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Over the last decade the next-generation sequencing and ‘omics techniques

have become indispensable tools for medicine and drug discovery. These

techniques have led to an explosion of publicly available data that often goes

under-utilized due to the lack of bioinformatic expertise and tools to analyze

that volume of data. Here, we demonstrate the power of applying two novel

computational platforms, the NCI’s CellMiner Cross Database and Lantern

Pharma’s proprietary artificial intelligence (AI) and machine learning (ML)

RADR
®
platform, to identify biological insights and potentially new target

indications for the acylfulvene derivative drugs LP-100 (Irofulven) and LP-

184. Analysis of multi-omics data of both drugs within CellMinerCDB

generated discoveries into their mechanism of action, gene sets uniquely

enriched to each drug, and how these drugs differed from existing DNA

alkylating agents. Data from CellMinerCDB suggested that LP-184 and LP-

100 were predicted to be effective in cancers with chromatin remodeling

deficiencies, like the ultra-rare and fatal childhood cancer Atypical Teratoid

Rhabdoid Tumors (ATRT). Lantern’s AI and ML RADR
®
platform was then

utilized to build a model to test, in silico, if LP-184 would be efficacious in

ATRT patients. In silico, RADR
®
aided in predicting that, indeed, ATRT would

be sensitive to LP-184, which was then validated in vitro and in vivo. Applying

computational tools and AI, like CellMinerCDB and RADR
®
, are novel and

efficient translational approaches to drug discovery for rare cancers

like ATRT.
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Introduction

The National Cancer Institute’s (NCI) NCI-60 human

tumor cell line screens have been used in early-stage drug

development since 1990 and have allowed researchers to

identify, characterize, and assess the anti-tumor activities of

drug compounds in 60 tumor cell lines across nine cancer

types (Shoemaker, 2006). Using integrated metabolomic and

Next Generation Sequencing technologies, the NCI-60 cell

lines have been extensively characterized under basal

conditions as well as in response to over 20,000 drug

compounds (Rajapakse et al., 2018). The CellMiner Cross

Database (Luna et al., 2020) was developed by the NCI to

facilitate the exploration and analysis of the drug response

data from the NCI-60 cell line screens. The online

CellMinerCDB portal can map integrated drug responses

and processed multi-omic data to each of the NCI-60 cell

lines (Reinhold et al., 2017; Reinhold et al., 2019; Luna et al.,

2020) including levels of RNA expression, proteomics, DNA

methylation, genetic mutations, copy number variations,

metabolomics, and microRNAs. Through the

CellMinerCDB web portal, researchers can also conduct

analysis such as drug-molecular feature correlation, drug

activity comparison, and biomarker identification. These

tools have facilitated a better understanding of existing

and newly developed compounds with preclinical data by

benchmarking and in-depth comparisons of drug

response (Reinhold et al., 2017; Reinhold et al., 2019; Luna

et al., 2020).

Although the NCI-60 screen has been critical for

understanding the underlying biology and drug response of

major cancer types, it does not contain cancer cell lines for all

cancer types including rare and ultra-rare cancers. There is an

urgent and unmet clinical need for therapies for these cancers

as they often lack efficacious standard of care treatments and

research funding to study them. Computational tools-based

drug discovery could potentially accelerate drug development

for rare diseases therapies by providing insights into a drug,

Mechanism of Action (MoA), correlated biomarkers, or gene

expression patterns. These insights could be generated from

data from CellMinerCDB and may be generalized beyond the

NCI-60 cell lines. However, additional computational tools are

needed to transform cell line-based discoveries to patient-

centered insights (Warren et al., 2021).

Lantern Pharma’s Response Algorithm for Drug Positioning

and Rescue (RADR®) artificial intelligence (AI) and machine

learning (ML) platform (https://www.lanternpharma.com/ai-

platform) was developed to integrate data from pre-clinical

and clinical data sources, like CellMinerCDB (Rajapakse et al.,

2018), the Cancer Genome Atlas (TCGA) (Tomczak et al., 2015),

the Catalogue of Somatic Mutations in Cancer (COSMIC) (Tate

et al., 2018), Gene Omnibus (GEO) (Edgar et al., 2002; Barrett

et al., 2013), patient data, and publications to generate insights

for preclinical and clinical research. RADR® harbors robust drug
response ML models derived from drug response and large-scale

genomic data. RADR® ML model development utilizes feature

reduction steps to reduce the 20,000 + features often found in

“omic” data to a small number of features and identifies the best

performing algorithmwith these features by testing dozens ofML

algorithm implementations. The reduced number of features of

an ML model can serve as a drug response “gene signature,”

which can function as a biomarker panel. Using biomarkers/

MoA identified from CellMinerCDB and drug response models

built by RADR® machine learning pipelines, the RADR® platform
can predict patient groups that are more likely to respond to the

compound of interest. By associating predicted responsive

patients with their disease types, querying biomarkers, and/or

compound MoA, RADR® can be leveraged to uncover new

indications from under-studied cancers and identify

populations of patients where certain treatment may be more

effective.

Here, we investigated Lantern Pharma’s drug candidates

LP-184 and LP-100 (Irofulven) as case studies to explore how

CellMinerCDB and RADR® could be leveraged together to

identify new MoA and discover new drug indications. LP-184,

the negative stereoisomer of N-hydroxy-N-

(methylacylfulvene) urea, and LP-100 (6-

hydroxymethylacylfulvene) belong to the acylfulvene class

of anti-cancer drug molecules. The chemical structures of

both drugs are given in Supplementary Figure S1.

Acylfulvenes are known to be converted to their active

forms in vivo by the NADPH-dependent oxidoreductase

Prostaglandin Reductase 1 (PTGR1) or by leukotriene

B4 12-hydroxydehydrogenase (LTB4DH) (Dick et al., 2004).

Once activated acylfulvenes can induce cell arrest or apoptosis

through nucleotide or protein alkylation. Cells that

overexpress PTGR1, in vitro or in vivo, have been

previously shown to be significantly more sensitive to

acylfulvene treatment compared to controls (Yu et al.,

2012). Additionally, upregulation of PTGR1 expression is

known to be associated with poor cancer prognosis in

several cancer types including pancreatic, head and neck,

lung, liver, gastric and triple-negative breast cancers (Wang

et al., 2021), indicating that these cancer types are likely more

susceptible to LP-184 or LP-100 treatment.

