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The COVID-19 pandemic prompted several drug repositioning initiatives with

the aim to rapidly deliver pharmacological candidates able to reduce SARS-

CoV-2 dissemination andmortality. Amajor issue shared bymany of the in silico

studies addressing the discovery of compounds or drugs targeting SARS-CoV-

2 molecules is that they lacked experimental validation of the results. Here we

present a computer-aided drug-repositioning campaign against the

indispensable SARS-CoV-2 main protease (MPro or 3CLPro) that involved

the development of ligand-based ensemble models and the experimental

testing of a small subset of the identified hits. The search method explored

random subspaces of molecular descriptors to obtain linear classifiers. The best

models were then combined by selective ensemble learning to improve their

predictive power. Both the individual models and the ensembles were validated

by retrospective screening, and later used to screen the DrugBank, Drug

Repurposing Hub and Sweetlead libraries for potential inhibitors of MPro.

From the 4 in silico hits assayed, atpenin and tinostamustine inhibited MPro

(IC50 1 µM and 4 μM, respectively) but not the papain-like protease of SARS-

CoV-2 (drugs tested at 25 μM). Preliminary kinetic characterization suggests

that tinostamustine and atpenin inhibit MPro by an irreversible and acompetitive

mechanisms, respectively. Both drugs failed to inhibit the proliferation of SARS-

CoV-2 in VERO cells. The virtual screening method reported here may be a

powerful tool to further extent the identification of novel MPro inhibitors.

Furthermore, the confirmed MPro hits may be subjected to optimization or

retrospective search strategies to improve their molecular target and anti-viral

potency.
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1 Introduction

The outbreak of COVID-19 (coronavirus disease of 2019)

posed a threat to global health, with so far more than

580 million confirmed cases and over 6.5 million deaths,

resulting in unparalleled human and economic losses in

modern times (except for the 1918 influenza pandemic)

(Chen et al., 2021; Wang et al., 2022). The rapid

development of effective vaccines has improved the disease

prognosis, resulting in a substantial drop in mortality

(compared to estimations if no vaccines were available;

Watson et al., 2022).

Complementarily, the scientific community has resorted

to drug repurposing (i.e., the identification of new therapeutic

uses for known drugs) to find therapeutics in an expedite

manner (Ashburn and Thor 2004). This led to the approval of

several repurposed drug treatments (such as remdesivir,

favipiravir, and dexamethasone) in less than 2 years, with

other repurposing candidates still in the pipeline (Bellera

et al., 2021; Chakraborty et al., 2021; Venkadapathi et al.,

2021; Rodrigues et al., 2022).

Effective treatments are, however, still needed, especially

for people unvaccinated or that may not fully respond to

vaccination (e.g., immunocompromised patients), and to

cover viral mutations that may potentially elicit vaccine

escape (Niknam et al., 2022). SARS-CoV-2 (Severe Acute

Respiratory Syndrome Coronavirus 2) main protease (MPro)

has received major attention as a potential pharmacological

target, not only due to its role in viral replication, but also

because no human proteases are known to share its substrate

specificity (Ullrich and Nitsche 2020; Breidenbach et al.,

2021). In fact, the first target-based drugs specifically

developed and approved for COVID-19 treatment, namely

ensitrelvir (Mukae et al., 2022) and nirmatrelvir (Lamb

2022), are MPro inhibitors. Ensitrelvir is a non-peptidic

and multi-heterocyclic molecule that inhibits MPro non-

covalently, whereas nirmatrelvir is a peptidomimetic and

competitive inhibitor of MPro. Nirmatrelvir requires the co-

administration of ritonavir, a potent inhibitor of the major

human drug-metabolizing enzyme CYP3A4 (Lamb 2022).

Here, we report a target-focused computer-aided drug

repurposing campaign to detect new inhibitors of MPro, and

the experimental validation of a small subset of the identified

in silico hits. Noteworthy, whereas several similar efforts

have been described in literature, in many (if not most) cases

no experimental confirmation of the in silico hits has been

reported (Eleftheriou et al., 2020; Llanos et al., 2021; Pinzi

et al., 2021; Silva et al., 2021; Omer et al., 2022).

2 Methods

2.1 Model development and validation

2.1.1 Dataset compilation and curation
A dataset of compounds with reported IC50 (half maximal

inhibitory concentration) against MPro or reported residual

enzyme activity at 10, 20 or 50 µM concentrations was

compiled from different sources. These include 18 original

articles found in the specialized literature (Akshita et al., 2020;

Jin et al., 2020; Ma et al., 2020; Sacco et al., 2020; Shitrit et al., 2020;

Su et al., 2020; Vuong et al., 2020; Wenhao et al., 2020; Zhang et al.,

2020; Bai et al., 2021; Chun-Hui et al., 2021; Franco et al., 2021;

Hattori et al., 2021; Hongbo et al., 2021; Isgrò et al., 2021; Liu et al.,

2021; Mody et al., 2021; Rothan and Teoh 2021), the publicly

available COVID Moonshot database (Moonshot 2021), and in-

house acquired data from our group. The literature search and data

compilation from the COVIDMoonshot database were performed

in February 2021. Compounds with IC50 < 10 µM or with

percentage of enzyme inhibition >50% at 10 µM were labelled

as ACTIVE compounds. Compounds with IC50 > 20 μM,

percentage of inhibition <80% at 20 µM or 50 μM, or

percentage of enzyme inhibition <50% at 10 µM were labelled

as INACTIVE compounds. The dataset compounds, represented

in SMILES format, were standardized through an in-house script

using the Molecule Validation and Standardization (MolVS)

package (MolVS 2021), by applying the following actions: the

largest organic fragment of the molecule is chosen by fragment_

parent method (e.g., in the case of organic salts), the most common

isotopes are assigned to the atoms by isotope_parent method, the

structure is neutralized by isotope_parent method, and

stereochemistry information is removed by stereo_parent

method of MolVS (as only conformation-independent

molecular descriptors will be included in the models, as

explained later). The in-house script for standardization is

provided as Supplementary Material (a Python file is available

upon request to the corresponding authors). Duplicated data and

compounds with inconsistent labels across different sources were

removed. Since only 0D-2D molecular descriptors would be used

for modeling purposes, when data associated to different optical

isomers were reported, only one of them was kept whenever both

isomers belonged to the same activity class, and the compounds

were disregarded if the isomers belonged to different activity classes.

A total of 134 active compounds and 281 inactive compounds

remained in the curated dataset. The heatmap shown in the

Supplementary Material (Supplementary Figure S1) exhibits the

molecular diversity of the dataset. The dataset compounds that

compose the training, test and validation sets are provided as
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Supplementary Material, in csv format (Training_set_MPRO.csv,

Test_set_MPRO.csv and Validation_set_MPRO.csv, respectively).

2.1.2 Dataset splitting into training and test sets
The dataset was representatively divided into three different

sets: a training set, used to train quantitative structure-activity

relationship (QSAR) classifiers; a test set, used for the validation

of the individual QSAR models and to select which models (and

how) would be combined into a model ensemble; and a

validation set, used to assess the performance of model

ensembles. It has been observed that representative sampling

of datasets into training and validation sets tends to produce

models with better predictivity estimations, especially when

training and validation sets of different sizes are sampled

(Golbraikh et al., 2003; Leonard and Roy, 2006; Martin et al.,

2012), possibly because in this way the compositions of the

training and validation sets are as diverse as possible. For that

purpose, we resorted to iterative Random subspace Principal

Component Analysis clustering (iRaPCA; Prada Gori et al.,

2022). Briefly, iRaPCA is based on an iterative procedure that

combines feature bagging on the pool of conformation-

independent Mordred descriptors (Moriwaki et al., 2018),

dimensionality reduction through Principal Component

Analysis (PCA) and clustering through the K-means

algorithm. One hundred randomly sampled subsets of

200 descriptors each are generated from a pool of

1,613 Mordred descriptors; feature normalization is performed

using theMinMaxScaler function of scikit-learn (Pedregosa et al.,

2011). Correlated descriptors (Pearson coefficient above 0.4) are

subsequently removed from each random descriptor subset. PCA

is then conducted for each subset to obtain the first two principal

components. Subsequently, the K-means algorithm is applied to

each subset, systematically varying the number of clusters (K)

from 2 to 25. The scikit-learn implementation of the algorithm

screens 10 different randomly selected initial centroid seeds per

cluster and chooses the one that minimizes the within-cluster

distance. The so formed clusters are evaluated by calculating the

Silhouette score (SIL) (Rouseeuw, 1987) for each K value and

each descriptor subset pair: the K value that provides the highest

SIL is selected. After a round of clustering is completed, the

molecules in a cluster/total clustered molecules ratio is calculated

for each cluster. Clusters that exceed a 0.4 ratio value are

subjected to a new clustering round with the same initial

parameters. Clusters that do not exceed the selected cutoff are

kept as they are. Compounds from the ACTIVE and INACTIVE

categories were clustered separately.

