
Stemness inhibition by (+)-JQ1 in
canine and human mammary
cancer cells revealed by machine
learning

Maycon Marção1, Susanne Müller2, Pedro Luiz P. Xavier3* and
Tathiane M. Malta1*
1Cancer Epigenomics Laboratory, Department of Clinical Analysis, Toxicology and Food Sciences,
School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil,
2Structural Genomics Consortium and Institute of Pharmaceutical Chemistry, Buchmann Institute for
Molecular Life Sciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany,
3Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine,
Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil

Stemness is a phenotype associated with cancer initiation and progression,

malignancy, and therapeutic resistance, exhibiting particular molecular

signatures. Targeting stemness has been proposed as a promising strategy

against breast cancer stem cells that can play a key role in breast cancer

progression, metastasis, and multiple drug resistance. Here, using a

previously published one-class logistic regression machine learning

algorithm (OCLR) built on pluripotent stem cells to predict stemness in

human cancer samples, we provide the stemness index (mRNAsi) of different

canine non-tumor and mammary cancer cells. Then, we confirmed that

inhibition of BET proteins by (+)-JQ1 reduces stemness in a high mRNAsi

canine cancer cell. Furthermore, using public data, we observed that

(+)-JQ1 can also decrease stemness in human triple-negative breast cancer

cells. Our work suggests that mRNAsi can be used to estimate stemness in

different species and confirm epigenetic modulation by BET inhibition as a

promising strategy for modulating the stemness phenotype in canine and

human mammary cancer cells.
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Introduction

Breast cancer represents one in four cancers diagnosed among women worldwide

(24.5%) (Sung et al., 2021) while mammary cancer accounts for more than 50% of the

diagnosed tumors in female dogs, of which half are malignant (Gupta et al., 2012;

Goldschmidt et al., 2016; Baioni et al., 2017). Surgery is the elective treatment for canine

mammary cancer (CMC) with the use of adjuvant therapy such as chemotherapy and

radiotherapy in advanced cases. However, these therapeutic strategies have limitations,

and it is still an open question if they offer a significant benefit to dogs as they do not
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prevent high rates of recurrence and poor prognosis of malignant

CMCs (Simon et al., 2006; Marconato et al., 2008; Stratmann

et al., 2008; Tran et al., 2016). Triple-negative breast cancer

(TNBC) is an aggressive human breast cancer associated with

poorer prognosis, characterized by the lack of estrogen/

progesterone receptors (ER/PR) and HER2 expression. Thus,

it exhibits limited therapeutic options since hormonal therapy,

which is widely used in hormone receptor-positive tumors, is not

effective in TNBC, and only chemotherapy is routinely used for

the treatment of the disease (Collignon et al., 2016). Therefore,

innovative and effective therapies warrant being tested in

malignant and aggressive types of mammary cancer both in

women and female dogs, resulting in a promising field in

comparative oncology.

Stemness is a phenotype originally observed in stem cells

(SCs), allowing the SCs to divide and keep, at least one new

undifferentiated SC, as well as to differentiate into mature cells of

different adult organs (Shenghui et al., 2009). In cancer, this

phenotype is associated with the cancer stem cell (CSC) concept

and consequently interconnected with intratumoral

heterogeneity, initiation, progression, multidrug resistance,

and metastasis (Batlle and Clevers, 2017). Therefore,

considerable efforts to design innovative approaches to target

these cells and their phenotypes have been made (Borah et al.,

2015). Cancer stemness scores have been analyzed through CSC

and non-CSC on previously published stemness signatures

(Pinto et al., 2015; Ng et al., 2016). However, those

approaches are limited to a small set of genes and few tumor

samples. Thus, the stemness index (mRNAsi) based on stem cell

expression of 12,945 genes reveals an opportunity to estimate

stemness as a cellular state (Malta et al., 2018).