After activation by PTGR1, acylfulvenes can act as DNA

damaging agents by alkylating various cellular components,

including DNA, RNA, and proteins, with the most well-
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characterized action occurring through the N3 alkylation of

adenine and N3/N7 alkylation of guanine (Herzig et al., 1999;

Cai et al., 2009). Once alkylated, DNA monoadducts can be

formed which may stall DNA replication, RNA transcription,

and can cause cell-cycle arrest and apoptosis unless repaired by

the DNA Damage Repair (DDR) system (Woynarowski et al.,

1997; Koeppel et al., 2004; Wang et al., 2007). The DDR system is

important in maintaining genome stability in normal cells, but is

frequently impaired in certain cancer cells or cancer types (Chae

et al., 2016). There are at least five DNA repair pathways in the

DDR system including: transcription coupled-nucleotide

excision repair (TC-NER), homologous recombination repair

(HR), base excision repair (BER), mismatch repair (MMR),

and non-homologous end joining (NHEJ). One or multiple of

these pathways can be activated upon DNA damage and depend

on the type of DNA damage received and the cell cycle stage of

the cell (Chatterjee and Walker, 2017). Cancer cells with

impaired DDR can no longer repair damages caused by DNA

damaging agents, like LP-184 and LP-100, and can become more

sensitive to cancer therapies.

There are several types of alkylating agents which can vary

in mechanism of action (MoA) including, size of DNA adduct,

location of alkylation, and the cancer cells DDR to resolve the

alkylation, these differences suggest reasons for why one agent

outperforms another in specific indications (Kondo et al.,

2010). For example, cisplatin is one of the most effective

alkylating agents in treating solid tumors. It introduces

intrastrand crosslinks that can be repaired by NER and

MMR, (Basu and Krishnamurthy, 2010). Carmustine is

another alkylating agent commonly used in cancers related

to the nervous system. Carmustine causes both intrastrand

and interstrand crosslinks and has also been reported to be

synthetic lethal with cells lacking kinases such as MARK3

(Owusu et al., 2019). The activities of many alkylating agents

are correlated with the gene Schlafen-11 (SLFN-11), a

putative component of DNA damage response that induces

cell cycle arrest and apoptosis upon DNA damage (Zoppoli

et al., 2012). The small DNA lesions caused by LP-100 are

preferentially removed by Transcription-Coupled Nucleotide

Excision (TC-NER) pathways (Jaspers et al., 2002; Koeppel

et al., 2004). LP-100 is also known to cause double-strand

DNA breaks, which in turns activates the ATM-mediated cell

cycle arrest and HR repair pathways (Wang et al., 2004; Wang

et al., 2007; Wiltshire et al., 2007). The activity of LP-

184 has also been previously shown to be synthetic

lethal in cancer subtypes with HR deficiencies (Kulkarni

et al., 2021).

In the current study, we leveraged CellMinerCDB and

RADR® to understand and distinguish mechanisms of LP-184

and LP-100 response from other alkylating agents. The

CellMinerCDB platform has an abundant array of drug

response data that is associated with expression data in a cell

line panel. Here we utilized this data to characterize drug activity

patterns in association with gene expression through Gene Set

Enrichment Analysis (GSEA) using expression that is ranked by

correlation to LP-184 and other drugs. Distinguishing features of

acylfulvene response could lead to identification of indications

where the particular mechanisms of LP-184 and LP-100

alkylation will be highly efficacious. Indeed, these features

could also suggest favorable responses in rare indications that

are not present in the NCI-60 cell lines and would otherwise go

overlooked.

Materials and methods

CellMiner data were downloaded from CellMinerCDB

(Reinhold et al., 2019). We used the mRNA microarray

log2 expression, RNA-seq log2 FPKM + 1 transcript

expression, mutation summary, methylation levels and drug

response data for the NCI60. We matched the NCI60 cell line

names to the cell lines used in testing LP-184 IC50s, which was

used in a −log10 IC50 (Molar) form with analyses and ML

modeling. The entire workflow is given in Supplementary

Figure S2.

Correlation with PTGR1 and GSEA

We correlated the overall expression as well as individual

transcript expressions of PTGR1 to the cell line response to LP-

184, LP-100, Carmustine and Cisplatin using the Spearman

correlation coefficient.

To clarify the biological functions and pathways that

differentiate the response between the different drugs, we

used GSEA (Subramanian et al., 2005). Firstly, we

downloaded gene sets relating to various molecular and

biological pathways from the Molecular Signatures Database

(Liberzon et al., 2011; Liberzon et al., 2015). To that we added

several custom gene lists from the Laboratory of Molecular

Pharmacology. The LMP gene membership can be found in

the Supplementary Table S1.

Then we used the R package fgsea (Korotkevich et al., 2021)

to do the GSEA analysis for the ranked correlations for each drug.

We selected a minimum gene set size of 10 and a maximum of

319 (to accommodate one of the LMP gene sets) and did the

analysis with 1,00,000 permutations.

GSEA computes a Normalized Enrichment Score (NES),

which is a measure of the overall correlation of the genes

belonging to that gene set. A negative NES implies an overall

negative correlation of the genes in that gene set to the drug

response and vice versa for a positive NES. In addition, GSEA

also calculates a p-value and adjusted p-value for the observed

NES. The NES for the LMP gene sets were used to cluster the

drugs and gene sets that are similar to each other based on

Euclidean distance.
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Comparison of LP-184 and LP-100 with
other alkylating agents

We wanted to compare the NIC60 response pattern of LP-

184 and LP-100 with the other alkylating agents present on the

CellMinerCDB platform, in order to identify scenarios where

LP-184/LP-100 can be applied when other alkylating agents

fail. There are a total of 20 FDA approved alkylating agents in

the CellMinerCDB platform, with some duplicates (under

different NSC numbers). We averaged the drug’s response

patterns of the same drug belonging to different NSC numbers.

Using the response pattern, we identified the group of cell lines

that are resistant to a particular alkylating agent and asked if

those cell lines are especially sensitive to LP184/LP-100. For

each alkylating agent, we chose cell lines that have

z-score <0 as resistant and z-score >0 as sensitive. We used

the same criteria to split cell lines into sensitive and resistant to

LP-184 and LP-100. Then we used a Fisher Exact test to find

out if there is a statistically significant odds ratio less than one

between the two conditions.

Drug—drug correlation and
SLFN11 expression correlations

We use the CellMinerCDB portal to query the LP-100 and

LP-184 drugs individually against all the 23,765 drugs

available in the portal. Out of which, we only considered

the drugs having Clinical trial and FDA approved Clinical

status. We used the pattern comparison function from the

portal to find the correlation between IC50 values of the query

drug and IC50 of all the drugs from the portal individually.

Pattern comparison is an easy function that allows correlating

our query drug response to all the available data which include

expression, methylation, mutation, Copy Number Variation,

Drug activity (IC50) etc.

We analyzed the correlation of LP-184 and other alkylating

agents to SLFN11 under the condition of abundant

PTGR1 mRNA. We selected cell lines that had an above

average expression of PTGR1 (Z-score > 0). For those cell

lines we looked at the correlation between SLFN11 expression

and drug response.