2.1.3 Molecular descriptor calculation,
modelling procedure and model validation

1,613 conformation-independent descriptors were computed

using the Mordred package (Moriwaki et al., 2018). Descriptors

with a variance below 0.05 across the training set were excluded

from the descriptor pool. A random subspace approach (Yu et al.,

2012; El Habib Daho and Chikh 2015) was applied on the

remaining ones to obtain 1,000 subsets of 200 descriptors

each. It was observed that increasing the number of random

subsets up to 10,000 did not provide any benefit in terms of early

enrichment metrics such as the Boltzmann-Enhanced

Discrimination of ROC (BEDROC; ROC: Receiver Operating

Characteristic) and the Enrichment Factor in the top-ranked 1%

(EF0.01). Moreover, a higher number of descriptors per random

subset was not allowed to reduce the probability of spurious

relationships (Topliss and Costello 1972). Highly correlated

descriptors (Pearson correlation above 0.85) were not allowed

within a given subset. A dummy dependent variable was

introduced, which took values of 1 for compounds within the

ACTIVE class and values of 0 for compounds belonging to the

INACTIVE class. 1,000 linear classifiers, one per subset, were

obtained using a Forward Stepwise procedure. A maximum of

16 descriptors per model was allowed to prevent over-

parametrization and overfitting (only 1 molecular descriptor

per 10 training examples was allowed into the model).

The probability of spurious correlations and the robustness

of the models were assessed through randomization and Leave-

Group-Out (LGO) cross-validation. In each LGO round, random

stratified subsets of 10% of the total training examples were

removed from the training set. 500 randomizations and 500 LGO

folds were considered. The results were reported as the average

accuracy across the 500 rounds and compared with the accuracy

of the model inferred from the original training set, and also to

the No-Model error rate (NOMER) (Gramatica 2013). The

predictive ability of each individual model was finally assessed

through external validation.

2.1.4 Retrospective screens
To estimate the enrichment performance of our models in a

realistic virtual screening setting, two retrospective virtual

screening experiments were performed. The first retrospective

screen was performed by seeding the test set among a high

number of decoys generated using the LIDEB’s Useful Decoys

(LUDe) tool (Fallico et al., 2022). LUDe is conceptually similar to

the Directory of Useful Decoys enhanced (Mysinger et al., 2012),

but additional filters have been implemented to assure the

topological dissimilarity between the decoys and the active

compounds that are used as queries. Different enrichment

metrics have been calculated to assess the enrichment

behavior of the models: the Area Under the Receiver

Operating Characteristic curve (AUC ROC), BEDROC, the

Area Under the Precision Recall curve (AUPR), and EF0.01
(Truchon and Bayly 2007; Saito and Rehmsmeier 2015). The

best-performing individual models in this first screening were

combined as described in the following subsection, and the

performance of the resulting ensembles was assessed using a

second retrospective screen, where the validation set was seeded

among a large number of decoys, also obtained via LUDe. The

distribution of the enrichment metrics was estimated using
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stratified random sampling without replacement (75% of the

libraries used in the retrospective screens were sampled,

100 times). Because normality and/or equal variances

assumptions were not met by two of the enrichment metrics

used, the performances of individual models and the best model

ensemble were statistically compared using the Yuen-Welch test

(Wilcox, 2012).

2.1.5 Ensemble learning
Given that combination of individual classifiers into

meta-classifiers frequently provides better predictivity (Min

2016; Hyun et al., 2020), we have selectively combined the

best individual classifiers, judging from the performance in

the first retrospective screen. Five different combination

schemes were tried: the average (AVE), minimum (MIN),

and product (PROD) score, the average ranking (RANK)

provided by the ensembled model, and the average vote

(VOT) as computed by Zhang and Muegge (2006). MIN

assigns, as the ensemble score, the lowest score across

ensembled models. AVE provides as the ensemble score

the mean of all the scores of the ensembled models. PROD

provides, as score, the product of each of the combined

models’ individual scores. RANK computes the average

ranking provided by the ensembled models in the screened

chemical library. Finally, the vote provided by each

ensembled model i to a compound j is computed as

voteij = max [0, int (11 −rankij/0.02N)], where rankij
corresponds to the ranking assigned though model i to

compound j when the screened library is ordered in

descending order according to the model i score, and N is

the number of compounds in the entire screened library. This

procedure gives 10 votes to the first 2% of the ranked

compounds, 9 votes for the next 2%, and so on. At last, for

compounds in the 18%–20% rank bracket, 1 vote is given.

Compounds in the bottom 80% of the ranked list receive no

vote. The votes given for each compound by each individual

models are then averaged over all models in the ensemble.

2.2 Prospective virtual screening

Themodel ensemble that showed the best performance in the

second retrospective screen was used in the prospective screening

of three repurposing-oriented chemical libraries: DrugBank 5.1.6

(Wishart et al., 2018), the Drug Repurposing Hub (Corsello et al.,

2017), and SweetLead (Novick et al., 2013). The compounds in

each database were standardized as previously described for the

datasets. The optimal cutoff value for the ensemble score was

chosen by analyzing Positive Predictive Value (PPV) surfaces

(Bélgamo et al., 2020). As a final selection criterion, we assessed

whether the in silico hits belonged to the applicability domain of

the model, using the leverage approach (Yasri and Hartsough

2001), with 3d/n defined as critical value, d being the number of

descriptors included in each model and n being the number of

training set compounds.

2.3 Expression and purification of SARS-
CoV-2 recombinant proteases

The expression and purification of the recombinant form of

SARS-CoV-2 MPro and the Papain-like protease (PLPro) were

conducted as essentially described in Zhang et al., 2020 and Shin

et al., 2020, respectively. For MPro, the fractions eluted from the

Mono Q column containing recombinant protein with high

purity were pooled and subjected to buffer exchange (20 mM

Tris, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.8) using a

PD-10 desalting column. For PLPro, the affinity chromatography

was performed using a Nickel (His-trap, GE-Healthcare) instead

of a cobalt-based (TALON) column.

2.4 Protease screening and/or kinetic
assays

2.4.1 MPro
MPro activity was determined by de-quenching of Edans

fluorescence (5-((2-Aminoethyl)amino)naphthalene-1-sulfonic

acid) upon proteolytic cleavage of a synthetic peptide (Dabcyl-

KTSAVLQ↓SGFRKM-E(Edans)-NH2; United Biosystems-

USA). The assay was performed in a 96-well black microplate

(total assay volume 200 μl) and read using a Varioskan Lux

microplate reader (Ex/Em = 340 nm/490 nm). Different

parameters were routinely controlled for validating the assay

(signal to background ratio >7, Z′ factor > 0.75 and relative

fluorescence units >10). All samples were analyzed at least in

duplicate.

For compound screening, the drugs (25 μM; Haloxon and

INT131 were purchased from SIGMA whereas the synthesis of

atpenin and tinostamustine was ordered to InvivoChem) were

incubated with MPro (90 nM) in reaction buffer (Tris 20 mM,

pH 7.8, 150 mM NaCl, 1 mM EDTA, 5% v/v DMSO) for

60 min at 25°C. Then, the peptidic substrate (5 μM) was

added and fluorescence monitored for at least 30 min.

Blank (reaction buffer + substrate), full-activity (Mpro +

substrate) and inhibition (Mpro treated with 25 μM ebselen

or acetamide + substrate) controls were run in parallel. Due to

the intrinsic fluorescence of tinotamustine that overlaps that

of the substrate, protease inhibition was assessed from the

slope of the reaction and not from end-point measurements.

Drugs that under such conditions inhibited Mpro

activity ≥50% were considered hits and their IC50 values

determined by measuring enzyme activity at different

compound concentrations (7–8 concentration points from

25 to 0.0034 μM prepared in serial dilutions) and under the

conditions described above. The data were fitted to the best
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linear or nonlinear equations using GraphPad Prism software

(version 6.0) to obtain the IC50.

To evaluate the effect of the hits on Mpro KM (Michaelis´

constant: substrate concentration at which the reaction rate is

half of its maximal value) and Vmax (maximal rate of the

reaction), the initial velocity (60 s) of the enzyme-catalyzed

reaction was determined at six different substrate

concentrations (from 3.5 to 350 µM) while the concentration

of atpenin (50 µM), tinostamustine (100 µM) and enzyme

(0.1 µM) was fixed. The assay was performed in the same

reaction buffer used for compound screening, in duplicate

samples, and in a 384-well black microplate (total assay

volume 100 μl). For kinetic measurements, a calibration curve

and inner-filter effect corrections were applied following the

procedures described in detail in (Zhang et al., 2020).

Fluorescence was measured using a Varioskan Lux microplate

reader (Ex/Em = 340 nm/490 nm) and data analyzed with

Origin-Pro software.

For determining if the inhibition of MPro by

tinotamustine is reversible or irreversible, 1 μM of the

protease was incubated (1 h at 25°C) in reaction buffer in

the absence (control sample) or presence of an excess of the

drug that produces a ~50% enzyme inhibition. Upon

assessing the remaining enzyme activity (assay conditions

described in the second paragraph, above), both samples

were subjected to three cycles of diafiltration (Amicon Ultra-

0.5, 10 kDa-cut-off filter) in reaction buffer. Protease

concentration was determined by the bicinchoninic acid

assay (standard plot prepared with bovine serum albumin:

1:2 serial dilutions from 100 to 6.25 μg/ml). MPro activity

was assessed as described above except that the reaction was

performed in a quartz cuvette and signal read with a Cary

Eclypse Fluorescence Spectrometer (Agilent). All samples

were tested in duplicate and MPro activity was normalized to

protein concentration and, when corresponding, the

fluorescence of tinotamustine subtracted.