Epigenetic therapy has been highlighted as a potential and

innovative therapeutic strategy in human clinical cancer therapy

(Muller et al., 2011; Dawson and Kouzarides, 2012), especially in

hematological malignancies (Fenaux et al., 2010; Diesch et al.,

2016). In addition, several studies demonstrate the potential of

epigenetic inhibitors in solid tumors (Jin et al., 2021) and new

classes of epigenetic drugs targeting epigenetic writers (DNMTs,

HKMTs, PRMTs, and HATs), erasers (HDMs and HDACs), and

readers (MBDs, Bromodomains, and chromodomains) have

been developed and tested. Unlike in human oncology,

epigenetic inhibitors remain little in use in veterinary

oncology. Recently, we observed that the inhibition of

bromodomain and extraterminal (BET) family of proteins, an

epigenetic reader of histone acetylation, using (+)-JQ1, is a

promising strategy to inhibit self-renewal and tumorigenicity

in CMC cells using 3D in vitro models. Low concentrations of

(+)-JQ1 inhibited tumorsphere and colony formation and were

able to downregulate important genes associated with self-

renewal pathways including WNT, NOTCH, Hedgehog, and

PI3K/AKT/mTOR (Xavier et al., 2019). These results strongly

indicated that BET inhibition modulates malignant phenotypes

such as self-renewal and could directly impact tumorigenic cells

such as cancer stem cells (CSCs) in CMC cells. (+)-JQ1 has also

been promising in target stemness in TNBC through inhibition

of self-renewal and cell cycle arrest in G0/G1 (Serrano-Oviedo

et al., 2020). In addition, other bromodomain inhibitors such as

BETi OTX-015 and I-BET151 have demonstrated similar results

(Qiao et al., 2020; Serrano-Oviedo et al., 2020). In an in vivo

breast cancer model, a more specific BET inhibitor MS417, which

binds to BD1 and BD2 of Bromodomains 4, showed a more

pronounced antitumor effect in comparison with (+)-JQ1 (Shi

et al., 2014).

Here, we applied a one-class logistic regression (OCLR)

machine-learning algorithm (Malta et al., 2018) to extract

transcriptomic feature sets from our previous studies and

determine the stemness index in different CMC cells. The

OCLR algorithm was benchmarked against random forest and

SVM-based methods (Sokolov et al., 2016; Malta et al., 2018).

The advantage of this algorithm is that no negative samples are

required for the training step, thereby eliminating the need for a

background set. Also, we are able to extract the most interesting

features (e.g., genes, probes) based on the estimation of the model

parameters. Thus, we confirm that BET inhibition by

(+)-JQ1 inhibits stemness in a high mRNAsi CMC cell,

CF41.Mg. Finally, using public data, we observed similar

results in a human TNBC cell line, MDA-MB-231, suggesting

BET inhibition as a promising strategy to target stemness both in

canine and human mammary cancer cells. In addition, these

findings highlight the canine cancer model as a good model to

study the therapeutic effects of epigenetic therapy in mammary

cancer.

Materials and methods

RNAseq data generation

RNA of different CMC cells including CF41.Mg (CRL-

6232™, ATCC), E20, M5, and M25 (Cordeiro et al., 2018;

Xavier et al., 2018) was extracted using TRIzol. CF41.Mg cells

were allowed to grow as tumorspheres in ultra-low attachment

24-well plates for 96 h with 100 nM of (+)-JQ1 or 100 nM of

(−)-JQ1, without inhibitor replenishing, as previously described

(Xavier et al., 2019). Then, the tumorspheres were collected and

RNA was extracted using the RNeasy Mini Kit (QIAGEN,

United Kingdom). The RNA quality and quantities were

assessed using automated capillary gel electrophoresis on a

Bioanalyzer 2100 with RNA 6000 Nano Labchips according to

the manufacturer’s instructions (Agilent Technologies, Ireland).

Only samples that presented an RNA integrity number (RIN)

higher than 8 were considered for the sequencing. RNA libraries

were constructed using the TruSeq™ Stranded mRNA LT

Sample Prep Protocol and sequenced on Illumina HiSeq

2500 equipment in a HiSeq Flow Cell v4 using the HiSeq SBS

Kit v4 (2 × 100 pb). All RNA-Seq data from (+)-JQ1-treated and
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(−)-JQ1-treated tumorspheres have been previously published

(Xavier et al., 2019). RNA-seq data from TNBC human cell lines

were downloaded from GEO (GSE102407, GSE115550, and

GSE55922). RNA-seq data from induced pluripotent canine

stem cells (iPSs) and canine mammary stroma samples were

downloaded from GEO (GSE152489, GSE165639, and

GSE135183).