LP-184 response machine learning model

We used the RADR® platform to train the machine

learning model for prediction of standardized z-score

of −log10 Molar IC50 values for various cell lines

(Supplementary Table S2). We first used iterative feature

reduction of RNA-seq expression values. Gene expression

values included publicly available CCLE data and

NCI60 expression values (downloaded from CellMiner),

and proprietary data on ex vivo PDX-derived 3D models

available through the Lumin Bioinformatics Software Suite

of Champions Oncology. Initial gene sets were filtered to

remove the zero-variance genes and only to include genes

available from each data source. Random forest algorithms

from the randomForest R package (Breiman, 2001),

implemented through the caret R package [installed via

CRAN, (Kuhn, 2008)], with cross validation, were tuned by

random search and trained to select the best performing model

on the training dataset. Feature reduction used the top-ranked

feature importance scores using the varImp() function. To

reduce features, we implemented an iterative feature reduction

process where initial model training with all available genes

was used and the features estimated to be important were

taken to the next step. Features were reduced 4 times before

reaching a set of 10 genes, which are shown in Supplementary

Figure S3. Multiple algorithms were evaluated for their

performance, including glmnet, random forest, xgboost,

support vector machine, and neural networks.

After feature selection, various different algorithms were

tested with the final 10 features and compared for

performance in a blind validation test set which had been

held out from prior steps. Sample-wise normalization of

expression values were performed prior to model training.

With the 10-gene expression values of each sample, values

were normalized by applying the formula [x-min(x)]/

[max(x) − min(x)] to each sample. Trained models were

compared for performance in Root Mean Squared Error

(RMSE), a common ML metric for evaluating regression

models, and accuracy. Accuracy was defined using a

classification framework, where prediction of a sample as

either above or below the average IC50 of the training set were

considered classified as “sensitive” and those below as “resistant,”

with accuracy representing the total of correctly

predicted categories divided by the total number of samples.

RMSE was used to select the best hyperparameters during

model training, and different combinations of the mtry and

ntree parameters were evaluated. The cforest (conditional

inference forest) model demonstrated the best performance,

with an RMSE of 0.426 [−log10 IC50 (M)], and an accuracy

of 0.714.

To use the cforest (Hothorn et al., 2006; Strobl et al., 2007;

Strobl et al., 2008) model to make predictions, RNA expression

values for the 10 genes were subsetted into an individual

data frame and sample-wise normalization (such that the

max value was 1.0 and minimum value was 0.0, as

described above) was performed. ATRT clinical sample

RNA-seq was downloaded after accessing their

corresponding GSE identifiers at the GEO website (https://

www.ncbi.nlm.nih.gov/geo/). Expression values were

converted to FPKM log2 + 1 values if necessary, then were

normalized before predictions using the cforest model

were made.
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Validation case study—ATRT

CHLA-06 cell culture, animal housing, and drug delivery,

was all performed by Rincon Bioscience (SLC, UT). 4-week old

NOD.SCIDmice were purchased from Jackson Laboratories (Bar

Harbor, ME). Mice were fed Teklad irradiated (sterilized) mouse

diet and bedded with Teklad irradiated (sterilized) corncob

bedding from Envigo (Indianapolis, IN). Mice were housed in

Optimice carousel sterile quarters with filtered air supply in

disposable cages from Animal Care Systems, Inc. (Centennial,

CO). A 12-h light/12-h dark light cycle is observed, with animal

handling only taking place during the light cycle.

CHLA-06 cell cultures at 70% confluency were trypsinized

and pellets were resuspended in RPMI medium, at 2 × 108 cells/

ml density and diluted with an equal volume of Matrigel. 100 uL

(1 × 107 cells) was injected into the right hind flank of 4-week old

NOD.SCID mice (strain 001303, Jackson Laboratories).

Subcutaneous xenograft volume was monitored with calipers,

and treatment was initiated when reaching an average volume of

150 mm3.

LP-184 was dissolved in ethanol and diluted in saline until

reaching 5% EtOH. Vehicle or LP-184, at 2 mg/kg or 4 mg/kg,

was delivered by tail vein injection. Dosing schedule consisted of

two cycles of five every-other-day injections, with the second

cycle continuing after a 5-day holiday, i.e., drug administration

on days 0, 2, 4, 6, 8, 14, 16, 18, 20, and 22.

Statistical tests

Comparisons between tumor volumes used a two-sided

T-test. Multi-group comparisons of predicted LP-184 response

in patient data used ANOVA. The p-values of Pearson

correlations uses a t-distribution with n − 2 degrees of

freedom to estimate a p with Fisher’s Z transform, as

implemented by cor.test() in R.

Results

Validation of PTGR1 activation of LP-100
and LP-184

The NCI-60 screen was previously used to test the drug

responses of LP-184 and LP-100, and data from these

experiments were stored within the CellminerCDB. As both of

these drugs are known to be activated by PTGR1, a correlation

analysis was performed within CellminerCDB to test the drug

sensitivity of LP-184 and LP-100 against PTGR1 mRNA

expression, protein expression, methylation, and copy number

variants (CNV). PTGR1 mRNA expression was significantly and

highly correlated with cancer cell sensitivity to LP-184

(Figure 1A; r = 0.87, p = 2.2e-16) and LP-100 (Figure 1B; r =

0.64, p = 1.7e-07). Additionally, both LP-184 and LP-100 were

significantly positively correlated with PTGR1 protein expression

(LP-184: r = 0.52, p = 3.5e-05; LP-100: r = 0.51, p = 5.3e-05) and

significantly negatively correlated with PTGR1 methylation (LP-

184: r = -0.75, p = 8.2e-12; LP-100: r = -0.53, p = 2.5e-05). There

was no correlation between drug response of LP-184 (r = 0.1, p =

0.46) or LP-100 (r = 0.14, p = 0.28) and the PTGR1 CNVs

(Table 1). In these analysis PTGR1 mRNA expression was more

significantly and strongly correlated with LP-184 than LP-100,

suggesting that overall the NCI-60 cell lines were more rapidly

likely to convert LP184 to an active drug and that this might

translate in the increased sensitivity to LP-184 than LP-100.

In addition to NCI-60 cell line responses to LP-184 and LP-

100, the CellminerCDB has integrated the NCI-60 responses

from more than 20,000 drugs representing numerous drug

FIGURE 1
PTGR1 correlation with LP-184, LP-100, and pan cancer compound response. PTGR1 mRNA expression correlation with (A) LP-184 drug
sensitivity response (B) LP-100 drug sensitivity response, and (C) the pan cancer compound sensitivity response across the NCI60 cell lines.
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classes. These data were leveraged to calculate the correlation of

the PTGR1 mRNA expression levels with the summary of the

responses from each of the cell lines for about

20,000 compounds, which is called the Pan Compound

Response (PCR) (Reinhold et al., 2014). In contrast to the

highly significant and positive correlation of PTGR1 mRNA

expression to cancer cell sensitivity to LP-184 and LP-100,

PTGR1 mRNA expression was significantly negatively

correlated (r = −0.52, p = 1.9e-05) with the PCR (Figure 1C).

