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Quantum computing for the biological sciences is an area of rapidly growing interest, but
specific industrial applications remain elusive. Quantum Markov chain Monte Carlo has been
proposed as a method for accelerating a broad class of computational problems, including
problems of pharmaceutical interest. Here we investigate the prospects of quantum advantage
via this approach, by applying it to the problem of modelling antibody structure, a crucial task in
drug development. To minimize the resources required while maintaining pharmaceutical-level
accuracy, we propose a specific encoding of molecular dihedral angles into registers of qubits
and amethod for implementing, in quantumsuperposition, aMarkov chainMonteCarlo update
step based on a classical all-atom force field.We give the first detailed analysis of the resources
required to solve a problem of industrial size and relevance and find that, though the time and
space requirements of using a quantum computer in this way are considerable, continued
technological improvements could bring the required resources within reach in the future.
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1 INTRODUCTION

The last few years have seen a dramatic increase in global investment in quantum computing,
accompanied by a concerted effort to find industrial applications that can outperform existing
computational methods. In the biological sciences, a number of initial studies on quantum
computing for protein folding have been made. In particular, the works of (Perdomo et al.,
2008; Babbush et al., 2012; Perdomo-Ortiz et al., 2012; Babej et al., 2018; Outeiral et al., 2021a)
investigate simulating lattice-based models of proteins using analog quantum computers such as
quantum annealers; For gate-based quantum computing, lattice-models of proteins have also been
considered in (Fingerhuth et al., 2018; Robert et al., 2021) using variations of the quantum
approximate optimization algorithm (QAOA) (Farhi et al., 2014) and the variational quantum
eigensolver (VQE) (Peruzzo et al., 2014). More realistic, non-lattice based models have also been
studied, with (Mulligan et al., 2020) using the D-Wave quantum annealer in conjunction with a
Rosetta energy function and side-chain rotamer library, and (Casares et al., 2022) proposing a
method which combines the AlphaFold (Senior et al., 2020) algorithm with quantum walks1. While
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1Of the previous quantum studies on protein folding, the paper of (Casares et al., 2022)—the preprint of which appeared while
our manuscript was in preparation—is closest to ours. Like this manuscript, their method is also based on quantum Markov
Chain Monte Carlo, but they do not consider the implementation of the key quantum operations, viewing these as being
performed by a “black box”.
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these works have made important contributions to our
understanding of how quantum computers may be applied to
this domain, no methods have yet been proposed that might solve
specific problems to a speed and accuracy that would make them
attractive to industry.

Motivated by the growing need to understand the true
potential of quantum computing for solving real-world
problems of industrial size and commercial relevance, here
we show how classical Markov chain Monte Carlo (MCMC)
methods based on torsion space conformation updates and all-
atom force fields, such as those used in the Rosetta software
package, can be adapted into a quantum computing procedure
to predict the 3D structure of protein loops starting from their
amino acid sequence. As a potential application, we have in
mind the modelling of antibody loops—in particular, the H3
loop—a crucial task in the development of therapeutic
antibodies. This problem lies in the sweet spot of 1) being
of practical importance to the pharmaceutical industry, as
existing computational methods cannot predict H3 loop
structures to the required near-atomic-level accuracy
quickly enough to be part of an industrial workflow2; and
2) involving molecules of a size (typically 3 to 30 amino acid
residues long) that, as we show, the problem can be tackled on
a quantum computer with resources that are plausibly within
reach in the future.

Structurally, antibodies consist of two identical pairs of
polypeptides chains, with each pair comprising a heavy chain
(containing approx. 500 amino acid residues) and a light chain
(approx. 200 amino acids) Their ability to bind to a large variety
of molecular targets with high affinity and specificity has led to
antibodies becoming the predominant class of new therapeutics
and diagnostics tools in recent years. The function of antibodies,
together with their desired drug profile (e.g. affinity, stability,
half-life, tissue penetration (Kim et al., 2005)), is a direct
consequence of their structure. As experimental structure
determination of antibodies is time-consuming and costly,
computational structure prediction plays a crucial role in
accelerating and facilitating the development of antibody-
therapeutics.

