable

initiatives like the GSK Tres Cantos Open Lab or Drugs for

Neglected Diseases Initiative (DNDi). Although pharmaceutical

companies often publish their results in scientific publications,

they only share a small subset of the molecules screened to,

understandably, protect the industry’s intellectual property (IP).

This trend is particularly acute in primary screenings, where

hundreds of thousands of compounds may have been tested.

Incomplete disclosure of these experiments hampers the full

realization of data-driven drug discovery (Mervin et al., 2015).

Although large-scale open-source drug discovery initiatives exist

(Antonova-Koch et al., 2018), these are comparatively rare and

may still find IP constraints when private stakeholders are

involved.

AI/ML offers a unique opportunity to exploit drug screening

results without disclosing the identity of proprietary chemical

libraries. The so-called privacy-preserving AI/ML approach

proposes that IP-sensitive data can be effectively made

available in the form of AI/ML models, which retain the

essential properties of the training data but do not reveal the

identity of the compounds used to train the model. A

foundational example of this approach is the MELLODDY

Consortium (Burki, 2019), orchestrating data sharing between

10 pharmaceutical companies, thereby compiling the largest

collection of compounds and bioactivity endpoints in an IP-

protected setting. A key feature of the MELLODDY approach is

the decentralization of data, followed by a training scheme of

predictive AI/ML models that prevents exposure to proprietary

information. AI/ML models developed by the MELLODDY

consortium are likely to have a significant impact on the

academic scientific community since they capture a

formidable amount of data previously owned by

pharmaceutical companies (https://www.melloddy.eu/). Similar

consortia have been devised in the medical informatics field, with

the goal to improve diagnostics AI/ML models by accessing large

patient databases while maintaining confidentiality (Warnat-

Herresthal et al., 2021). In this line, tools for AI/ML model

encryption are flourishing, offering a data-sharing toolbox for

data scientists operating at the intersection between private and

public stakeholders (Graepel et al., 2013). Researchers based in

the LMIC are expected to be amongst the greatest beneficiaries of

new data sharing models since they will gain access to data

collected from external sources that would otherwise be

inaccessible or unaffordable.

Data integration tools for drug
discovery

In addition to greater availability of data to cover the gap in

antiviral drug discovery, there is the need to design data

integration tools that are able to yield amenable inputs for AI/

MLmodeling. In the context of non-communicable diseases, and

especially in the field of anticancer drug discovery, a plethora of

data integration protocols have been suggested, with applications

in drug repurposing (Luo et al., 2021), virtual phenotypic

screening (Sharifi-Noghabi et al., 2021), and target discovery

(Rodrigues and Bernardes, 2020), among others. The underlying

principle behind all these data integration methods is that data

collected frommultiple sources can be unified and harmonised in

TABLE 2 Selected gene centric databases for integrative knowledge graphs, with a focus on drugs and drug target interactions.

Target database Description Link References

AlphaFold Protein Structure
Database

Open access database which predicts protein structures based on the state-of-
the-art AI system. These proteins can be viral, bacterial, etc

https://alphafold.ebi.ac.uk/ Jumper et al. (2021); Varadi
et al. (2022)

Arrayexpress Open access database with data for functional genomics experiments and
experimental data on viral response or activity in humans

https://www.ebi.ac.uk/
arrayexpress/

Kawabe and Kamihira,
(2022)

Binding database Contains quantised binding affinities primarily between proteins and drug-
like molecules

https://www.bindingdb.org/
bind/index.jsp

Gilson et al. (2016)

BindingMOAD Compendium of the highest quality ligand-protein binding all derived
from PDB

https://bindingmoad.org/ Smith et al. (2019); Ahmed
et al. (2015)

DrugBank Has 3D structures of drugs and targets with related information https://www.drugbank.ca/ Wishart et al. (2018)

Gene Expression
Omnibus (GEO)

Open access database providing functional genomics data, gene sequencing
data for viral expression and their availability

https://www.ncbi.nlm.nih.
gov/geo/

Barrett et al. (2012)

HIV drug-resistance
database (HIVDR)

HIV-resistance data including genotype-phenotype associations and clinical
outcomes

https://hivdb.stanford.
edu/DR/

Shafer (2006)