These results indicated that the PTGR1 mRNA expression was a

significant factor for driving the cell sensitivity responses for LP-

184 and LP-100, whereas it has significant negative correlation

with PCR.

LP-100 and LP-184 activities are
independent of SLFN11 expression

The gene Schlafen Family Member 11 (SLFN11), is a putative

DNA/RNA helicase and whose gene expression is known to be

positively correlated with DNA Damaging Agents (DDAs), like

DNA alkylation, and is considered to be a predictive marker of

TABLE 1 PTGR1 omics correlation with drug sensitivity.

Drug name PTGR1 mRNA PTGR1 protein PTGR1 methylation PTGR1 CNV

r-value p-value r-value p-value r-value p-value r-value p-value

LP-100 0.64 1.7e-07 0.51 5.3e-05 −0.53 2.5e-05 0.14 0.28

LP-184 0.87 2.2e-16 0.52 3.5e-05 −0.75 8.2e-12 0.1 0.46

FIGURE 2
SLFN11 correlation with Alkylating agents and query drugs. (A) Bar graph showing majority of the Alkylating drugs are significantly positively
correlated with SLFN11 mRNA expression levels. Correlations of SLFN11 mRNA expression with (B) LP-184 response or (C) LP-100 response in
treated NCI60 cell lines. Correlations of SLFN11 mRNA expression with (D) LP-184 response or (E) LP-100 response in treated NCI60 cell lines with
high PTGR1 mRNA expression.
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DDA response (Zoppoli et al., 2012). In order to understand how

LP-184 and LP-100 sensitivity compared to other DDAs, a

correlation analysis was conducted comparing SLFN11 gene

expression to 19 known DDAs. SLFN11 gene expression was

significantly and positively correlated for 13 out of 19 DDA

(Figure 2A; Table 2), with correlation coefficient values that

ranged from 0.33 to 0.77 and a mean correlation coefficient of

0.57. Confirming that a majority of the known alkylating agents

were significantly positively correlated with SLFN11 gene

expression.

In contrast to the other alkylating agents in CellMinerCDB,

LP-184 and LP-100 were not correlated with SLFN11 gene

expression (Figures 2B,C, LP-184: r = −0.0091, p = 0.95; LP-

100: r = −0.021, p = 0.88; Table 2), suggesting that LP-184 and

LP-100’s mechanism of action (MoA) is independent of SLFN11

gene expression. As PTGR1 expression is needed for activation of

LP-184 and LP-100, an additional correlation analysis was

performed removing all cell lines with low expression of

PTGR1 (expression z-score < mean) to see if the correlation

between SLFN11 gene expression and LP-184 and LP-100

response would be altered. After removal of cell lines with low

PTGR1 expression, the correlation of SLFN11 gene expression to

LP-184 and LP-100 responses remained insignificant (Figures

2D,E; LP-184: r = 0.11, p = 0.53; LP-100: r = −0.1, p = 0.58). The

full table of SLFN11 expression correlation with drug’s sensitivity

is given in Supplementary Table S3. It was surprising neither LP-

184 or LP-100 were correlated with SLFN11 gene expression as

both have been previously demonstrated to be DNA damaging

agents (Zoppoli et al., 2012; Luan et al., 2019; Murai et al., 2019).

Considering this result, a drug-drug correlation analysis was

performed to identify what other drugs sensitivity response

correlates with LP-184 and LP-100.

Drug—drug correlation analysis

As LP-184 and LP-100 are known alkylating agents (Staake

et al., 2016), we specifically compared their drug sensitivity to

the response of other drugs with similar MoA. The pattern

comparison tab from CellMinerCDB was used to generate

Pearson correlations comparing the drug sensitivity of each

LP-184 and LP-100 to the drug sensitivity of the same nineteen

alkylating agents previously mentioned. Overall, the drug

sensitivity responses of LP-184 and LP-100 were negatively

correlated, or not correlated to all of the 19 other alkylating

agents. LP-184 was significantly (p < 0.01) negatively

correlated to seven alkylating agents (average r = −0.50),

whereas LP-100 was significantly (p < 0.01) negatively

correlated to six alkylating agents (Table 3; average

r = −0.38). As all of the known alkylating agents were

either negatively correlated or not correlated with LP-184

or LP-100 sensitivity response, it is likely that both LP-184

and LP-100 have additional MoA that contribute to their

efficacy and cell sensitivity response.

The CellMinerCDB has drug sensitivity information

for over 20,000 compounds, which includes many FDA

approved and clinical trial drugs. We sought to make an

additional comparison of these FDA approved and

TABLE 2 SLFN11 correlation with drug sensitivity.

Drug ID Name MOA Clinical status Correlation p-value

A. SLFN11 expression correlation with alkylating agents

34462 Uracil mustard A7|AlkAg FDA approved 0.776 5.17E-13

9706 Triethylenemelamine A7|AlkAg FDA approved 0.773 7.22E-13

6396 Thiotepa A7|AlkAg FDA approved 0.753 6.11E-12

3088 Chlorambucil A7|AlkAg FDA approved 0.739 2.45E-11

757098 Melphalan A7|AlkAg FDA approved 0.682 1.39E-08

119875 Cisplatin A7|AlkAg FDA approved 0.62 1.63E-07

25154 Pipobroman A7|AlkAg FDA approved 0.614 2.37E-07

241240 Carboplatin A7|AlkAg FDA approved 0.519 2.57E-05

762 Nitrogen mustard A7|AlkAg FDA approved 0.485 9.94E-05

409962 Carmustine A7|AlkAg FDA approved 0.42 0.000942

79037 Lomustine A6|AlkAg FDA approved 0.395 0.00213

138783 Bendamustine A2|A6|AlkAg FDA approved 0.375 0.00523

109724 Ifosfamide A7|AlkAg FDA approved 0.332 0.0186

B. SLFN11 expression correlation with LP-100 and LP-184

683863 LP-100 Apo|AlkAg|RDI FDA approved 0.067 0.621

827761 LP-184N Apo|AlkAg Preclinical −0.004 0.975
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TABLE 3 Drug-drug sensitivity correlations.