Antibody binding occurs via a specific antigen-binding
region, characterized by 6 hypervariable loops—called
complementarity-determining regions (CDRs)—located on
the variable domains of the light (L1, L2, L3) and heavy (H1,
H2, H3) chains (Figure 1). While antibodies are typically more
rigid and stable than other proteins, they are known to retain a
certain amount of plasticity to accommodate for different
antigens, with a degree of flexibility inherent to many CDRs
(Fernández-Quintero et al., 2019; Fernández-Quintero et al.,
2020; Fernández-Quintero et al., 2021). For 5 of the CDRs loops
(L1, L2, L3, H1 and H2) though, limited shapes have been

observed, leading to the identification of definite canonical
structures based on their sequences. In contrast, H3 loops
exhibit high diversity—with longer loops typically displaying
more conformal variety—and cannot be classified into
canonical groups. Consequently, the main antibody
modelling problem of interest is the accurate prediction of
the H3 loop. While atomic resolutions (i.e. 1 Å = 10−10 m)
can be reached for canonical CDRs, accuracy ranging from
1.5–3 Å or worse can be expected for H3. Furthermore, such
loops do not exist in a unique structural conformation, but
rather as an ensemble of different states that can occur on
different timescales and with different probabilities. As
experimental structures for antibodies are, in most cases,
derived by X-ray crystallography at low temperature
(~ 100K) at which only the most dominant conformation can
be observed, other metastable states of the loops which are
present at physiological temperatures must often be deduced via
simulation. Thus, it is desirable and insightful for H3 loop
modelling procedures to output not only a single candidate
H3 structure, but rather sample from the Boltzmann
distribution of possible structures.

Classical MCMCmethods for loop modelling sample from the
Boltzmann distribution based on a chosen state space Ω of
possible configurations of the molecule. Starting from an
initial configuration x ∈ Ω of the molecule, the following steps
are then iterated:

1. Propose a random update x → x′ ∈ Ω.
2. Accept the update with probability min 1, e

−E(x′)/T
e−E(x)/T{ }.

Here, E(x) is the energy of a configuration and T is the
temperature. This procedure—if run for a sufficiently long
time—is guaranteed to converge to a configuration drawn
from the distribution p(x) ~ e−E(x)/T, and has effectiveness that
depends on defining a state space that can capture the biologically
relevant structures at appropriate levels of granularity, and update
rules that can efficiently explore this space, avoiding spending too
long stuck in energetically unfavorable configurations. In
practice, the accurate MCMC modelling of pharmaceutically
relevant loops can take days to weeks to complete—too long
to be part of a commercially feasible workflow.

Here we are interested in using quantum computing to
accelerate the MCMC process, and give the first detailed
analysis of the resources required to solve a protein structure
problem of industrial size and relevance. Our focus is specifically
on fault-tolerant gate-based quantum computing (see Section
2.1). While it may be several decades before large-scale fault-
tolerant devices are available (Sevilla and Riedel, 2020), they are
widely believed to offer the best long term prospects for practical
advantage of classically-intractable problems, with
mathematically provable efficiency of algorithms possible in
some cases. In contrast, other models of quantum computing
may be available sooner, but may not guarantee the same long-
term advantages. Analog approaches to quantum computing
such as adiabatic quantum computing (Farhi et al., 2000),
quantum annealing or continuous time quantum walks (Farhi
and Gutmann, 1998) lack practical means of error-correction,

2While advances continue to be made in machine learning for protein
folding—most notably with the announcement of AlphaFold 2 (DeepMind,
2020) in the CASP 14 protein structure prediction competition—not all protein
folding problems can be solved with these new methods, and there is the need to
continue to explore the potential of quantum computing for this domain.
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which may limit the size of computations that can be performed;
and the embedding of computational problems in a form
amenable to annealing makes the application of realistic
energy models challenging (e.g. (Marchand et al., 2019;
Mulligan et al., 2020) require non-trivial procedures
interleaving classical and quantum computation). Hybrid
quantum-classical approaches such as VQE and QAOA, which
are gate-based but primarily targeted at noisy, non-error-
corrected quantum computers, similarly lack strong evidence
for practical advantage or scalability. For an overview on the
prospects of various quantum computing technologies see
(National Academies of Sciences, Engineering and Medicine,
2019).