2.4.2 PLPro
The assay conditions (buffer, pre-incubation, assay

volume, microplate, temperature, etc.) for determining

PLPro activity were almost identical to those described

above for compound screening against Mpro. PLPro

(0.1 µM) was pre-incubated for 60 min with compounds

(25 µM in 5% DMSO v/v) and then the reaction started by

adding the peptidic substrate (5 μM; Z-RLRGG↓-AMC,

Bachem, Switzerland). For normalization purposes, full and

null PLPro activity controls included protease samples treated

with vehicle (5% v/v DMSO, 100% activity) or lacking

substrate (0% activity), respectively. Product formation was

measured by the increase of fluorescence (excitation/emission,

340/440 nm) on a 96-well microplate reader (Varioskan). All

samples were tested in duplicate.

2.5 SARS-CoV-2 cell infection assay

The anti-SARS-CoV-2 activity of the hits was determined

using a 384-wells microplate fluorescent-based cell infection

assay (Jeon et al., 2020). The experiments were performed in

compliance with the guidelines of the Korean National

Institutes of Health, using enhanced Biosafety Level 3

(BSL-3) containment procedures in laboratories approved

for use by the Korea Disease Control and Prevention

Agency (KDCA). Vero cells were sourced from American

Type Culture Collection (ATCC CCL-81) and grown in

Dulbecco’s Modified Eagle Medium (DMEM; Welgene)

supplemented with 10% v/v fetal bovine serum (FBS;

Gibco) and 1X Antibiotic-Antimycotic solution (Gibco) at

37°C and a 5% CO2 atmosphere. Vero cells were seeded at

12,000 cells per well in DMEM, supplemented with 2% FBS

and 1X Antibiotic-Antimycotic solution in black 384-well,

μClear plates (Greiner Bio-One), 24 h prior to the experiment.

Then, the compounds or reference drugs (ten-point

concentrations) and SARS-CoV-2 (βCoV/KOR/KCDC03/

2020; MOI = 0.0125) were added to the wells and

incubation extended for additional 24 h. Chloroquine

diphosphate (Sigma), remdesivir (MedChemExpress) and

lopinavir (Selleckchem) were the reference drugs. After

24 h incubation, the cells were fixed and analyzed by

immunofluorescence using an anti-SARS-CoV-

2 nucleocapsid (N) protein antibody (Sino Biological Inc.)

and an Alexa Fluor 488 goat anti-rabbit IgG (H + L) secondary

antibody. Cell nucleus was stained with Hoechst 33,342

(Molecular Probes). The fluorescence microscopy images

were taken with an Operetta CLS (PerkinElmer) and

analyzed using Columbus™ (PerkinElmer) to quantify the

number of cells and infection ratios. Antiviral activity is

normalized to positive (mock no virus with 0.5% v/v

DMSO) and negative (virus with 0.5% v/v DMSO) controls

in each assay plate. IC50 values were calculated from data fit to

sigmoidal equations using XLfit (Version 5.5) or GraphPad

Prism (Version 8) Software. The quality of each assay was

controlled by Z′-factor and the coefficient of variation in

percent (%CV).

3 Results

3.1 Ensemble learning led to improved
behaviour in retrospective screens

Table 1 shows the composition of the training, test, and

validation sets, and how the test and validation sets, respectively,

were enriched with putative inactive compounds to provide the

chemical libraries used in retrospective screening 1 (to validate

the enrichment performance of individual models and to train
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the model ensembles) and retrospective screening 2 (to validate

the enrichment performance of the ensembles).

1,000 individual models (i.e., 1,000 individual classifiers)

were generated from the training set by applying a

combination of feature bagging and Forward Stepwise on a

pool of 1,613 Mordred descriptors. The individual classifiers

were validated internally and externally, initially employing a

score cutoff value of 0.5 to discriminate between active and

inactive compounds. Internal validation results for the five

best individual classifiers, according to their AUC ROC in the

first retrospective screening, are summarized in Table 2. The five

best individual models and the meaning of their molecular

descriptors have been included as Supplementary Material.

Due to the suboptimal results of the individual classifiers

in the cross-validation, we resorted to ensemble learning,

expecting to improve robustness. The performance of the

individual models and the model ensembles has been

comparatively assessed in two retrospective screening

campaigns, where known MPro inhibitors were seeded

among (known and putative) non-inhibitors. The best

individual model displayed an AUC ROC of 0.934 ± 0.007,

a BEDROC of 0.274 ± 0.057, an AUPR of 0.221 ± 0.038, and an

TABLE 1 Active and inactive compound composition of the training, test and validation sets. The test and validation sets were expanded with decoys to
provide chemical libraries to be used in retrospective screens 1 and 2, respectively. Ya (yield of active compounds) refers to the proportion of active
compounds in the corresponding set.

Dataset Active True inactive Putative inactive or decoys Ya

Training 80 80 — 0.5

Test 27 101 1,446 0.0174

Validation 27 100 1,430 0.0176

TABLE 2 Internal validation of the 5 best individual models in the first retrospective screen. For the cross-validation and randomization tests, the mean
accuracy across the 500 rounds is informed; the standard deviation of themean is presented in parentheses. Themodels have been ordered according to their
performance in the first retrospective screening.

Model Acc (training set) Mean Acc (cross-validation) Mean Acc (randomization)

MODEL 25 0.825 0.714 (0.102) 0.501 (0.106)

MODEL 361 0.813 0.701 (0.109) 0.496 (0.095)

MODEL 77 0.819 0.705 (0.115) 0.498 (0.099)

MODEL 273 0.831 0.730 (0.104) 0.500 (0.094)

MODEL 442 0.894 0.673 (0.115) 0.500 (0.085)

FIGURE 1
Data plots from retrospective and prospective in silico screening against MPro. (A) AUC ROC obtained in the retrospective screening as a
function of the number of combined models for each operator. (B) Two different views of the PPV surface of the MIN-22 ensemble. Se/Sp refers to
the Sensitivity/Specificity ratio.
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EF0.01 of 0.29 ± 0.07 in the first retrospective screen, indicating

that there was plenty room for improvement (note that,

despite the good AUC ROC, the early enrichment metrics

clearly had suboptimal values).

The systematic combination of the 2 to 100 individual

models was performed, using five different operators to

combine the scores of the individual models (Figure 1A). The

model ensemble obtained by combining 22 models via the MIN

operator (MIN-22) provided the best results across different

metrics, greatly improving the early and overall enrichment.

Its results in both retrospective screens are shown in Table 3;

for comparative purposes, the results of the best individual model

(MODEL 25) are also included.

3.2 Prospective virtual screening

By analyzing PPV surfaces (Figure 1B) built upon the first

retrospective screening, an optimized score cutoff value of

0.546 was chosen for the MIN-22 ensemble to identify in

silico hits, corresponding to an estimated specificity of

0.998 and a minimum PPV value of 0.634 for a hypothetic Ya

of 0.01. This indicates that, for that Ya, more than one every two

in silico hits would confirm the prediction when submitted to

experimental confirmation. If a Ya of 0.1% is assumed, the same

score cutoff value would determine a minimum PPV of 0.147,

meaning more than 1 in 10 in silico hits would theoretically

confirm the predicted activity. Note that the true Ya of a library is

ignored a priori.

The MIN-22 was applied in the virtual screening of three

different chemical libraries oriented to drug repurposing,

DrugBank, the Drug Repurposing Hub and Sweetlead, and

43 molecules were selected as potential inhibitors of MPro.

The identity of these hits is shown in Supplementary Table

S1, as well as their estimated PPV, their original indication,

and whether they have already been tested against MPro

according to ChEMBL (Gaulton et al., 2017), PubChem

Bioassay (Wang et al., 2017) and PostEra Moonshot (about

half the hits had been assayed against MPro between the time

we initiated this study but before the moment of in silico hit

acquisition) and if they presented any Pan-Assay INterference

compoundS (PAINS) (Baell and Holloway 2010; Magalhães et al.,

2021). The structures of the 43 hits are shown in the

Supplementary Figure S2, together with the structures of the

80 active molecules of the Training set (Supplementary

Figure S3).

3.3 Experimental validation

3.3.1 Atpenin and tinostamustine inhibit MPro
but do not affect the in vitro proliferation of
SARS-CoV-2

The following criteria were taken into account for selecting

the in silico predicted MPro hits to be assayed against the viral

proteases: i) promiscuous scaffold and PAINS were disregarded;

ii) drugs with well-known molecular target(s) and physiological

effects; iii) good solubility and pharmacodynamics profile; iv)

whether they have been tested against the target at the moment of

compound acquisition (already tested hits were disregarded); v)

commercial availability; vi) price. Four candidates meeting all

these desired features were purchased and tested (Figure 2).

In order to allow the detection of slow-binding and low-

affinity competitive inhibition of MPro, the drugs (25 μM) were

incubated for 1 h with the enzyme and, next, the reaction was

started by adding the substrate to a 4-fold sub-KM concentration,

respectively. Under these conditions, atpenin and tinostamustine

reduced MPro activity to less than 50% whereas the inhibitory

effect exerted by INT131 (22% inhibition) and haloxon (2%

inhibition) was marginal and null, respectively (Table 4). The

control drug ebselen, a well-known covalent inhibitor of MPro

(Menéndez et al., 2020), produced full inhibition of the protease.