Drug
ID

Name MOA Clinical
status

LP-
184_Correlation

LP-
184_p-value

LP-
100_Correlation

LP-
100_p-value

A. Alkylating agent’s sensitivity correlation with LP-100 and LP-184

109724 Ifosfamide A7|AlkAg FDA approved −0.616 1.93E-06 −0.38 0.00644

266046 Oxaliplatin A7|AlkAg FDA approved −0.587 9.19E-06 −0.376 0.00779

409962 Carmustine A7|AlkAg FDA approved −0.531 1.79E-05 −0.35 0.00707

79037 Lomustine A6|AlkAg FDA approved −0.517 3.77E-05 −0.398 0.00195

89201 Estramustine A7|TUBB|
AlkAg

FDA approved −0.469 0.000204 −0.361 0.00581

45388 DACARBAZINE A7|AlkAg FDA approved −0.427 0.000834 −0.403 0.00173

138783 Bendamustine A2|A6|AlkAg FDA approved −0.369 0.00599 −0.137 0.326

26271 Cyclophosphamide A7|AlkAg FDA approved −0.324 0.0279 −0.234 0.118

3088 Chlorambucil A7|AlkAg FDA approved −0.32 0.0145 −0.026 0.848

34462 Uracil mustard A7|AlkAg FDA approved −0.269 0.0415 −0.012 0.93

757098 Melphalan A7|AlkAg FDA approved −0.263 0.0543 −0.07 0.62

762 Nitrogen mustard A7|AlkAg FDA approved −0.244 0.065 −0.01 0.944

25154 Pipobroman A7|AlkAg FDA approved −0.235 0.0757 0.003 0.985

9706 Triethylenemelamine A7|AlkAg FDA approved −0.177 0.185 0.077 0.567

6396 Thiotepa A7|AlkAg FDA approved −0.162 0.225 0.067 0.615

241240 Carboplatin A7|AlkAg FDA approved −0.137 0.305 0.067 0.618

119875 Cisplatin A7|AlkAg FDA approved −0.075 0.574 0.106 0.429

85998 STREPTOZOCIN A7|AlkAg FDA approved 0.049 0.741 0.057 0.702

77213 Procarbazine A7|AlkAg FDA approved 0.079 0.584 0.01 0.943

Drug ID Name MoA Clinical status Correlation p-value

B. Top 10 drugs positively correlated with LP-184

683863 LP-100 Apo|AlkAg|RDI FDA approved 0.759 1.25E-11

764092 GSK-2126458 PK:PIK3 Clinical trial 0.519 2.97E-05

792987 GDC-0084 PK:PIK3,MTOR Clinical trial 0.514 4.38E-05

778810 VS-5584 PK:PIK3,MTOR Clinical trial 0.485 0.000134

762382 CH-5132799 PK:PIK3 Clinical trial 0.452 0.000367

785117 PQR-309 PK:PIK3,MTOR Clinical trial 0.439 0.000572

777877 PF-4989216 PK:PIK3 Clinical trial 0.424 0.00113

776017 Telatinib PK:PDGFR,KIT,VEGFR Clinical trial 0.422 0.00134

781516 Entosplenitib PK:SYK Clinical trial 0.417 0.00124

775306 P-529 PK:PIK3,AKT,FGFR, MTOR,VEGFR Clinical trial 0.411 0.00167

C. Top 10 drugs positively correlated with LP-100

827761 LP-184 AlkAg Pre-clinical 0.759 1.25E-11

764092 GSK-2126458 PK:PIK3 Clinical trial 0.511 4.78E-05

792987 GDC-0084 PK:PIK3,MTOR Clinical trial 0.503 7.85E-05

789042 LOR-253 KLF4|MTF1 Clinical trial 0.403 0.00254

762382 CH-5132799 PK:PIK3 Clinical trial 0.401 0.00199

801661 TAK-931 PK:CDC7 Clinical trial 0.378 0.00483

777877 PF-4989216 PK:PIK3 Clinical trial 0.366 0.00595

775306 P-529 PK:PIK3,AKT,FGFR, MTOR,VEGFR Clinical trial 0.351 0.00861

782122 AMG-511 PK:PIK3 Clinical trial 0.35 0.0077

776017 Telatinib PK:PDGFR,KIT,VEGFR Clinical trial 0.35 0.00946
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clinical trial drugs to potentially identify drugs with significant

positive correlations to LP-184 and LP-100 and that may

provide evidence for additional MoA for LP-184 and LP-

100. The pattern comparison function in CellMinerCDB

was used to generate Pearson correlations comparing the

cell sensitivity response of the CellMinerCDB drugs to LP-

184 and LP-100. Table 3 list the top 10 positively

correlated drugs to LP-184 and LP-100, respectively. The

most positive and significant drug-drug correlation was

found between LP-184 and LP-100 (Table 3), which was

anticipated considering the chemical similarity between the

two molecules.

Considering these findings and differences within the

alkylating agent class of drugs led us to investigate

further and compare the LP-184 and LP-100 with other

Alkylating agents to see any difference at the gene set/

pathway level.

Gene sets involved in MoA of LP-100 and
LP-184

Gene set enrichment analysis (GSEA) can be used to

understand the role of gene sets to aid in identification of an

unknown MoA of a drug. Here, 12,169 gene sets were used as an

input to the GSEA analysis in CellMinerCDB. We used gene

expression and drug sensitivity Pearson’s correlation to derive

ranked gene sets and calculate gene set enrichment. Figure 3A

shows enrichment comparison between LP-184 and LP-100 and

nineteen other alkylating agents. Negative (blue) Normalized

Enrichment Score (NES) represent negative gene set expression

association with drug sensitivity, whereas positive (red) NES

represent positive gene set expression correlation with sensitivity

of drugs. Based on the GSEA hierarchical clustering in Figure 3A,

there were two clear clusters of drug compounds, one with four

drugs and another with 15 drugs. A detailed view of the GSEA

FIGURE 3
GSEA analysis of the correlated genes. (A)Heatmap from GSEA analysis of the top correlated gene sets involved with DNA, RNA, and chromatin
with LP-184 and LP-100 and other known alkylating agents (B) GSEA plots for LP-184 and carmustine in chromatin remodeling and DNA repair
pathways (C) The top five pathways ranked by p-value were extracted from the GSEA results of LP-184 gene ranks in LMP pathways.
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results are shown in the DNA repair and Chromatin remodeling

pathways for LP-184 and Carmustine (Figure 3B), and an

unbiased overview of the most significant positive and

negative GSEA results are shown in Figure 3C. The cluster of

four drugs, containing LP-184 and LP-100 and two additional

nitrosurea alkylating agents, Procarbazine and Streptozocin,

whereas the second cluster included 15 other established

alkylating agents which included Cisplatin, Oxaliplatin, and

Caramustine. It is important to note that enrichment

direction (NES) of LP-184 and LP-100 opposed the majority

of the alkylating agent’s enrichment direction for most of the

enrichment categories, even though they share a similar MoA for

DNA damage. There was only one drug (out of 19), Procarbazine,

that closely matched the enrichment patterns of LP-184 and

LP-100.

From the GSEA analysis, LP-184 and LP-100 showed

negative NES for DNA replication, DDR translesion synthesis,

chromatin remodeling, DDR checkpoint, DNA damage repair,

chromatin modeling, RNA splicing and kinetochore gene sets.

The high degree of similarity in category enrichment

demonstrates that there is a common sensitivity pattern for

both drugs, a notion that is further confirmed by the strongly

correlated drug responses between LP-184 and LP-100. Based on

the NES color annotation, some categories like DDR, chromatin

modeling, and RNA splicing have more negative NES for LP-184

compared to LP-100, which indicates that LP-184 may provide

higher sensitivity to tumors with deficiency in these categories.