PDBbind database Quantised binding affinity data for biomolecular complexes found in PDB. http://www.pdbbind.org.cn/ Su et al. (2018)

Protein Data Bank (PDB) Comprehensive compendium of 3D structures of proteins, nucleic acids, and
complex assemblies from enzymes and health disorders that facilitates
scientific research

https://www.rcsb.org/ Burley et al. (2022)

Sequence Read
Archive (SRA)

Largest repository of sequencing data pertaining to all biological fields https://www.ncbi.nlm.nih.
gov/sra

Katz et al. (2022)
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a single resource that can serve as relevant input data for AI/ML

modeling. Examples of the necessary sources to build integrative

tools include gene centric databases, disease annotation databases

and, especially, chemical-protein interaction data (Table 2).

Today, a favorite structure for a unified resource is a so-called

biomedical knowledge graph. Early examples of comprehensive

knowledge graphs include HetioNet (Himmelstein et al., 2017)

and the Harmonizome (Rouillard et al., 2016), where data related

to genes/proteins, small molecules, cells, diseases, etc. Is

centralized in a large network containing thousands of nodes

and millions of edges representing ligand-protein interactions,

disease-gene associations, gene expression profiles, etc. Modern

versions of these biomedical knowledge graphs may contain up

to about a hundred million edges (Santos et al., 2022), and are

therefore an extraordinarily rich starting point for AI/ML

modeling in many disease areas. Moreover, several resources

greatly simplify the adaptation of the data contained within these

knowledge graphs into vectorial numerical representations that

can be plugged to conventional AI/ML algorithms. For example,

the Bioteque contains pre-calculated embeddings (i.e. ready-to-

use vectorial representations) for thousands of biological entities,

capturing the information contained within a gigantic knowledge

graph (Fernandez-Torras et al., 2022b). Two years ago, and with

a focus on small molecules, the Chemical Checker (Duran-

Frigola et al., 2020) was published, providing an

unprecedented amount of standardized and intensively

processed data, in the form of numerical vectors, for almost

one million bioactive compounds found in the public domain.

Unfortunately, though, all the major integrative knowledge

graphs are acutely human-centric, meaning they mostly contain

information about human genes and cells. Systematic integration

of pathogen genomes and biology is currently lacking. As a result,

infectious disease biology is difficult to capture with existing

resources. Although several attempts have been made by

mapping host-pathogen molecular interactions (most notably

in the context of the COVID-19 pandemic) (Gordon et al., 2020),

the available data is still far from commensurating with non-

communicable disease data, especially cancer data for which a

formidable number of genomic and phenotypic screening

experiments have been performed. From a methodological

standpoint, exploitation of a knowledge graph containing viral

or bacterial data would not differ greatly from the already-

available approaches suggested by resources like the Bioteque,

since graph embedding techniques are relatively domain-

agnostic and can be applied to a broad range of data types

(Cai et al., 2018). The main challenge lies in the incorporation of

pathogen data to the knowledge graph. A better characterisation

of pathogen disease biology, including gene functions, metabolic

pathways and signaling networks, and a more detailed

description of the mechanisms of host-pathogen interactions,

are key to achieving a biomedical knowledge graph that

represents non-communicable and communicable diseases

with equal depth and scope.

Ready-to-use AI/ML

Despite the growing number of AI/ML methods for drug

discovery, many of them are either behind a paywall or not

accessible in a user-friendly manner. With limited funding and

access to data science expertise, this poses a real barrier to

adoption by LMIC researchers. In recent years, the concept of

‘model hubs’ has become popular thanks to initiatives such as

HuggingFace (Wolf et al., 2020), PyTorch Hub (https://pytorch.

org/hub/) or TensorFlow Hub (https://www.tensorflow.org/

hub). In short, these platforms provide access to a wealth of

ready-to-use AI/ML models, which are transforming the fields of

natural language processing and image analysis. The major

stakeholders in the AI/ML industry (including tech

corporations, academic groups and data science centers) are

actively contributing their models to these hubs. As a result,

users can run state-of-the-art AI/MLmodels with minimal effort,

which has facilitated the inclusion of AI/ML assets into a broad

range of disciplines and real-world applications. Unfortunately,

though, the scope of these resources is generalist, with poor

representation of computational biology and chemistry in their

catalogs. In the biomedical domain, a few open-source initiatives,

such as Kipoi (Avsec et al., 2019) and ModelHub.ai (Hosny et al.,

2019) aim at disseminating pre-trained AI/ML models specific to

certain areas such as genomics or medical image analysis,

although a reference resource including a significant amount

of drug discovery AI/ML models is still lacking.