In order to verify the specificity of the in silico approach to

identify MPro inhibitors in a selective manner, the four drugs

were assayed against the second cysteine (papain-like) protease

of SARS-CoV-2, namely PL-Pro. Except for the promiscuous

thiol-inactivating agent ebselen, a reported covalent inhibitor of

PL-Pro (Weglarz-Tomczak et al., 2021), the drugs did not

(INT131 and atpenin) or only marginally (17% and 21%

inhibition at 25 μM for haloxon and tinotamustine,

respectively) affected PL-Pro activity (Table 4). The drug

concentration causing 50% inhibition of MPro was within the

TABLE 3 Performance of the best individual model and the best model ensemble in retrospective screening experiments. The standard deviation of the
enrichment metrics (obtained through bootstrapping) is presented in parentheses.

Model Retrospective screen AUC ROC BEDROC (α = 100) AUPR EF0.01

MODEL 25 1 0.934 (0.007) 0.274 (0.057) 0.221 (0.038) 0.29 (0.07)

2 0.837 (0.025) 0.115 (0.027) 0.101 (0.017) 0.04 (0.04)

MIN-22 1 0.982* (0.04) 0.739* (0.039) 0.663* (0.044) 42.45* (4.38)

2 0.900* (0.025) 0.614* (0.051) 0.489* (0.052) 38.42* (4.32)

*Statistically different from the best individual model on the same chemical library, p < 0.001.
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same order of magnitude for atpenin (IC50 = 1 μM) and

tinostamustine (IC50 = 4 μM), and >20-fold lower for ebselen

(IC50 = 50 nM; Table 4 and Figure 3A).

The concentration-response curves show that atpenin is a

partial inhibitor of MPro whereas the inhibition exerted by

tinostamustine shows a linear correlation with drug

concentration (Figure 3A), though within the concentration

range tested full enzyme inhibition is not achieved.

In contrast to ebselen and tinostamustine, MPro inhibition

by atpenin achieved an apparent plateau at concentrations above

1 μM (Figure 3A). This effect cannot be ascribed to a limited

solubility of the compound (e.g., at concentrations higher than

5 μM) because the theoretical LogP (10-based logarithm of the

octanol-water partition coefficient of a molecule) and LogS (10-

based logarithm of the water solubility of a molecule) values for

atpenin (2.89 and −2.88, respectively) are lower than those

estimated for tinostamustine (3.92 and −2.97, respectively), a

compound not showing saturation of enzyme inhibition within a

three-orders of magnitude concentration range. Moreover,

atpenin entails only a minor reduction (16%) in MPro’s Vmax

and apparentKM for substrate (Table 4), suggesting that this drug

is an acompetitive inhibitor of MPro.

For tinotamustine, kinetic analysis revealed a 4-fold

reduction in MPro reaction velocity and not significant

alteration in the apparent substrate KM (Table 4), which is

suggestive of a non-competitive (reversible) or an irreversible

FIGURE 2
Selected drugs assayed against the SARS-CoV-2 proteases.

TABLE 4 Inhibition of recombinant SARS-CoV-2 proteases by MPro hit drugs identified in silico.

Compound % Activity MProa % Activity PLProa IC50 MPro (μM), (hill coefficient) MPro

Vmax (M s−1) KM (μM)c

None 100 100 — 4.3 ± .5 × 10−9 19 ± 12

Haloxon 98.7 ± 3.0 83.1 ± 23.4 — — —

INT131 78.2 ± 6.9 114.1 ± 7.9 — — —

Atpenin 37.9 ± 0.9 124.3 ± 4.9 0.98 ± 0.44 (1.11) 3.6 ± 0.6 × 10−9 13 ± 10

Tinostamustine 28.9 ± 6.5 78.7 ± 4.1 3.95 ± 2.21 1.1 ± 0.3 × 10−9 15 ± 21

Ebselenb 0.0 ± 2.6 4.1 ± 7.5 0.049 ± 0.007 (2.1) — —

aReported values correspond to assays performed with compounds added at a final concentration of 25 μM.
bInhibition control drug.
cThe large errors in the kinetic determinations are due to an increase in background FRET signal at high substrate concentrations.
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inhibition mechanism. In order to determine by which of both

mechanisms the drug is inhibiting MPro, the enzyme was treated

with a stoichiometry excess of tinotamustine that yields ~50%

enzyme inhibition, and then the compound was removed by

diafiltration. Before and after ultrafiltration the activity of

untreated and tinomastutine-treated MPro was 100% ± 14%

and 43% ± 9%, and 100% ± 9% and 46% ± 6%, respectively. Since

MPro activity could not be restored upon removal of the drug,

this result indicates that tinostamustine exerts an irreversible

inhibition of the viral protease.

The capacity to inhibit the proliferation of SARS-CoV-2

(Wuhan strain) was assayed for atpenin and tinostamustine in

a cell infection model. Ebselen was included as compound

control whereas chloroquine, lopinavir, and remdesivir were

included as clinical drug controls. All molecules were tested at

concentrations embracing three-orders of magnitude. As shown

in Figure 3B, at none of the concentrations tested, atpenin and

tinostamustine significantly affected the proliferation of SARS-

CoV-2. In contrast, ebselen (IC50 = 9.7 μM) and the control

clinical drugs (plots not shown; IC50 = 10.4 μM for chloroquine,

IC50 = 14.2 μM for lopinavir, and IC50 = 9.9 μM for remdesivir)

displayed anti-viral activity in the low micro-molar range. In

contrast with atpenin and ebselen, tinostamustine resulted

markedly cytotoxic at concentrations above 10 μM (Figure 3B).

4 Discussion

As shown in Table 2, the overall percentage (accuracy, Acc)

of good classifications of the best performing individual models

was acceptable (around 80%) for the training set. In all cases, the

mean Acc of the randomized models was similar to the NOMER,

which is 0.5 for our balanced training set. These results clearly

demonstrate the low probability of spurious relationships.

Regarding the cross-validation, the mean Acc across the folds

falls about 10% (compared to the Acc on the training set) for four

of the five best performing classifiers, suggesting some degree of

overfitting and suboptimal robustness. For one of the individual

models (model 442) this behavior is accentuated, as it displays the

highest Acc on the training examples (0.894) but the lowest mean

accuracy in the cross-validation (0.673). This justified resorting

to model combination and it was convincingly shown that the

selective combination of individual models into a meta-classifier

improved the predictive ability, especially in terms of early

enrichment in the retrospective screening experiments.

The in silico approach applied for the identification of

inhibitors of MPro proved successful in identifying molecules

with selective activity against the viral protease. Two drugs, a

cardio-protective agent (atpenin) and an anti-cancer agent

(tinostamustine) agent, out of a minor number (four) of

candidates tested displayed low µM inhibitory activity and

different inhibition mechanisms towards Mpro from SARS-

CoV-2. Some key points in the modelling procedure that

could explain the success of our virtual screening campaign are:

a) A careful curation of the database from which the linear

classifiers were inferred (following the well-known “garbage

in, garbage out” principle in computer science, which states

that flawed input data produces poor output);

b) The fact that we chose to infer model classifiers, based on a

binary classification of the training examples into “active” and

“inactive” categories, rather than regression models aimed at

fitting and predicting a quantitative measure of activity, e.g.,

Ki or pIC50. Moreover, we employed a “safety” window to

label active and inactive compounds: for those data points

with reported IC50 values, compounds with IC50 < 10 µM

FIGURE 3
Drug testing against MPro and SARS-CoV-2. (A) Concentration-response plots for MPro inhibitors. The data were fitted to non-linear
(sigmoidal, for atpenin and ebselen) or linear (tinostamustine) equations. (B)Concentration-response plots for anti-viral and cytotoxic activity against
SARS-CoV-2 Vero-infected cells. Viral replication and cell viability were quantified by measuring levels of SARS-CoV-2 nucleocapsid protein and
host nuclear DNA by fluorescence microscopy. For further details see Section 2.4.1 and Section 2.5.
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were flagged as ACTIVE compounds, and compounds with

IC50 > 20 µM were considered as INACTIVE. In our opinion,

these two decisions helped to mitigate noise related to

mislabeling and inter-laboratory variability in the observed

response (note that our dataset gathered data obtained in

different labs).

c) The use of ensemble learning, which is known to improve the

reliability of the predictions. Remarkably, the chosen model

ensemble for the prospective virtual screen was based on the

MIN operator, which is quite a conservative way of

combining the ensembled models: if only one model

provides a low score to a given compound, the compound

will be labeled as inactive. In other words, an ensemble based

on this operator will only provide a high score for a

compound if all the combined models provide a high

score, i.e., if they agree in the prediction made;

d) Finally, we believe that a critical point of our protocol is the

use of two retrospective screening experiments to assess the

enrichment behavior of the individual models and the model

ensembles. For such purpose, we used not only to enrichment

metrics that reflect the average enrichment (AUC ROC) but

also early enrichment metrics (BEDROC, EF0.01), the latter

being the most critical when performing a virtual screening

campaign (Truchon and Bayly 2007).