These analyses and enrichment patterns led us to investigate

additional cancer indications that are deficient in these pathways

that would therefore be hypothesized to have sensitivity to LP-

184 and LP-100.

In silico identification of LP-184 efficacy in
cancers deficient in the SWI/SNF
chromatin remodeling complex

The GSEA analysis results found one of the distinct NES

differences between LP-184/LP-100 and the other alkylating

agents was a significant negative association of the genes in

the chromatin remodeling/modeling pathways, suggesting that

LP-184 and LP-100 could be efficacious in cancers deficient in

these gene expression patterns. Chromatin remodeling is a

fundamental process involved in epigenetic regulation (Kumar

et al., 2016), and is directly and indirectly related to DNA damage

repair. As alteration of chromatin remodelers is involved in

oncogenesis and cancer progression in numerous cancers, this

relationship may help identify cancers sensitive to LP-184 or

LP-100.

There are prominent examples of cancers with loss-of-

function somatic gene mutations in the SWI/SNF chromatin

remodeling complex, including atypical teratoid rhabdoid

tumors (ATRT), caused by mutations in SMARCB1, and

various additional rhabdoid tumors, that harbor mutations

in SMARCA4 (Holdhof et al., 2021; Hasselblatt et al., 2022). In

addition to these cancer types, the NCI-60 mutation data were

checked to examine if there were any cell lines with mutations

in SMARCB1 or SMARCA4. However, none of the NCI-60 cell

lines had loss of function mutations in either of these genes. As

there were no NCI-60 cell lines with loss of function

mutations, a Pearson’s correlation analysis was performed

to test LP-184 drug sensitivity to SMARCB1 or SMARCA4

gene expression levels in the NCI-60 cell lines. Significant

negative Pearson correlations were found when comparing

LP-184 drug sensitivity to the gene expression of SMARCB1

(Figure 4A; r = −0.33, p = 0.011) and SMARCA4 (Figure 4B;

r = −0.3, p = 0.025). When controlling for PTGR1 expression

and only examining these correlations in cells with above-

average PTGR1 expression level, SMARCB1 correlation

decreased to −0.17 (p = 0.35), and SMARCA4 changed

to −0.21 (p = 0.24). This suggests part of the association

observed was likely due to association with PTGR1 rather

than being independent effects. Additional correlations were

made between Carmustine, a drug that has been used clinically

to treat ATRT patients, and Cisplatin, a common therapeutic

agent, with SMARCB1 and SMARCA4 gene expression (10). In

contrast to LP-184, Carmustine response was significantly

positively correlated with SMARCB1 (Figure 4C; r = 0.26,

p = 0.043) and SMARCA4 (Figure 4D; r = 0.39, p = 0.0019).

Cisplatin response was not correlated with either SMARCB1

(Figure 4E; r = 0.088, p = 0.51) or SMARCA4 (Figure 4F; r =

0.03, p = 0.82). Although Carmustine has shown favorable

efficacy in preclinical studies to treat ATRT (Lünenbürger

et al., 2010), its positive correlation with SMARCB1 and

SMARCA4 gene expression, and positive GSEA NES score

with Chromatin remodeling pathways (Figure 3B), suggests

that Carmustine efficacy will not be optimal in tumors with

SWI/SNF-deficient molecular characteristics. Conversely, as

LP-184 response was significantly negatively correlated with

SMARCB1 and SMARCA4 expression levels, we hypothesized

LP-184 could be an effective therapeutic agent for cancers

deficient in SWI/SNF chromatin remodeling complex. As

several of the in silico experiments shown here indicated

that LP-184 would be more potent than LP-100, we only

proceeded with LP-184 for the remaining in silico, in vitro,

and in vivo experiments.

LP-184 sensitivity prediction on patient
data

Based on the significant and negatively correlated

relationship between LP-184 and SMARCB1 and SMARCA4

gene expression, we leveraged Lantern Pharma’s AI and ML

learning platform RADR® to predict if patients diagnosed with

ATRT would have sensitivity to LP-184 treatment. The RADR®
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“10-gene” model used here was trained and tuned using cell line

and patient derived xenograft gene expression data and the ML

model used 10 signature genes to generate predictions. This 10-

gene model is modified from our previously published 16-gene

ML model which showed performance of this ML model on LP-

184 sensitivity in a blind validation set composed of 37 CCLE cell

lines (Kathad et al., 2021). The validation of the “10-gene”

model’s performance is provided in Supplementary Figure S3

using a similar blind validation set and additional samples from

PDX-derived 3D cell cultures and was significantly correlated

FIGURE 4
SMARCB1 and SMARCA4 correlations with drugs response in NCI60 cell lines. Expression correlation of (A) LP-184 sensitivity and SMARCB1
mRNA expression, (B) LP-184 sensitivity and SMARCA4 mRNA expression, (C) Caramustine sensitivity and SMARCB1 mRNA expression, (D)
Caramustine sensitivity and SMARCA4 mRNA expression, (E) Cisplatin sensitivity and SMARCB1 mRNA expression, and (F) Cisplatin sensitivity and
SMARCA4 mRNA expression in NCI60 cell lines.

FIGURE 5
In silico LP-184 Predicted Sensitivity in SMARCB1 and SMARCA4 mutants and in ATRT genetic subtypes. Machine-learning LP-184 model
prediction of LP-184 sensitivity in (A)ATRT patients with either no SMARCmutation, a SMARCB1mutation, or SMARCA4mutation or (B)ATRT patients
with different genetic SMARCB1 genetic subtypes.
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with LP-184 sensitivity in the prediction of 42 samples in a blind

validation set (p = 0.000026; r = 0.6).

The 10-gene ML model was used to predict the sensitivity

of LP-184 in several ATRT patient gene expression datasets

from the Gene Expression Omnibus (GEO). First, LP-184

sensitivity was tested, in silico, using gene expression data

from a cohort of ATRT patients (GSM1587795 and

GSE160748) for which patients were stratified by either

SMARCB1 or SMARCA4 mutations. Patients without

SMARCB1 mutations and classified as “ATRT-like” had

normal SMARCB1 status, but otherwise met diagnosis

criteria for ATRT (Ho et al., 2015). In both cases the 10-

gene model predicted that ATRT patients with mutations in

either gene were sensitive to LP-184. The patients with

SMARCB1 mutations had an average predicted LP-184 IC50

of 128 nM, where the patients with SMARCA4 had an average

predicted LP-184 IC50 of 207 nM (Figure 5; Table 4). The

mean IC50s in both groups were lower than the mean IC50s in

our training dataset, supporting that these mutations enhance

LP-184 sensitivity. Patient tumor samples with no SMARCB1

or SMARCA4 mutation, which were classified as ATRT-like,

had a higher mean IC50 of 230.6 nM (above average relative to

training set IC50s).