In addition to providing out-of-the-box predictions for

experimental researchers through model hubs, new resources

containing ready-made datasets for AI/ML modeling in drug

discovery are an excellent starting point for modeling endeavors.

Particularly relevant is the recently published Therapeutics Data

Commons (TDC) (Huang et al., 2021), a curated compendium of

datasets covering the major stages of drug discovery. TDC works

with the concept of leaderboards, so researchers can test their AI/

ML algorithms and benchmark them. Other benchmarking

includes MoleculeNet (Wu et al., 2018), MOSES (Polykovskiy

et al., 2020), some of the Kaggle (https://kaggle.com)

competitions, and the DREAM challenges (https://

dreamchallenges.org). Recently, open-source drug discovery

initiatives such as Open Source Malaria (Williamson et al.,

2016; Tse et al.,. 2021) and Open-Source Antibiotics (https://

github.com/opensourceantibiotics) have organized AI/ML-

oriented challenges as part of their experimental cycle,

offering a truly collaborative setting for data scientists and

experimentalists.

Finally, the AI/ML community has invested significant

efforts towards simplifying the model training procedure,

facilitating the creation of competent AI/ML models without

the need for advanced data science skills. Overall, automated AI/

ML (AutoML) methods like AutoGluon (Erikson et al., 2020),

AutoSklearn (Freuer et al., 2022), AutoKeras (Jin et al., 2019),

FLAML (Wang et al., 2021), and others, are likely to play a key
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role in the adoption of AI/MLmodeling capacity, freeing the user

from algorithmic and hyperparameter search and optimization.

In low-resourced settings where data science skills are typically

scarce, AutoML functionalities can offer out-of-the-box solutions

with competitive performance. A few attempts have been made

to provide AutoML functionality for drug discovery (Shen et al.,

2021), although the bulk of the existing AI/ML research in the

field is still the result of highly specialized work. Greater

availability of such AutoML tools is necessary to ensure the

incorporation of AI/ML promptly in the drug discovery cycle,

without the need to externalize the model creation step.

Biological assays for generating AI/ML
models and functional validation of
AI/ML predictions

The flip side of drug development in LMICs includes the

challenge of functionally validating predictions generated in

virtual settings. While AI/ML-based methods can both reduce

and prioritize the number of leads that need to be validated,

assays that can incorporate functional testing with high-

throughput remain necessary. NP and drug repurposing

collections, as exemplified in Tables 1 and 2, as well as

‘pathogen boxes’ distributed by initiatives like Medicines for

Malaria Venture (MMV; https://mmv.org) may provide the

necessary chemical matter to perform these experiments in

LMICs, coupled with the development at a relatively limited

throughput of chemical series in local synthetic chemistry

laboratories.

To also help address these challenges as exemplified in

antiviral therapeutics, our group has developed new and

leveraged existing assays which can be transferred to

laboratories in LMIC for independent research. For example,

publicly available cell lines such as the J-Lat T cells (Jordan et al.,

2003) which contain an inducible but non-infectious HIV clone

encoding a GFP reporter, can be probed to monitor effects of

chemical leads on HIV latency reversal or suppression of HIV

provirus transcription (Tietjen et al., 2018; Divsalar et al., 2020).