Atpenin is an antifungal antibiotic isolated from

Penicillium sp., with high affinity for the ubiquinone-

binding site of succinate dehydrogenase (Miyadera et al.,

2003). Due to the potent inhibition exerted by atpenin on

the mitochondrial complex II, this drug has been used as

cardioprotective agent for counteracting ischemia-

reperfusion injury (Wojtovich and Brookes. 2009; Dröse

et al., 2011). Preliminary kinetic characterization suggests

that MPro inhibition by atpenin is acompetitive. SARS

coronavirus MPro has been shown to undergo important

conformational changes during and pre-catalysis, the last

including substrate-induced protein dimerization (Chang.

2009; Wu et al., 2013; Zhang et al., 2020). Thus, a possible

mechanism by which atpenin affects MPro activity may

involve a perturbation of the monomer/dimer equilibrium

(e.g. increase in dimer KD) and/or in the cooperativity

between the dimer subunits.

Tinostamustine is a fusionmolecule that combines the strong

DNA damaging effect of bedamustine (Cheson and Leoni, 2011)

with the pan-histone deacetylase inhibitor moiety of vorinostat,

providing a first-in-class alkylating deacetylase inhibitor

(Festuccia et al., 2018). Our experimental data is consistent

with an irreversible inhibition of the viral protease by

tinotamustine. Solvent accessible and un-protonated cysteine

residues (i.e., thiolate) of MPro qualify as nucleophilic targets

for alkylation by tinostamustine. From the five cysteines in

thiolate state present in MPro (Cys22, 38, 44, 128, and 145),

three of them are located close to the protein surface: Cys22,

Cys128, and Cys145 (Kneller et al., 2020). Since kinetic assays

with tinostamustine suggested a non-competitive inhibition of

MPro (impairment in Vmax and not in substrate KM), the

catalytic Cys145 is a top candidate for, probably, irreversible

modification by this drug. Nonetheless, further assays are needed

to elucidate if tinostamustine acts as a covalent or tight-binding

(non-covalent) inhibitor of MPro.

The lack of antiviral activity observed for atpenin and

tinostamustine could be explained by the impossibility, under

our assay conditions, of reaching effective concentrations at

intracellular level able to affect viral replication and not cell

viability within 24 h. This requirement is fulfilled by ebselen, a

control compound that inhibited by 50% the replication of SARS-

CoV-2 at a concentration 200-folds higher than its IC50 against

MPro (0.049 μM; Table 4). Assuming a similar behavior for

atpenin (IC50 for MPro = 0.98 μM) and tinostamustine

(IC50 for MPro = 4 μM), the antiviral EC50 would be 196 and

800 μM, respectively. These values are far higher than the

maximal concentration tested (50 μM).

An additional factor that may contribute to the observed

low in cellulo activity of the compounds might relate to the

conditions of our infection assay, which is very demanding in

terms of favoring the detection of highly active molecules. For

instance, i) it relies on Vero cells, a cell line where SARS-

CoV-2 (Wuhan strain) has been shown to display maximal

replication kinetics compared to human colon (CaCo-2) or

lung (Calu-3) cells (Mautner et al., 2022), ii) viral infection

and compound treatment is initiated simultaneously, and iii)

viral replication is determined after 24 h incubation. In line

with this statement, and supporting our current finding that

atpenin is targeting an essential viral protein, a recent study

in pre-print (Renz et al., 2022) reported an EC50 of 0.45 and

0.68 μM for atpenin A5 against two SARS-CoV-2 strains

infecting Calu-3 cells treated for 24 h prior to infection

with the compound and then incubated for additional 48 h

before assessing viral load (total assay time = 72 h).

With respect to tinotamustine, a novel repurposing

strategy for COVID-19 emerged recently. The accumulation

of highly acetylated histones induced by this drug (and

compounds with a similar mode of action) results in

induction of chromatin remodeling and modulation of gene

expression, which has been shown to reset the deregulated

immune reaction observed in severe COVID-19, particularly

by lowering the uncontrolled inflammatory response

(Ripamonti et al., 2022). Thus, the potential

polypharmacological effect of tinotamustine in COVID-19,

i.e., amelioration of host’s cytokine storm and inhibition of

viral MPro, merits further investigation.

In conclusion, our results pave the way towards a

retrospective examination of analogues (Selby et al., 2010;

Krautwald et al., 2016; Wang H et al., 2017) and building-

blocks (Mehrling and Chen 2016) of atpenin and

tinotamustine. On the other hand, the high predictive rate of
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the in silico method applied to identify SARS-CoV-2 MPro hits,

prompt to extent the experimental screenings towards the

remaining in silico candidates.

Data availability statement

The datasets used for the in silico studies (training and

validation data) have been released in the Supplementary

Material as .csv files.

Author contributions

Conceptualization, AT and MAC; Formal analysis, DNPG, SR,

MF, LNA, CLB, AT, DS,MAC; Investigation: DNPG, SR,MF, LNA,

SP, JH, HL, K-HPP;Writing—original draft preparation: AT,MAC;

Writing—review and editing: DNPG, MF, SP, K-HPP, OP, DS,

MAC; Supervision: AT, DS, MAC; Funding acquisition: DS, MAC.

All authors have read and agreed to the published version of the

manuscript.

Funding

The financial support of the Urgence COVID-19 Fundraising

Campaign of Institut Pasteur and of FOCEM (Fondo para la

Convergencia Estructural del Mercosur, Grant Number COF 03/

11) is gratefully acknowledged. Additional support was provided

by the National Research Foundation of Korea (NRF) grant

funded by the Korea Government (MSIT, No. NRF-

2017M3A9G6068254).

Acknowledgments

We thank Hilgenfeld R. (German Center for Infection Research,

University of Lübeck, Germany) and Dikic (Max Planck Institute of

Biophysics, Frankfurt, Germany) for providing the MPro and PLPro

expression vectors, respectively. SR acknowledges the support of the

Consejo Nacional de Investigaciones Científicas y Técnicas

(CONICET, Argentina) for postdoctoral fellowship.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fddsv.

2022.1082065/full#supplementary-material

References

Akshita, G., Chitra, R., Pradeep, P., Viswanathan, V., Naval, V., Punit, K., et al.
(2020). Structure-based virtual screening and biochemical validation to discover a
potential inhibitor of the SARS-CoV-2 main protease. ACS Omega 5, 33151–33161.
doi:10.1021/acsomega.0c04808

Ashburn, T., and Thor, K. (2004). Drug repositioning: Identifying and
developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673–683.
doi:10.1038/nrd1468

Baell, J. B., and Holloway, G. A. (2010). New substructure filters for removal of
pan assay interference compounds (PAINS) from screening libraries and for their
exclusion in bioassays. J. Med. Chem. 53, 2719–2740. doi:10.1021/jm901137j

Bai, Y., Ye, F., Feng, Y., Liao, H., Song, H., Qi, J., et al. (2021). Structural basis for
the inhibition of the SARS-CoV-2 main protease by the anti-HCV drug narlaprevir.
Sig. Transduct. Target Ther. 6, 51. doi:10.1038/s41392-021-00468-9

Bélgamo, J. A., Alberca, L. N., Pórfido, J. L., Caram Romero, F. N., Rodríguez, S.,
Talevi, A., et al. (2020). Application of target repositioning and in silico screening to
exploit fatty acid binding proteins (FABPs) from Echinococcus multilocularis as
possible drug targets. J. Comput. Aided Mol. Des. 34, 1275–1288. doi:10.1007/
s10822-020-00352-8

Bellera, C. L., Llanos, M., Gantner, M. E., Rodriguez, S., Gavernet, L., Comini, M.,
et al. (2021). Can drug repurposing strategies be the solution to the COVID-19
crisis? Expert Opin. Drug Discov. 16, 605–612. doi:10.1080/17460441.2021.1863943

Breidenbach, J., Lemke, C., Pillaiyar, T., Schäkel, L., Al Hamwi, G., Diett, M., et al.
(2021). Targeting the main protease of SARS-CoV-2: From the establishment of

high throughput screening to the design of tailored inhibitors. Angew. Chem. Int.
Ed. Engl. 60, 10423–10429. doi:10.1002/anie.202016961

Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G., and Lee, S.
S. (2021). The drug repurposing for COVID-19 clinical trials provide very effective
therapeutic combinations: Lessons learned from major clinical studies. Front.
Pharmacol. 12, 704205. doi:10.3389/fphar.2021.704205

Chang, G. G. (2009). Quaternary structure of the SARS coronavirus main
protease. Mol. Biol. SARS-Coronavirus, 115–128. doi:10.1007/978-3-642-03683-
5_8

Chen, X., Gong, W., Wu, X., and Zhao, W. (2021). Estimating economic
losses caused by COVID-19 under multiple control measure scenarios with
a coupled infectious disease-economic model: A case study in wuhan,
China. Int. J. Environ. Res. Public. Health. 18, 11753. doi:10.3390/
ijerph182211753

Cheson, B. D., and Leoni, L. (2011). The evolving role of bendamustine in
lymphoid malignancy: Understanding the drug and its mechanism of
action—introduction. Clin. Adv. Hematol. Oncol. 9 (19), 1–S3. doi:10.1053/j.
seminhematol.2011.03.001