2 METHODS

2.1 Ciruit Model of Quantum Computation
In the standard circuit model of quantum computing,
computational tasks are carried out by applying operations,
known as gates, to registers (i.e., groups) of qubits. At the end
of a sequence of gates, one or more of the qubits are measured and
the results recorded. The size and complexity of the quantum
circuit required to solve a particular task determines the overall
algorithmic running time and, in particular, whether or not an
advantage can be gained over existing classical computational
methods. As individual qubits and gates are invariably error
prone, quantum error correction procedures must be applied
for long circuits to be computed. The aim of error correction is to
use multiple noisy physical qubits to encode a single error-free
logical qubit, which comes at the cost of additional qubits and

computational time. As the error correction operations
themselves may be faulty, one must take care to ensure that
the net effect is an overall reduction in error. This is referred to as
fault-tolerance and, if achieved, can be used to drive errors
arbitrarily low, enabling large scale computations to be
implemented. For further background, we refer readers to
(Outeiral et al., 2021b) for a good introduction to quantum
computing from a biological sciences perspective. In the
supplementary material we give additional details on topics
specific to this work, including accelerating MCMC via
quantum walks, resource overheads required for error
correction, and evaluating complicated functions in a quantum
circuit.

2.2 Quantum MCMC
Quantum Markov chain Monte Carlo (Szegedy, 2004) is an
approach to speeding up classical MCMC methods on a fault-
tolerant quantum computer (FTQC). By encoding the state of
the system of interest in a number of qubits and translating the
update and acceptance rules into a sequence of quantum gates,
the number of update steps required can be reduced to roughly
the square root of the number of steps required classically (see
Supplementary Material S1). While this quadratic reduction
provides an opportunity for quantum advantage, the time
required for each step may be longer in the quantum case,
and care is needed in analyzing whether a speedup can be
obtained. Furthermore, the success of the approach depends,
among other things, on finding an efficient quantum encoding
of the 3D structure of the antibody loop. That is, a way of
representing the antibody structure in the state of multiple
qubits.

FIGURE 1 | (Left) Cartoon and surface representation of the Fab region of the anti-VEGF antibody with PDB code 1CZ8. Framework is represented in gray,
complementarity-determining regions in green (light chain loops L1, L2 and L3) and blue (heavy chains loops, H1, H2 and H3). (Right) The corresponding amino acid
sequences of the chains. Image created with PyMOL (Schrödinger, 2021).
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To evaluate the feasibility of quantum MCMC for antibody
loop modelling, we propose a specific encoding of molecular
dihedral angles into registers of qubits and a method for
implementing the MCMC update step coherently in quantum
superposition. To enable the latter, we propose a quantum
subroutine (Quantum SN-NeRF) based on the classical Self-
Normalizing Natural extension Reference Frame (Parsons
et al., 2005) method for coherently converting from dihedral
angles to Cartesian coordinates. We estimate the number of
qubits and time required to implement such an approach on
an FTQC and find that, while there are limited prospects for an
advantage on a first generation FTQC, continued technological
improvements could bring the required resources within reach on
future quantum devices.

2.3 Dihedral Angles
We consider polypeptides consisting of L amino acid residues,
containing N heavy (non-hydrogen) atoms. Atomic positions can
be described by Cartesian coordinates in 3D space, or relative to
one another using dihedral (or torsion) angles. While the
Cartesian representation is convenient for computing atomic
forces and determining deviations of predicted atomic
positions from experimentally determined positions, the
dihedral representation can be preferable for generating
perturbations to the molecular structure.