If local propagation of live virus is available, infection-based

assays that include use of publicly available, lab-adapted subtype

B (Adachi et al., 1986) and subtype C (Ndung’u et al., 2000) HIV

strains become possible in replication-competent cell lines or

locally-acquired peripheral blood mononuclear cells (Leteane

et al., 2012; Tietjen et al., 2015). If expression of a protein

target of interest in trans affects cell viability, another

attractive option includes the yeast growth restoration assay

(Balgi and Roberge, 2009), where a multicopy DNA plasmid

encoding the protein target of interest is placed under the control

of an inducible GAL1 promoter. When expressed in yeast in the

presence of galactose, expression of this protein target then

inhibits yeast growth over time, as measured by culture

turbidity, which in turn can be restored by co-incubation with

chemical leads that inhibit the target. This approach, for example,

allowed us to validate new inhibitors of the influenza A

M2 viroporin that were initially found by virtual screening

approaches (Duncan et al., 2020). If disruption of protein-

protein interactions is desired, another emerging but attractive

option is use of AlphaScreen or homogenous time resolved

fluorescence (HTRF)-based methods where tagged proteins of

interest are bound to respective donor and acceptor beads. When

a binding event occurs in vitro, luminescence or fluorescence is

produced, which in turn can be inhibited by binding inhibitors

(Yasgar et al., 2016). Such approaches were used by us, for

example, to identify natural products that block interactions

of the SARS-CoV-2 spike glycoprotein with its host

ACE2 entry receptor (Tietjen et al., 2021; Ivernizzi et al.,

2022). Chemical leads can also be readily assessed for effects

on cell viability or toxicity using colorimetric-based reagents like

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) (Leteane et al., 2012). If viral infection results in

extensive cytopathic effects and reduced cell viability in vitro,

these reagents can also be used to monitor viral infection and

restoration of cell viability by viral inhibitors (Tietjen et al., 2021).

Assays like these are also amenable to being scaled up to 96-well

format for improved screening throughput across NP or other

chemical libraries as well as hits prioritized by AI/ML methods.

While these assays do require a level of cell culture and molecular

FIGURE 1
Schematic representation of the three main areas being
developed at the Center for Drug Discovery at the University of
Buea (UB-CeDD), Cameroon, to achieve a sustainable antiviral
drug discovery pipeline in Central Africa.
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biology infrastructure, luminescence or fluorescence plate

readers, and ideally access to flow cytometry, costs for these

types of equipment are reducing quickly. Universities with

synthetic or medicinal chemistry expertise will also be at an

advantage to develop their chemical leads even with relatively

straightforward synthesis strategies.

However, challenges in many LMIC include ensuring that

proper scientific expertise for AI/ML methods or biological

assays is perpetuated in local universities and that required

infrastructure is optimally maintained. One potential option

toward addressing these challenges includes introducing a

series of recurring, intensive, and hands-on workforce

development laboratory training and instruction sessions,

akin to the Wistar Institute’s Biomedical Technology

Training Program (https://wistar.org/education-training/

biomedical-technician-training-program), designed to train

promising students from underserved or related

communities to become research technicians that can

readily meet the employment needs of local academic

institutions and health science industries. Similar programs

can be performed in LMIC once adapted to train students in

computational techniques. Alternatively, equipment

technicians from HIC can be involved with these programs

to not only train students on instrument use and maintenance

but also repair and certify local equipment. This change of

paradigm in scientific collaborations between HIC and LMIC,

where committed knowledge sharing, and capacity building

are embedded throughout the project design is essential to

sustainably and permanently increase meaningful research

capacity in LMIC. This commitment to develop capacity in

LMIC is distinct from “helicopter research,” where scientists

from HIC liaise with collaborators in LMIC to merely

coordinate data collection or extract local resources.

Building local capacity in AI/ML for
antiviral drug discovery

Consistent with objectives discussed above, the University of

Buea in Cameroon is initiating a Center for Drug Discovery (UB-

CeDD) focused on multiple drug discovery pipelines including

the discovery of novel plant-based antivirals (Figure 1), among

others. The establishment of an integrative center for drug

discovery in Central Africa is key to developing the health

research and development in the region, akin to what has

been successfully demonstrated by the H3D Centre in

Southern Africa (Winks et al., 2022). The overall goal of the

UB-CeDD is to discover novel antiviral compounds based on NP

core structures. Initial antiviral targets of interest include

proteins from human immunodeficiency virus (HIV) and

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), although other targets are intended to be pursued. The UB-

CeDDwill combine and implement a virtual screening procedure

that couples AI/ML models and physics-based methods like

molecular docking and molecular dynamics simulations.