Chun-Hui, Z., Stone, E. A., Deshmukh, M., Ippolito, J. A., Ghahremanpour, M.
M., Tirado-Rives, J., et al. (2021). Potent noncovalent inhibitors of the main
protease of SARS-CoV-2 from molecular sculpting of the drug perampanel
guided by free energy perturbation calculations. ACS Cent. Sci. 7, 467–475.
doi:10.1021/acscentsci.1c00039

Frontiers in Drug Discovery frontiersin.org11

Prada Gori et al. 10.3389/fddsv.2022.1082065

https://www.frontiersin.org/articles/10.3389/fddsv.2022.1082065/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fddsv.2022.1082065/full#supplementary-material
https://doi.org/10.1021/acsomega.0c04808
https://doi.org/10.1038/nrd1468
https://doi.org/10.1021/jm901137j
https://doi.org/10.1038/s41392-021-00468-9
https://doi.org/10.1007/s10822-020-00352-8
https://doi.org/10.1007/s10822-020-00352-8
https://doi.org/10.1080/17460441.2021.1863943
https://doi.org/10.1002/anie.202016961
https://doi.org/10.3389/fphar.2021.704205
https://doi.org/10.1007/978-3-642-03683-5_8
https://doi.org/10.1007/978-3-642-03683-5_8
https://doi.org/10.3390/ijerph182211753
https://doi.org/10.3390/ijerph182211753
https://doi.org/10.1053/j.seminhematol.2011.03.001
https://doi.org/10.1053/j.seminhematol.2011.03.001
https://doi.org/10.1021/acscentsci.1c00039
https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2022.1082065


Corsello, S. M., Bittker, J., Liu, Z., Gould, J., McCarren, P., Hirschman, J. E., et al.
(2017). The drug repurposing Hub: A next-generation drug library and information
resource. Nat. Med. 23, 405–408. doi:10.1038/nm.4306

Dröse, S., Bleier, L., and Brandt, U. (2011). A common mechanism links
differently acting complex II inhibitors to cardioprotection: Modulation of
mitochondrial reactive oxygen species production. Mol. Pharmacol. 79, 814–822.
doi:10.1124/mol.110.070342

El Habib Daho, M., and Chikh, M. A. (2015). Combining bootstrapping samples,
random subspaces and random forests to build classifiers. J. Med. Imag. Health Inf.
5, 539–544. doi:10.1166/jmihi.2015.1423

Eleftheriou, P., Amanatidou, D., Petrou, A., and Geronikaki, A. (2020). In silico
evaluation of the effectivity of approved protease inhibitors against the main
protease of the novel SARS-CoV-2 virus. Molecules 25, 2529. doi:10.3390/
molecules25112529

Fallico, M., Alberca, L. N., Prada Gori, D. N., Gavernet, L., and Talevi, A. (2022).
“Machine learning search of novel selective NaV1.2 and NaV1.6 inhibitors as
potential treatment against dravet syndrome,” in Computational neuroscience.
LAWCN 2021. Editors P. R. d. A. Ribeiro, V. R. Cota, D. A. C. Barone, and
A. C. M. de Oliveira (Cham, Switzerland: Communications in Computer and
Information Science), 1519, 101–118. doi:10.1007/978-3-031-08443-0_7

Festuccia, C., Mancini, A., Colapietro, A., Gravina, G. L., Vitale, F., Marampon, F.,
et al. (2018). The first-in-class alkylating deacetylase inhibitor molecule tinostamustine
shows antitumor effects and is synergistic with radiotherapy in preclinical models of
glioblastoma. J. Hematol. Oncol. 11, 32. doi:10.1186/s13045-018-0576-6

Franco, L. S., Maia, R. C., and Barreiro, E. J. (2021). Identification of LASSBio-
1945 as an inhibitor of SARS-CoV-2 main protease (MPRO) through in silico
screening supported by molecular docking and a fragment-based pharmacophore
model. RSC Med. Chem. 12, 110–119. doi:10.1039/D0MD00282H

Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, et al.
(2017). The ChEMBL database in 2017. Nucleic Acids Res. 45, D945–D954. doi:10.
1093/nar/gkw1074

Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y. D., Lee, K. H., and Tropsha, A. (2003).
Rational selection of training and test sets for the development of validated QSAR
models. J. Comput. Aided Mol. Des. 17, 241–253. doi:10.1023/A:1025386326946

Gramatica, P. (2013). On the development and validation of QSAR models.
Methods Mol. Biol. 930, 499–526. doi:10.1007/978-1-62703-059-5_21

Hattori, Si., Higashi-Kuwata, N., Hayashi, H., Allu, S. R., Raghavaiah, J., Bulut, H.,
et al. (2021). A small molecule compound with an indole moiety inhibits the main
protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 12, 668.
doi:10.1038/s41467-021-20900-6

Hongbo, L., Fei, Y., Qi, S., Hao, L., Chunmei, L., Siyang, L., et al. (2021). Scutellaria
baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like
protease in vitro. J. Enzyme Inhibition Med. Chem. 36, 497–503. doi:10.1080/
14756366.2021.1873977

Hyun, J. C., Kavvas, E. S., Monk, J. M., and Palsson, B. O. (2020). Machine
learning with random subspace ensembles identifies antimicrobial resistance
determinants from pan-genomes of three pathogens. PLoS Comput. Biol. 16,
e1007608. doi:10.1371/journal.pcbi.1007608

Isgrò, C., Sardanelli, A. M., and Palese, L. L. (2021). Systematic search for SARS-
CoV-2 main protease inhibitors for drug repurposing: Ethacrynic acid as a potential
drug. Viruses 13, 106. doi:10.3390/v13010106

Jeon, S., Ko, M., Lee, J., Choi, I., Byun, S. Y., Park, S., et al. (2020). Identification of
antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs.
Antimicrob. Agents Chemother. 64, e00819–e00820. doi:10.1128/AAC.00819-20

Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., et al. (2020). Structure of Mpro
from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293. doi:10.
1038/s41586-020-2223-y

Kneller, D. W., Phillips, G., Weiss, K. L., Pant, S., Zhang, Q., O’Neill, H. M., et al.
(2020). Unusual zwitterionic catalytic site of SARS-CoV-2 main protease revealed
by neutron crystallography. J. Biol. Chem. 295, 17365–17373. doi:10.1074/jbc.
AC120.016154

Krautwald, S., Nilewski, C., Mori, M., Shiomi, K., Ōmura, S., and Carreira, E. M.
(2016). Bioisosteric exchange of Csp3 -chloro and methyl substituents: Synthesis
and initial biological studies of atpenin A5 analogues. Angew. Chem. Int. Ed. Engl.
55, 4049–4053. doi:10.1002/anie.201511672

Lamb, Y. N. (2022). Nirmatrelvir plus ritonavir: First approval. Drugs 82,
585–591. doi:10.1007/s40265-022-01692-5

Leonard, J. T., and Roy, K. (2006). On selection of training and test sets for the
development of predictive QSAR models. QSAR Comb. Sci. 25, 235–251. doi:10.
1002/qsar.200510161

Liu, C., Boland, S., Scholle, M. D., Bardiot, D., Marchand, A., Chaltin, P., et al.
(2021). Dual inhibition of SARS-CoV-2 and human rhinovirus with protease

inhibitors in clinical development. Antivir. Res. 187, 105020. doi:10.1016/j.
antiviral.2021.105020

Llanos, M. A., Gantner, M. E., Rodriguez, S., Alberca, L. N., Bellera, C. L., Talevi,
A., et al. (2021). Strengths and weaknesses of docking simulations in the SARS-
CoV-2 era: The main protease (Mpro) case study. J. Chem. Inf. Model. 61,
3758–3770. doi:10.1021/acs.jcim.1c00404

Ma, C., Sacco, M. D., Hurst, B., Townsend, J. A., Hu, Y., Szeto, T., et al. (2020).
Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral
replication by targeting the viral main protease. Cell Res. 30, 678–692. doi:10.
1038/s41422-020-0356-z

Magalhães, P. R., Reis, P. B. P. S., Vila-Viçosa, D., Machuqueiro, M., and Victor, B.
L. (2021). Identification of Pan-Assay INterference compoundS (PAINS) using an
MD-based protocol. Methods Mol. Biol. 2315, 263–271. doi:10.1007/978-1-0716-
1468-6_15

Martin, T. M., Harten, P., Young, D. M., Muratov, E. N., Golbraikh, A., Zhu, H.,
et al. (2012). Does rational selection of training and test sets improve the outcome of
QSAR modeling? J. Chem. Inf. Model. 52, 2570–2578. doi:10.1021/ci300338w

Mautner, L., Hoyos, M., Dangel, A., Berger, C., Ehrhardt, A., and Baiker, A.
(2022). Replication kinetics and infectivity of SARS-CoV-2 variants of concern in
common cell culture models. Virol. J. 19 (1), 76. doi:10.1186/s12985-022-01802-5

Mehrling, T., and Chen, Y. (2016). The alkylating-hdac inhibition fusion
principle: Taking chemotherapy to the next level with the first in class molecule
edo-s101. Anticancer Agents Med. Chem. 16, 20–28. doi:10.2174/
1871520615666150518092027

Menéndez, C. A., Byléhn, F., Perez-Lemus, G. R., Alvarado, W., and de Pablo, J. J.
(2020). Molecular characterization of ebselen binding activity to SARS-CoV-2 main
protease. Sci. Adv. 6, eabd0345. doi:10.1126/sciadv.abd0345

Min, S. H. (2016). A genetic algorithm-based heterogeneous random subspace
ensemble model for bankruptcy prediction. Int. J. Appl. Eng. Res. 11, 2927–2931.