In the dihedral formalism, any four consecutive backbone
atoms A-B-C-D define two planes, containing A-B-C, and B-C-D
respectively. The angle between these two planes is the associated
dihedral angle and, in a polypeptide backbone, each residue has
three associated dihedral angles labelled φ, ψ and ω. A complete
internal representation of the backbone is given by specifying
each of the dihedral angles and bond lengths between consecutive
backbone atoms, as well as the bond angles between any three
consecutive atoms. The side chains of a polypeptide can similarly
be described by dihedral angles χi, where i = 1, 2, 3, . . . depending
on the length of the side chain (see Figure 2).

2.4 Design Considerations
Given a classical Markov chain with state space Ω, let M �
{m1, m2, . . .} be a set of moves, i.e. mappings mj: Ω → Ω that

correspond to proposed state space updates x → xj′ � mj(x),
and let PM be a probability distribution over the moves. That is,
when the chain is in state x, the update x → xj′ is proposed with
probability Txj′x � PM(j). Once proposed, the update is
accepted with probability given by the Metropolis-Hastings
(MH) rule:

Ax′x � min 1,
e−E x′( )/T
e−E x( )/T

⎧⎨
⎩

⎫⎬
⎭ (1)

In our approach, we follow the LHPST (Lemieux et al., 2020)
quantum MCMC framework, where a quantum walk operator
W is implemented by four other quantum operators (V, B, F, R),
acting on System (S), Move (M) and Coin (C) quantum
registers. Mathematical definitions of these operators are
given in Supplementary Material S4, but their functions,
and that of the various registers, can be understood by
analogy with the classical MCMC process. In what follows
we use Dirac notation | · 〉 to denote a quantum state, with a
subscript, e.g., |0〉C, denoting the register. Both classical and
quantum MCMC are based on the same principles: given an
initial state, 1) propose an update move; 2) toss a biased coin; 3)
if a heads is obtained, update the state based on the proposed
update. The difference is in how these steps are implemented
(see Figure 3). In the classical case, the update move is chosen
randomly from a list of possible moves, and the probability of
obtaining a heads is given by the MH rule. In the quantum case,
the state of the system is stored in the S register. Then, rather
than selecting a single random update rule, the V operator is
used to create a superposition of all possible update moves in the
M register. The effect of the coin toss is implemented by the B
operator, which creates a superposition of |0〉C and |1〉C in the
coin register, where the probability of measuring |1〉C is given by
the MH rule. The F operator acts to update the state if the coin
register is in the |1〉C state (i.e., Heads). In addition, a fourth
quantum operator (the R operator) is needed, which serves to
reflect the move and coin states if both of them are zero, i.e.
|0〉M|0〉C → − |0〉M|0〉C. This has no classical analogue, but is
required for the quantum algorithm to provide an asymptotic
speedup.

FIGURE 2 | The amino acids leucine and alanine forming a dipeptide. The backbone angles φ, ψ, and side chain angles χi of alanine are annotated. In any
polypeptide, φi is defined by atoms Ci−1 - Ni - Cαi - Ci. ψi is defined by atoms Ni - Cαi - Ci - Ni+1, and ωi is defined by atomsCαi−1 - Ci−1 - Ni - Cαi. The ωi angle is not shown in
the figure as it is nearly always close to 180°. Image created with BIOVIA Draw and Biorender.com.
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The Coin register consists of a single qubit, while the number
of qubits in the System andMove registers is problem-dependent.
The quantum walk operator W is then defined as

W � RV†B†FBV (2)
To apply this framework to the problem of antibody loop

modelling, we make the following design choices:
Dihedral angle encoding. We represent each amino acid

residue in the loop by its backbone and side chain dihedral
angles, assuming ideal bond lengths and angles. Lookup tables
of these angles can be constructed by sampling data from
Ramachandran plots (Ramachandran et al., 1963) and
backbone-dependent rotamer libraries, e.g. (Shapovalov and
Dunbrack, 2011). By specifying an index into the tables for
each residue, the biologically relevant structures of the loop
can be given in compact form for encoding in a register of qubits.