Primary hits will be identified by machine learning, and these

will then be docked, with the docked poses scored using several

protein-ligand scoring algorithms. The goal is to develop a cloud-

based virtual screening platform that permits compounds to be

screened computationally from the African Natural Products

Database and others (ANPDB, Ntie-Kang et al., 2017; Simoben

et al., 2020). To develop efficient AI/ML models, we will generate

a well-curated dataset of compounds that have been tested in

antiviral assays within the same laboratory conditions. Since such

data are currently scarce, we are screening several hundred

natural and synthesized compounds from collaborative

partner laboratories through the Nature-inspired Discovery of

Novel Antivirals (NiDNA) network. The compounds are being

TABLE 3 A short and illustrative list of readily available online AI/ML, covering several stages of the drug discovery process. Please note that the list is
not comprehensive. Check resources like the Ersilia Model Hub (https://ersilia.io/model-hub) for a larger compendium.

Model name Description Source Citation

Grover Pre-.Tained data-driven desalptor or small molecules https://github.com/tencent-ailab/groverr Rong et al. (2020)

Signaturizer Bloactivity polies or anal molecules based on the Chemical Checker https://bioactivitysignatures.org Duran-Fngola et al.
(2020)

ChemProp Antibiotic activity prediction against e.g. E.coli and SARS-CoV http://chemprop.csail.mit.edu/ Stokes et al. (2020)

SuperPred Online target prediction against >600 human proteins. Predictions
are based on simple logistic regression modes

https://prediction.charite.de/subpages/
target_prediction.php

Nickel et al. (2014)

ADMETLa0-2 Online suite of dozens of ADME-Tox modes https://admetmesh.scbdd.com/service/
screening/index

Xiong et al. (2021)

SSL-GCN-Tox21 Toxicity prediction across the Tox21 panel Min sem-supervised learning https://github.com/chen709847237/
SSL-GCN

Chen et al. (2021)

RA-Score Retrosynthetic accessibility score based on computer-aided retrosynthesis
panning

https://github.com/reymond-group/RAscore Thakkar et al. (2021)

ETH MolLib Generative models for mdecular design adapted to low-data regimes https://github.com/ETHmodlab/virtual_
libraries

Moret et al. (2020)
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screened, for example, for their inhibitory capacities against vital

SARS-CoV-2 drug targets like the main protease and the binding

of the viral spike to the angiotensin-converting enzyme 2 (ACE2)

and for their potential to reverse latency in HIV-infected cells.

Importantly, these assays are transferable to the LMIC

laboratories involved in the collaboration. The more

compounds are tested in the assays, the more robust will the

generated AI/ML models be. Within an LMIC like Cameroon,

the generated models will go a long way to train graduate

students and postdoctoral researchers on how to implement

AI/ML in an academic setting. This will speed up the process

toward finding antiviral lead compounds contained in plant

biodata and synthesized leads based on pharmacophores

contained in NPs and eventually guide the synthesis of novel

analogues with high potency and devoid of potential toxicity

effects. Some web tools which could potentially be used for

developing ML models have been summarized in Table 3.

Conclusion

In this review article, we have discussed the current

opportunities to apply AI/ML technologies in underserved

research settings. We have focused on the discovery of

antiviral drugs, an underserved therapeutic area with great

importance in LMIC. To build ML models and use AI to

predict biological activities of drug candidates, there is need

for data. Such data would include chemical structures with

known biological activities (often included in molecule

databases). Such data could be included in a broad array of

ML models, to make predictions. This is the case with data

available in open access platforms/models. Databases of

known drug targets for NPs have also been included in this

survey. There are also ready-to-use models and web-based

tools that only require the user to populate the model with

their own data (generated from in-house chemical libraries) or

through partnerships with pharmaceutical companies. In this

review, we have been focused on compound libraries and ML

tools that could be useful to generate predictive tools for

antiviral lead compound discovery within economically

limited settings like academic institutions in LMICs. We

argue that AI/ML can offer a cost-effective solution,

although better access to viral assays data and better data

integration protocols will be needed for effective adoption of

AI/ML tools. We also describe some antiviral assays we plan to

conduct and are already conducting in partner laboratories to

include in the generation of ML predictions. We propose that

a fluent research cycle involving data collection,

computational prediction and experimental testing can be

implemented in-country, and we propose the emerging

CeDD in Buea as an exemplary case for Western and

Central Africa.
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