Miyadera, H., Shiomi, K., Ui, H., Yamaguchi, Y., Masuma, R., Tomoda, H., et al.
(2003). Atpenins, potent and specific inhibitors of mitochondrial complex II
(succinate-ubiquinone oxidoreductase). Proc. Natl. Acad. Sci. U. S. A. 100,
473–477. doi:10.1073/pnas.0237315100

Mody, V., Ho, J., Wills, S., Mawri, A., Lawson, L., Ebert, M. C. C. J. C., et al. (2021).
Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-
SARS-CoV-2 agents. Commun. Biol. 4, 93. doi:10.1038/s42003-020-01577-x

MolVS (2021). Molecule validation and standardization. Available at: https://
molvs.readthedocs.io/en/latest/.

Moonshot (2021). Covid.Postera. Available at: https://covid.postera.ai/covid/
activity_data (Accessed February 18, 2021).

Moriwaki, H., Tian, Y. S., Kawashita, N., and Takagi, T. (2018). Mordred: A
molecular descriptor calculator. J. Cheminform. 10, 4. doi:10.1186/s13321-018-
0258-y

Mukae, H., Yotsuyanagi, H., Ohmagari, N., Doi, Y., Imamura, T., Sonoyama, T.,
et al. (2022). A randomized phase 2/3 study of ensitrelvir, a novel oral SARS-CoV-
2 3C-like protease inhibitor, in Japanese patients with mild-to-moderate COVID-19
or asymptomatic SARS-CoV-2 infection: Results of the phase 2a part. Antimicrob.
Agents Chemother. 66, e0069722. doi:10.1128/aac.00697-22

Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. (2012). Directory of
useful decoys, enhanced (DUD-E): Better ligands and decoys for better
benchmarking. J. Med. Chem. 55, 6582–6594. doi:10.1021/jm300687e

Niknam, Z., Jafari, A., Golchin, A., Pouya, F. D., Nematiet, M., Rezaei-Tavirani,
M., et al. (2022). Potential therapeutic options for COVID-19: An update on current
evidence. Eur. J. Med. Res. 27, 6. doi:10.1186/s40001-021-00626-3

Novick, P. A., Ortiz, O. F., Poelman, J., Abdulhay, A. Y., and Pande, V. S. (2013).
Sweetlead: An in silico database of approved drugs, regulated chemicals, and herbal
isolates for computer-aided drug discovery. PLoS ONE 8, e79568. doi:10.1371/
journal.pone.0079568

Omer, S. E., Ibrahim, T. M., Krar, O. A., Ali, A. M., Makki, A. A., Ibraheem, W.,
et al. (2022). Drug repurposing for SARS-CoV-2 main protease: Molecular docking
and molecular dynamics investigations. Biochem. Biophys. Rep. 29, 101225. doi:10.
1016/j.bbrep.2022.101225

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830. doi:10.5555/1953048.2078195

Pinzi, L., Tinivella, A., Caporuscio, F., and Rastelli, G. (2021). Drug repurposing
and polypharmacology to fight SARS-CoV-2 through inhibition of the main
protease. Front. Pharmacol. 12, 636989. doi:10.3389/fphar.2021.636989

Prada Gori, D. N., Llanos, M. A., Bellera, C. L., Talevi, A., and Alberca, L. N.
(2022). iRaPCA and SOMoC: Development and validation of web applications for
new approaches for the clustering of small molecules. J. Chem. Inf. Model. 62,
2987–2998. doi:10.1021/acs.jcim.2c00265

Frontiers in Drug Discovery frontiersin.org12

Prada Gori et al. 10.3389/fddsv.2022.1082065

https://doi.org/10.1038/nm.4306
https://doi.org/10.1124/mol.110.070342
https://doi.org/10.1166/jmihi.2015.1423
https://doi.org/10.3390/molecules25112529
https://doi.org/10.3390/molecules25112529
https://doi.org/10.1007/978-3-031-08443-0_7
https://doi.org/10.1186/s13045-018-0576-6
https://doi.org/10.1039/D0MD00282H
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1023/A:1025386326946
https://doi.org/10.1007/978-1-62703-059-5_21
https://doi.org/10.1038/s41467-021-20900-6
https://doi.org/10.1080/14756366.2021.1873977
https://doi.org/10.1080/14756366.2021.1873977
https://doi.org/10.1371/journal.pcbi.1007608
https://doi.org/10.3390/v13010106
https://doi.org/10.1128/AAC.00819-20
https://doi.org/10.1038/s41586-020-2223-y
https://doi.org/10.1038/s41586-020-2223-y
https://doi.org/10.1074/jbc.AC120.016154
https://doi.org/10.1074/jbc.AC120.016154
https://doi.org/10.1002/anie.201511672
https://doi.org/10.1007/s40265-022-01692-5
https://doi.org/10.1002/qsar.200510161
https://doi.org/10.1002/qsar.200510161
https://doi.org/10.1016/j.antiviral.2021.105020
https://doi.org/10.1016/j.antiviral.2021.105020
https://doi.org/10.1021/acs.jcim.1c00404
https://doi.org/10.1038/s41422-020-0356-z
https://doi.org/10.1038/s41422-020-0356-z
https://doi.org/10.1007/978-1-0716-1468-6_15
https://doi.org/10.1007/978-1-0716-1468-6_15
https://doi.org/10.1021/ci300338w
https://doi.org/10.1186/s12985-022-01802-5
https://doi.org/10.2174/1871520615666150518092027
https://doi.org/10.2174/1871520615666150518092027
https://doi.org/10.1126/sciadv.abd0345
https://doi.org/10.1073/pnas.0237315100
https://doi.org/10.1038/s42003-020-01577-x
https://molvs.readthedocs.io/en/latest/
https://molvs.readthedocs.io/en/latest/
https://covid.postera.ai/covid/activity_data
https://covid.postera.ai/covid/activity_data
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1128/aac.00697-22
https://doi.org/10.1021/jm300687e
https://doi.org/10.1186/s40001-021-00626-3
https://doi.org/10.1371/journal.pone.0079568
https://doi.org/10.1371/journal.pone.0079568
https://doi.org/10.1016/j.bbrep.2022.101225
https://doi.org/10.1016/j.bbrep.2022.101225
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.3389/fphar.2021.636989
https://doi.org/10.1021/acs.jcim.2c00265
https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2022.1082065


Renz, A., Hohner, M., Breitenbach, M., Josephs-Spaulding, J., Dürrwald, J., Best,
L., et al. (2022).Metabolic modeling elucidates phenformin and atpenin A5 as broad-
spectrum antiviral drugs, 2022, 100223. doi:10.20944/preprints202210.0223.
v1Preprints

Ripamonti, C., Spadotto, V., Pozzi, P., Stevenazzi, A., Vergani, B., Marchini, M.,
et al. (2022). HDAC inhibition as potential therapeutic strategy to restore the
deregulated immune response in severe COVID-19. Front. Immunol. 13, 841716.
doi:10.3389/fimmu.2022.841716

Rodrigues, L., Bento Cunha, R., Vassilevskaia, T., Viveiros, M., and Cunha, C.
(2022). Drug repurposing for COVID-19: A review and a novel strategy to identify
new targets and potential drug candidates. Molecules 27, 2723. doi:10.3390/
molecules27092723

Rothan, H. A., and Teoh, T. C. (2021). Cell-based high-throughput screening
protocol for discovering antiviral inhibitors against SARS-COV-2 main protease
(3CLpro). Mol. Biotechnol. 63, 240–248. doi:10.1007/s12033-021-00299-7

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. doi:10.1016/0377-
0427(87)90125-7

Sacco, M. D., Ma, C., Lagarias, P., Gao, A., Townsend, J. A., Meng, X., et al. (2020).
Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for
developing dual inhibitors against Mpro and cathepsin L. Sci. Adv. 6, eabe0751.
doi:10.1126/sciadv.abe0751

Saito, T., and Rehmsmeier, M. (2015). The precision-recall plot is more
informative than the ROC plot when evaluating binary classifiers on imbalanced
datasets. PloS One 10, e0118432. doi:10.1371/journal.pone.0118432

Selby, T. P., Hughes, K. A., Rauh, J. J., and Hanna, W. S. (2010). Synthetic atpenin
analogs: Potent mitochondrial inhibitors of mammalian and fungal succinate-
ubiquinone oxidoreductase. Bioorg. Med. Chem. Lett. 20, 1665–1668. doi:10.1016/j.
bmcl.2010.01.066

Shin, D., Mukherjee, R., Grewe, D., Bojkova, D., Baek, K., Bhattacharya, A., et al.
(2020). Papain-like protease regulates SARS-CoV-2 viral spread and innate
immunity. Nature 587, 657–662. doi:10.1038/s41586-020-2601-5