ATRT patients with SMARCB1 mutations are likely to

have one of the three common subtypes, SHH, MYC, and TYR,

which can vary in tumor location, severity, genetic mutations,

and molecular signatures (Ho et al., 2019). Using an ATRT

gene expression dataset that was stratified by ATRT subtype

(GSE70678), the 10-gene ML model was used to predict

whether each of these subtypes were predicted to be

sensitive to LP-184 and if there were predicted differences

in LP-184 sensitivity across all three subtypes. Subtype

consensus classifications were based on profile clustering

previously reported (Johann et al., 2016; Chun et al., 2019).

Each subtype was predicted to have nano-molar IC50

sensitivity to LP-184 and there were significant differences

in sensitivity across all three subsets (Anova, p = 0.012).

The mean LP-184 IC50 of the SHH, MYC, and TYR

subtypes were 234, 195, and 161 nM, respectively.

Considering LP-184 had predicted nano-molar IC50

sensitivity across numerous patient cohorts and multiple

ATRT subtypes, we sought to validate these in silico results

in the wet lab.

In vitro validation of LP-184 efficacy in
ATRT cell lines

This in vitro hypothesis was tested by treating ATRT cell

lines deficient in SMARCB1 expression (CHLA-02, CHLA-05,

and CHLA-06) with LP-184 (Doucet-O’Hare et al., 2021).

CHLA-02 and CHLA-04 have been characterized as

belonging to the group 1 ATRT subtype by Torchia et al.

(2016), and CHLA-06 as group 2A/B, which were identified to

respond differently to BMP and NOTCH pathway targeting,

with group 1 sensitive to BMP inhibition, and group 2 sensitive

to NOTCH inhibition. The IC50s of the LP-184 treated

ATRT cell lines CHLA-02, CHLA-04, and CHLA-06 cell

lines were 1748.0, 160.2, and 37.4 nM, respectively

(Figure 6A). Overall, all of the ATRT cell lines had near

nanomolar potency to LP-184 treatment, and CHLA-06 had

one of the lowest IC50s that has been observed after

treatment by LP-184 (Kathad et al., 2021). Carmustine and

Thiotepa are clinically used to treat ATRT and their IC50s

have been previously reported to be 72.1 and 94.7 μM

(Lünenbürger et al., 2010) respectively, which are

between ~40 and 3,000 times higher than the IC50s LP-184.

These in vitro results confirmed our in silico hypothesis

that ATRT cells deficient in SMARCB1 would be

sensitive to LP-184, and that cells treated with LP-184

would be more sensitive than Carmustine (Lünenbürger

et al., 2010).

In vivo validation case study—ATRT

As the ATRT cell lines tested were highly sensitive to LP-

184 in vitro, we sought to validate this result in vivo. Non-

Obese Diabetic/Severe Combined Immuno Deficiency (NOD/

SCID) mice that were implanted with subcutaneous cell-

derived xenografts from the ATRT cell line CHLA-06 and

treated with LP-184 (i.v.) or vehicle for 4 weeks after

implantation or when the tumors reached a group average

volume of 1,500 mm3. The treatment schedule consisted of five

i.v. injections every other day, followed by a 5-day holiday and

a final round of five i.v. treatments every other day. Two

dosages of LP-184 were tested, one at 2 mg/kg and one at

4 mg/kg, which were both lower than the previously used dose

TABLE 4 LP-184 predicted IC50 on publicly available ATRT datasets.

Study # GEO ID # of
samples

LP-184 IC50

range
IC50 median
(nM)

IC50 mean
(nM)

1 GSE70678 49 108.31–356.04 nM 176.38 185.76

2 GSM1587795 9 86.84–272.48 nM 138.57 154.33

3 GSE160748 6 158.66–291.66 nM 166.63 206.26
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5 mg/kg found to be effective in NSCLC xenografts (Kulkarni

et al., 2021). Near complete tumor regression was observed in

both the 2 mg/kg and 4 mg/kg LP-184 treated groups at the

end of the study period on day 42 (Figures 6B–D) and almost

no tumor regrowth was observed in the final 20 days of

extended monitoring following the final injection. Two out

of ten mice in the 4 mg/kg LP-184 treatment group were

virtually tumor-free at study termination (tumor

volume <0.5 mm3). Tumor growth inhibition of 112% was

observed with LP-184 treatment relative to control in this

study. There was slight reversible weight loss (~10% of starting

average mouse body weight) at the beginning of 4 mg/kg LP-

184 treatments, but no weight loss/tolerability issues were

observed at 2 mg/kg (Supplementary Figure S4). Tumor

volume was reduced in the 4 mg/kg treatment group

compared to the 2 mg/kg group at day 42, with respective

tumor volumes of 28.1 mm3 and 14.64 mm3, though this was

not significant (p = 0.147, two-sided T test). The complete

tumor regression and lack of tumor recurrence after LP-184

treatment demonstrates in vivo efficacy of LP-184 in this

indication. In the prospective works (in vivo and clinical

trials), it will be important to monitor the weight loss as a

possible side effect of this treatment. Together, these

preclinical results validated our in silico hypothesis that

ATRT cancer cell lines and cancer cell line derived

xenograft models are susceptible and sensitive to LP-184

treatment.

Discussion

In this study, we used the CellMinerCDB platform in

conjunction with Lantern Pharma’s proprietary RADR® AI

and ML platform to identify ATRT as a novel indication for

the DNA damaging agent LP-184. The cell lines of the

NCI60 panel do not contain rhabdoid tumors, like ATRT, but

our pan-cancer analysis of molecular patterns was able to identify

relevant expression pathways that suggest drivers of LP-184

response in tumor types not explicitly represented, leading to

the RADR® assisted identification of ATRT as a target indication.

This represents an efficient strategy for identifying candidate

drugs to treat rare disease. ATRT is an exceedingly rare pediatric

cancer with very poor outcomes and no established standard of

care treatment (Ginn and Gajjar, 2012; Johann et al., 2016; Baliga

et al., 2021). Disease rarity and correspondingly low market size

both negatively impact the testing of new drugs and investment

in basic research for new treatment options. Our findings

demonstrate that the CellMinerCDB and Lantern Pharma’s

RADR® platforms provided strong in silico supporting

evidence for further developing LP-184 for ATRT.

FIGURE 6
In vitro and In vitro LP-184 Testing of ATRT Models. (A) In vitro LP-184 IC50 values (nM) of ATRT Cell Lines CHLA-02, CHLA-04, and CHLA-06
treated with LP-184. (B) Time-course of tumor volumes (mm3) of CHLA-06 cell derived xenografts (CDX) treated with either I.V. Vehicle, LP-184
(2 mg/kg), or LP-184 (4 mg/kg). (C) Comparison of CHLA-06 CDX tumor volumes after treatment on day 0 and day 42 with either vehicle, LP-184
(2 mg/kg) or LP-184 (4 mg/kg). (D) Representative images of excised CHLA-06 CDX tumors after 42 days from mice injected with vehicle, LP-
184 (2 mg/kg), or LP-184 (4 mg/kg).
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Insights from both CellMinerCDB and RADR® assisted in

the identification of ATRT as a target indication for LP-184.