Update rules. The dihedral angle encoding allows for an
efficiently implementable Monte Carlo update step
corresponding to replacing a randomly chosen backbone or
side chain dihedral angle with another randomly chosen value
from the corresponding lookup table3.

Energy function. We are interested in high-accuracy
modelling and thus take E(x) to be specified by a classical all-
atom force field such as CHARMM36m (Huang et al., 2017).

Conversion to 3D coordinates. Evaluation of E(x)
necessitates conversion of the dihedral angle representation of
the loop into 3D coordinates. To do so, we first use a Quantum
Read-Only Memory (QROM) (Babbush et al., 2018) approach to
convert the dihedral lookup table indices into their corresponding
angles. Then, we adapt a variant (Parsons et al., 2005) of the
classical Natural-extension Reference Frame (NerF) algorithm
used by the Rosetta software package to give a quantum
procedure (QSN-NeRF) for coherently converting from
dihedral angles to 3D coordinates in quantum superposition.

Energy calculation and Metropolis update. After conversion
to 3D coordinates, the energy of the existing and proposed
configurations can be computed. Implementing the Metropolis
update in the LHPST framework requires evaluating
arcsin( ������������������

min{1, e−(E(x′)−E(x))/T}√ ) in quantum superposition.
Due to the high costs of implementing certain quantum
mathematical operations, we divide this calculation into two
parts; 1) We compute E(x), E (x′) by decomposing the energy
function into elementary arithmetic operations for which efficient
quantum circuits are known; 2) following (Sanders et al., 2020)
we propose implementing the subsequent arcsin( �·√ )
computation via QROM lookup.

With these design choices we obtain estimates of the resources
required to implement the LPHST quantum walk given in
Table 1 (see Supplementary Material S4 for details). In
leading candidate proposals for fault-tolerant quantum
computing such as via the surface code, the Toffoli
(controlled-controlled-NOT) gate is expected to take orders of
magnitude longer to implement than other gates, as each Toffoli
gate first requires the production of an associated magic state via
an expensive process known as distillation. We therefore estimate

FIGURE 3 | (Top) Schematic of the (classical and quantum) MCMC process, illustrated with a toy model consisting of a 3 atommolecule defined by a single angle x.
Given an initial state of the system, an update move is proposed from a list of possible moves. In this example, a move mj corresponds to increasing the angle x by an
amount δj. A coin is then tossed and, if a heads is obtained, the state is updated to xj′. (Bottom) Classical vs quantum implementation of this process, and the quantum
registers (S,M, C) and operators (V, B, F) involved in implementing each step. In addition, there is a fourth quantum operator (R), which has no classical analogue,
but is required for the quantum algorithm to obtain an asymptotic speedup.

3The lookup table approach to encoding and updating can be extended to other
schemes based on dihedral angles, e.g. the backbone fragment insertion scheme of
Rosetta where a multiple-residue fragment is randomly selected and the associated
torsion angles replaced with the torsion angles from another fragment from a
precomputed list.
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the computational time and number of qubits required to
implement the various quantum operators required by our
approach by the number of Toffoli gates needed.

3 RESULTS

To benchmark our approach and understand the technological
requirements necessary for a quantum advantage, we consider
the MKHMAGAAAAGAVV H1 loop from the Syrian hamster
prion protein, which was modelled to high accuracy via classical
Monte Carlo methods in (Ulmschneider et al., 2006) using the
OPLS-AA all-atom force field, GBSA implicit solvent model and
concerted rotation updates. While some of these details differ
from our quantum procedure, and the loop considered is an H1
rather than H3 loop, the loop size (L = 14, N = 88) and the
number of classical MCMC steps (106 per structural sample)
serve as a useful baseline for comparison. Estimates of the
resources required to solve the same problem using our
quantum approach are given in Table 2 (see Supplementary
Material S5 for more details). The number of qubits needed and
the quantum running time per step are based on a
superconducting quantum processor running the surface
code (Bravyi and Kitaev, 1998; Dennis et al., 2002), a leading
candidate for error-corrected quantum computing. As
mentioned, for such a system, the resource bottleneck is the
time and qubits required for the magic state distillation used to
implement non-Clifford operations such as the Toffoli gate.