Shitrit, A., Zaidman, D., Kalid, O., Bloch, I., Doron, D., Yarnizky, T., et al. (2020).
Conserved interactions required for inhibition of the main protease of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Sci. Rep. 10, 20808. doi:10.
1038/s41598-020-77794-5

Silva, J. R. A., Kruger, H. G., and Molfetta, F. A. (2021). Drug repurposing and
computational modeling for discovery of inhibitors of the main protease (Mpro) of
SARS-CoV-2. RSC Adv. 11, 23450–23458. doi:10.1039/d1ra03956c

Su, H., Yao, S., Zhao, W-f., Li, M-j., Liu, J., Shang, W-j., et al. (2020). Anti-SARS-
CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive
ingredients. Acta Pharmacol. Sin. 41, 1167–1177. doi:10.1038/s41401-020-0483-6

Topliss, J. G., and Costello, R. J. (1972). Change correlations in structure-activity
studies using multiple regression analysis. J. Med. Chem. 15, 1066–1068. doi:10.
1021/jm00280a017

Truchon, J. F., and Bayly, C. I. (2007). Evaluating virtual screening methods:
Good and bad metrics for the “early recognition” problem. J. Chem. Inf. Model. 47,
488–508. doi:10.1021/ci600426e

Ullrich, S., and Nitsche, C. (2020). The SARS-CoV-2main protease as drug target.
Bioorg. Med. Chem. Lett. 30, 127377. doi:10.1016/j.bmcl.2020.127377

Venkadapathi, J., Govindarajan, V. K., Sekaran, S., and Venkatapathy, S. (2021).
A minireview of the promising drugs and vaccines in pipeline for the treatment of
COVID-19 and current update on clinical trials. Front. Mol. Biosci. 8, 637378.
doi:10.3389/fmolb.2021.637378

Vuong, W., Khan, M. B., Fischer, C., Arutyunova, E., Lamer, T., Shields, J.,
et al. (2020). Feline coronavirus drug inhibits the main protease of SARS-CoV-
2 and blocks virus replication. Nat. Commun. 11, 4282. doi:10.1038/s41467-
020-18096-2

Wang, H., Huwaimel, B., Verma, K., Miller, J., Germain, T. M., Kinarivala, N.,
et al. (2017). Synthesis and antineoplastic evaluation of mitochondrial complex II
(succinate dehydrogenase) inhibitors derived from atpenin A5. Chem. Med. Chem.
12, 1033–1044. doi:10.1002/cmdc.201700196

Wang, H., Paulson, K. R., Pease, S. A., Watson, S., Comfort, H., Zheng, P., et al.
(2022). Estimating excess mortality due to the COVID-19 pandemic: A systematic
analysis of COVID-19-related mortality, 2020-21. Lancet 399, 1513–1536. doi:10.
1016/S0140-6736(21)02796-3

Wang, Y., Bryant, S. H., Cheng, T.,Wang, J., Gindulyte, A., Shoemaker, B. A., et al.
(2017). PubChem BioAssay: 2017 update.Nucleic Acids Res. 45, D955–D963. doi:10.
1093/nar/gkw1118

Watson, O. J., Barnsley, G., Toor, J., Hogan, A. B., Winskill, P., and Ghani, A. C.
(2022). Global impact of the first year of COVID-19 vaccination: A mathematical
modelling study. Lancet Infect. Dis. 22, 1293–1302. doi:10.1016/S1473-3099(22)
00320-6

Weglarz-Tomczak, E., Tomczak, J. M., Talma, M., Burda-Grabowska, M., Giurg,
M., and Brul, S. (2021). Identification of ebselen and its analogues as potent covalent
inhibitors of papain-like protease from SARS-CoV-2. Sci. Rep. 11, 3640. doi:10.
1038/s41598-021-83229-6

Wenhao, D., Zhang, B., Jiang, X-M., Su, H., Li, J., Zhao, Y., et al. (2020). Structure-
based design of antiviral drug candidates targeting the SARS-CoV-2 main protease.
Science 368, 1331–1335. doi:10.1126/science.abb4489

Wilcox, R. R. (2012). “Chapter 5 - comparing two groups,” in Statistical
modeling and decision science. Introduction to robust estimation and hypothesis
testing. Third Edition (Academic Press), 137–213. doi:10.1016/B978-0-12-
386983-8.00005-6

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., et al.
(2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic
Acids Res. 46, D1074–D1082. doi:10.1093/nar/gkx1037

Wojtovich, A. P., and Brookes, P. S. (2009). The complex II inhibitor atpenin
A5 protects against cardiac ischemia-reperfusion injury via activation of
mitochondrial KATP channels. Basic Res. Cardiol. 104, 121–129. doi:10.1007/
s00395-009-0001-y

Wu, C. G., Cheng, S. C., Chen, S. C., Li, J. Y., Fang, Y. H., Chen, Y. H., et al. (2013).
Mechanism for controlling the monomer-dimer conversion of SARS coronavirus
main protease. Acta Crystallogr. D. Biol. Crystallogr. 69, 747–755. doi:10.1107/
S0907444913001315

Yasri, A., and Hartsough, D. (2001). Toward an optimal procedure for variable
selection and QSAR model building. J. Chem. Inf. Comput. Sci. 41, 1218–1227.
doi:10.1021/ci010291a

Yu, G., Zhang, G., Domeniconi, C., Yu, Z., and You, J. (2012). Semi-supervised
classification based on random subspace dimensionality reduction. Pattern Recogn.
45, 1119–1135. doi:10.1016/j.patcog.2011.08.024

Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., et al. (2020).
Crystal structure of SARS-CoV-2 main protease provides a basis for design of
improved α-ketoamide inhibitors. Science 368, 409–412. doi:10.1126/science.
abb3405

Zhang, Q., and Muegge, I. (2006). Scaffold hopping through virtual screening
using 2D and 3D similarity descriptors: Ranking, voting, and consensus scoring.
J. Med. Chem. 49, 1536–1548. doi:10.1021/jm050468i

Frontiers in Drug Discovery frontiersin.org13

Prada Gori et al. 10.3389/fddsv.2022.1082065

https://doi.org/10.20944/preprints202210.0223.v1
https://doi.org/10.20944/preprints202210.0223.v1
https://doi.org/10.3389/fimmu.2022.841716
https://doi.org/10.3390/molecules27092723
https://doi.org/10.3390/molecules27092723
https://doi.org/10.1007/s12033-021-00299-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1126/sciadv.abe0751
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1016/j.bmcl.2010.01.066
https://doi.org/10.1016/j.bmcl.2010.01.066
https://doi.org/10.1038/s41586-020-2601-5
https://doi.org/10.1038/s41598-020-77794-5
https://doi.org/10.1038/s41598-020-77794-5
https://doi.org/10.1039/d1ra03956c
https://doi.org/10.1038/s41401-020-0483-6
https://doi.org/10.1021/jm00280a017
https://doi.org/10.1021/jm00280a017
https://doi.org/10.1021/ci600426e
https://doi.org/10.1016/j.bmcl.2020.127377
https://doi.org/10.3389/fmolb.2021.637378
https://doi.org/10.1038/s41467-020-18096-2
https://doi.org/10.1038/s41467-020-18096-2
https://doi.org/10.1002/cmdc.201700196
https://doi.org/10.1016/S0140-6736(21)02796-3
https://doi.org/10.1016/S0140-6736(21)02796-3
https://doi.org/10.1093/nar/gkw1118
https://doi.org/10.1093/nar/gkw1118
https://doi.org/10.1016/S1473-3099(22)00320-6
https://doi.org/10.1016/S1473-3099(22)00320-6
https://doi.org/10.1038/s41598-021-83229-6
https://doi.org/10.1038/s41598-021-83229-6
https://doi.org/10.1126/science.abb4489
https://doi.org/10.1016/B978-0-12-386983-8.00005-6
https://doi.org/10.1016/B978-0-12-386983-8.00005-6
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1007/s00395-009-0001-y
https://doi.org/10.1007/s00395-009-0001-y
https://doi.org/10.1107/S0907444913001315
https://doi.org/10.1107/S0907444913001315
https://doi.org/10.1021/ci010291a
https://doi.org/10.1016/j.patcog.2011.08.024
https://doi.org/10.1126/science.abb3405
https://doi.org/10.1126/science.abb3405
https://doi.org/10.1021/jm050468i
https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2022.1082065

	Drug repurposing screening validated by experimental assays identifies two clinical drugs targeting SARS-CoV-2 main protease
	1 Introduction
	2 Methods
	2.1 Model development and validation
	2.1.1 Dataset compilation and curation
	2.1.2 Dataset splitting into training and test sets
	2.1.3 Molecular descriptor calculation, modelling procedure and model validation
	2.1.4 Retrospective screens
	2.1.5 Ensemble learning

	2.2 Prospective virtual screening
	2.3 Expression and purification of SARS-CoV-2 recombinant proteases
	2.4 Protease screening and/or kinetic assays
	2.4.1 MPro
	2.4.2 PLPro

	2.5 SARS-CoV-2 cell infection assay

	3 Results
	3.1 Ensemble learning led to improved behaviour in retrospective screens
	3.2 Prospective virtual screening
	3.3 Experimental validation
	3.3.1 Atpenin and tinostamustine inhibit MPro but do not affect the in vitro proliferation of SARS-CoV-2


	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