First, PTGR1 was confirmed as a key and unique biomarker for

LP-100 and LP-184. Our findings are consistent with previous

studies where PTGR1 was found to activate acylfulvenes and

the naturally-derived Illudin drugs into active metabolites (Yu

et al., 2012; Pietsch et al., 2013). Elevated PTGR1 is normally

associated with increased reactive oxygen species (Sánchez-

Rodríguez et al., 2017) and poor prognosis (Tapak et al., 2015;

Wang et al., 2021). It was found that higher PTGR1 expression

is associated with resistance to the combination of redox-

modulating molecule auranofin (AUF) and vitamin C (VC) in

breast cancer cells (Hatem et al., 2019). Consistently, increased

PTGR1 levels correlates with lower sensitivities to non-

acylfulvene pan-cancer compounds in the CellMinerCDB

platform. The unique positive correlation with

PTGR1 opens opportunities for LP-100 and LP-184 to

precisely kill cancer cells with elevated PTGR1, which may

be resistant to other drugs.

Our findings are also consistent with the fact that tumor

response to alkylating agents such as LP-100 and LP-184 depends

on DNA repair status (Jaspers et al., 2002; Koeppel et al., 2004;

Kulkarni et al., 2021). The diversity of DNA repair genes and the

relative importance of each DNA repair pathway in each tumor

cell and cancer type limit the likelihood of identifying markers

using expression of individual DNA repair genes alone.

Enrichment analysis offered a method to examine the general

status of many genes in the same pathway. As expected, several

DNA repair pathways were significantly and strongly negatively

correlated with LP-100 and LP-184 response. Though mutations

in the DDR pathway are found to associate with better response

to most alkylating agents, it is surprising that the NES of DDR

pathways are negative for most other alkylating agents such as

Cisplatin and Carmustine (Figure 3). A further examination

revealed that 210 of the 310 DNA damage repair genes were

negatively correlated with LP-184 and positively correlated with

both Cisplatin and Carmustine, whereas only 29 genes were

positively correlated with LP-184 and negatively correlated with

both Cisplatin and Carmustine (Supplementary Table S3). It is

possible that LP-184 is a better target therapeutic agent than

cisplatin or carmustine for cancers with reduced DDR pathway

expression. GSEA results suggest that having access to only the

transcriptomic data of patient tumors may enable highly

personalized LP-100 and LP-184 treatment.

Since LP-100 and LP-184 exhibited opposite DDR expression

correlation patterns to Cisplatin and Carmustine, it is possible

that they may be distinct from other alkylating agents in terms of

possible biomarkers. Previous CellMinerCDB-based studies

identified a pan-cancer alkylating agent marker, SLFN11

(Zoppoli et al., 2012), whose expression is positively correlated

with responses to alkylating agents. Though SLFN11 is an

important and effective marker for response with most

alkylating agents (Table 2), SLFN11 expression was not

correlated with LP-100 or LP-184 response even after the

confounding effect of PTGR1 was removed (Figures 2D,E).

Interestingly, GSEA and clustering analysis suggest that LP-

184, along with LP-100 and Procarbazine, showed distinct

correlation with pathways from the other alkylating agents

(Figure 3). These analyses help distinguish where alkylating

agents will be most useful. The negative association with DNA

replication, damage response, and chromatin remodeling

indicate a niche where these cellular processes are

compromised. These results suggest that alkylating agents vary

substantially in the underlying molecular pathways which make

them effective. It also opens the possibility to test LP-100 and LP-

184 in cancer types such as brain tumors where procarbazine has

been used (Solimando and Waddell, 2017).

One of the strongest negative correlations from the GSEA

analysis was chromatin remodeling pathway and LP-184

response, which prompted us to explore LP-184 in cancers with

deficient SWI/SNF chromatin remodeling complex. ATRTs are rare

pediatric brain tumors known to be associated with defects in

chromatin remodeling pathway, primarily mutations in

SMARCB1, or rarely, SMARCA4, which are components of the

SWI/SNF chromatin remodeling complex. As the NCI60 tumor cell

lines do not have ATRT cell lines or tumors with inactivating

mutations in SMARCB1 or SMARCA4, a ML model was built and

applied using RADR® to predict LP-184’s sensitivity in publicly

available ATRT patient data. In two digital cohorts RADR® assisted
in predicting that LP-184 show differences in sensitivity across

patients whether they harbored mutations in SMARCB1 or

SMARCA4, or whether they had mutations in one of the known

and defined ATRT subtypes, MYC, TYR, or SHH. However,

irrespective of the differences in either cohort, the predicted IC50

sensitivities of LP-184 for all was lower than 400 nM, meaning that

each of these subtypes are predicted to be highly sensitive to LP-184.

An important aspect of generating AI and ML insights is to validate

them in vitro and/or in vivo. Here, using both in vitro and in vivo

experiments, we validated insights from RADR® that ATRT cells

were sensitive to LP-184 at low nM levels highly similar to values

that were predicted in silico.

Ultra-rare and fatal cancers such as ATRT, which are

estimated to be diagnosed in 60 patients per year in the US

(Ostrom et al., 2014), often do not receive adequate research

funds or attention due to its small market and population size.

Deploying computational, AI, and ML tools represents a novel

and translational approach for identifying indications efficiently

and cost-effectively for novel or existing drugs and for improving

treatment approaches that otherwise will not exist. In identifying

LP-184 as a potential agent for ATRT patients in silico, we

significantly expedited the timeline that it typically takes for

preclinical drug development. It is noteworthy that the current

approach (Supplementary Figure S2) is based on drug-induced

cell survival data. Structure-activity relationship-based

approaches also play important roles in drug design and

development, especially at filtering out inactive compounds.
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The topic on the concepts and datasets has been discussed

extensively by López-López et al. (2022) and will not be

expanded here. Alterations in SWI/SNF members occur

frequently, and SMARCA4 in particular is altered in

numerous other tumor types (Mehta et al., 2021; Ngo and

Postel-Vinay, 2022). This suggests that LP-184 could have

similar anti-tumor activity as observed with ATRT in a wide

range of tumors deficient in SWI/SNF activity.

Taken together, our case study suggests that cancer patients

with high expression levels of PTGR1 and/or compromised DDR

pathways are more likely to respond to LP-100 and LP-184

treatment than other DNA damaging agents. More importantly,

using GSEA, drug comparison, and RADR® patient response

predictions, we expanded LP-184’s indication to the rare cancer

disease ATRT, which was further validated in vitro and in vivo.

CellMinerCDB and Lantern’s AI and ML RADR® platform are

novel tools to guide researchers to utilize niches and design

further preclinical studies for drug development.
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