Using the state-of-the-art |CCZ〉 distillation factory of
(Gidney and Fowler, 2019), and assuming first generation
large-scale FTQC have physical error rates of 10–4 (see (Sevilla
and Riedel, 2020) for forecast timelines of quantum computing
technology) and a surface code cycle time of 1μs4, a single Toffoli
gate can be distilled every 170.5 μs using a specially reserved
section of the quantum computer—known as a
factory—consisting of ~ 1.3 × 105 physical qubits. In the long
run, surface code cycle times of 200 ns should be achievable
(Fowler et al., 2012). If physical error rates can be reduced to 10–5

then the required resources drop considerably, with a single
Toffoli distillable in 12.1 μs using a factory consisting of
~ 2 × 104 physical qubits, and the number of physical qubits
required to encode a single logical data qubit reducing from
roughly 1, 000 to 500 (see Supplementary Material S2).

In terms of qubit numbers, we assume that the first
generations of large-scale fault-tolerant devices will be limited
to O (106) to O (107) physical qubits, but that these numbers may
increase by one or two orders of magnitude in the longer term.
Table 2 gives estimates based on these first generation and future
FTQC computing parameter regimes. As the number of Toffoli
gates required is significant, a single distillation factory may not
suffice, and we thus give estimates assuming parallel access to
varying numbers of factories. The single step time estimates are

TABLE 1 | Resources Summary. L = number of residues, N = total number of heavy atoms in loop, bT = number of bits in lookup table keys, b = number of bits of precision
used to store Cartesian coordinates.B operator resources are estimated from contributions from quantumSN-NeRF and non-bonded energy terms. Values for quantum
SN-NeRF and non-bonded force field terms are double the numbers given in Supplementary Material 4, as the computations are performed for the current and proposed
update states.

Logical Qubits Temporary Qubits Toffoli Count

System Register 2LbT — —

Move Register bT + log L + 1 — —

Coin Register 1 — —

Operator V — 0 0
Operator cF — log L + 1 8L − 4 + 2LbT
Operator cR — log L + bT + 1 2(log L + bT + 1)
Operator B — — —

Quantum SN-NeRF — 96Nb N (147b2 + 34b)
Force field non-bonded — 20N(N − 1)b N(N − 1) (31b2 + 8b)

TABLE 2 | Resource estimates for the 14 residue MKHMAGAAAAGAVV antibody loop, giving the number nsteps of MCMC steps required per structural sample, the time
tsample required per sample, and the total time required to obtain 103 samples. The first row corresponds to the classical MCMC result from (Ulmschneider et al., 2006).
Quantum estimates correspond to different assumptions on physical error rates pe and surface code cycle times tS. For first generation (Gen.1) large scale FTQC, we assume
pe = 10–4, tS = 1μs. For future quantum devices, pe = 10–5, tS = 200ns are plausibly achievable (Fowler et al., 2012; Sevilla and Riedel, 2020). The TF column indicates the
number of parallel Toffoli distillation factories that are assumed to be available.

TF pe tS nsteps/Sample tsample Time/103 Samples Physical Qubits

Classical — — — 106 230 s 2.7 days —

Gen.1 1 10–4 1 μs 1.4 × 103 7.5 years 7, 500 years 4 × 106

Gen.1 100 10–4 1 μs 1.4 × 103 20.6 days 57 years 2 × 107

Future 100 10–5 200 ns 1.4 × 103 16.5 h 687 days 108

Future 1,000 10–5 200 ns 1.4 × 103 1.3 h 55 days 109

4Cycle times of this order of magnitude have essentially already been demonstrated
experimentally (Chen et al., 2021; Zhao et al., 2021).
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based on the Toffoli gate count required to implement the
quantum SN-NeRF conversion from dihedral to 3D
coordinates, and the quantum circuit computation of the non-
bonded energy terms in the force field (assuming no cut-off
radius). These steps dominate the classical computation time and,
as the form of the non-bonded terms is similar to those in other
popular force fields, do not tie our results to a specific force field.
The number of qubits includes additional ancillary registers
required to store temporary arithmetic values prior to
uncomputation, but ignores ancilla used in various quantum
arithmetic primitives which are highly implementation-specific
and depend on specific choices of quantum arithmetic circuits.
These simplifications are sufficient for our goal of understanding
the order of magnitude of technological performance required to
obtain a quantum advantage. We find that, in spite of the careful
design decisions made to minimize the resources required, first
generation FTQC are unlikely to provide an advantage over
classical MCMC techniques, with estimated computational
times that greatly exceed those required classically. However,
with plausible improvements to physical qubit error rates and
error correction speed, future quantum devices, with sufficient
qubit numbers, may close the gap with existing MCMC
approaches to the point where quantum walk methods may be
competitive. Further improvements to both hardware and
algorithm design could eventually yield an overall quantum
advantage.

4 DISCUSSION

In this work, we set out to understand the feasibility of quantum
computing to accelerate MCMC for antibody loopmodelling, and
proposed a suitable state space and update rule for such a
computation. Our method is based on a dihedral angle
encoding of the atoms involved, and a procedure (Quantum
SN-NeRF) for coherently converting from dihedrals to Cartesian
coordinates so that the classical force field potential energy
function of each configuration can be evaluated in quantum
superposition.

While the encoding and conversions can be carried out
efficiently, the energy function evaluation is costly and
imposes a trade-off between the quadratic reduction in
number of MCMC steps needed for the quantum approach,
and a significant constant factor increases in the time required
for each step. These long step times are in large part due to the
time needed to implement fault-tolerant Toffoli gates used to
carry out basic arithmetic operations. We find that for system
sizes of practical interest, this trade-off is not yet in favor of
quantum computers, and that further developments in both
algorithms and quantum hardware are likely needed in order
for quantum computing to be practical in this domain.

Our analysis indicates limitations of directly applying the
quantum walk approach to classical MCMC methods and
suggests that, without several orders of magnitude increases in
fault-tolerant hardware efficiency, new quantum algorithms or

design improvements to our scheme (e.g., alternative encodings
of molecular states in qubits) will be needed to make protein
folding practical on quantum computers. These findings are in
line with those in (Babbush et al., 2020), which show significant
challenges for constructing efficient quantum solutions to a
number of non-toy-model optimization problems. An
interesting open problem is to investigate whether new force
fields can be designed (or indeed, machine-learned (Botu et al.,
2017; Unke et al., 2021)) to be efficiently implementable on
quantum computers while still delivering sufficiently accurate
results.

As investment and hype continue to grow in quantum
computing, for meaningful and informed progress to be made,
detailed analyses of specific problems facing industry must
continue to be carried out and disseminated even (and indeed
especially) if they show limitations or challenges with quantum
computing. It is our hope that the results presented here shed
some light on the future prospects of quantum computing as a
tool for modelling antibody loops, and serve as a useful starting
point for further improvements. As a first step in this direction,
our approach can be further refined, for instance by accounting
for the presence of solvents, or constraining the ends of the loop
at fixed anchor points (e.g. by kinematic closure). In addition, our
proposed method can be applied to more general protein folding
problems beyond antibody loop modelling, which may have
different time and accuracy requirements for demonstrating
quantum advantage. As quantum technology continues to
improve, its viability as a competitive resource for the
pharmaceutical industry will need to be continually reassessed.
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