Alignment and differential expression

Sequencing quality was evaluated using the software FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc),

and no additional filter was performed. Sequence alignment

against the canine reference genome (CanFam3.1) and human

reference genome (GRCh38) was performed using STAR (Dobin

et al., 2013), according to the standard parameters and including

the annotation file (Ensembl release 89). Secondary alignments,

duplicated reads, and read failing vendor quality checks were

removed using Samtools (Li et al., 2009). Alignment quality was

confirmed using Qualimap (García-Alcalde et al., 2012). Gene

expression was estimated by reading counts using HTseq

(Anders et al., 2015) and normalized as counts per million

reads (CPMs). Only genes presenting at least one CPM in at

least three samples were kept for differential expression (DE)

analysis. DE was performed using the EdgeR package (Robinson

et al., 2009) on the R environment, based on the negative

binomial distribution. The Benjamini–Hochberg procedure

was used to control the false discovery rate (FDR). Functional

enrichment analysis of DE genes was performed using STRING

(Jensen et al., 2009; Szklarczyk et al., 2019) and EnrichR (Chen

et al., 2013) using Reactome 2016, GO Biological Process 2021,

and GO Molecular Function 2021 databases.

Stemness index model

To predict the stemness phenotype in canine samples, we

applied a machine learning algorithm described by Malta et al.

(2018) and generated a one-class logistic regression (OCLR)

algorithm using human stem cell (iPS and ES) data from

Progenitor Cell Biology Consortium (PCBC) to estimate

stemness (mRNAsi) index in human tumors. The stem cell

transcriptomic matrix used to train OCLR contains

12,945 gene expression values. Furthermore, this model was

validated using leave-one-out cross-validation that leaves one

stem cell out of training and then applies the model to it as well in

the non-SC cells (their differentiated ecto-, meso- and endoderm

progenitors). Moreover, Malta’s model presented a high

correlation among other cancer stem cell signatures,

promoting significant insights into pan-cancer biological and

clinical features. The workflow to generate the mRNAsi is

available at https://github.com/ArtemSokolov/PanCanStem.

Stemness index prediction

First, we converted the gene IDs from Canis lupus

familiaris to Homo sapiens using tables of Ensembl data

downloaded via the BioMart mining tool (https://www.

ensembl.org/biomart/martview/). We then mapped

ENSEMBL gene ID to the gene symbol using the org. Hs.eg.

db package, from the Bioconductor repository. Genes that had

no such intersection were dropped. The previously described

prediction stemness index model derived from pluripotent

cells (Malta et al., 2018) was applied to gene expression

profiles of canine and human mammary cancer cell lines,

leading to their mRNAsi. The indices were scaled to 0–1

(0 being a low stemness score and 1 being high) by

subtracting the minimum and dividing by the maximum.

The top genes of stemness signature (439 genes) were

selected based on the Euclidean distance of the stemness

signature model’s weight absolute values. From the

12,953 genes in the original model, we apply 11,251 genes

due to the conversion gene ID output. In relation to stemness

prediction in human cell lines and canine stem cells, we

applied 12,257 and 7,929 genes, respectively, as a result of

the number of genes common among RNAseq from GEO

datasets.

Statistical analysis

Stemness index was compared between CMCs using one-

way ANOVA with post hoc Tukey’s test. Unpaired T-test was

used to compare the stemness index between (+)-JQ1-treated

and non-treated tumorspheres. Correlation analysis was

determined using the Pearson correlation coefficient.

Significant differences were considered when p-value <
0.05. For functional enrichment analyses, the p-value was

adjusted for multiple tests, and the Benjamini and

Hochberg method was used to test multiple categories in a

group of functional gene sets. Genes presenting

FDR ≤0.01 and log-fold change (LogFC) > 1; <−1 were

considered differentially expressed (DE).

Results

Stemness index algorithm can be applied
to canine species

To test if the previously described machine learning

algorithm for stemness prediction in human cancer can be

applied to non-human species, we applied the algorithm to

estimate the stemness index of canine mammary cancer

(CMC) cell lines. The efficiency conversion of canine to

human gene ID was 51% (16,405/32,740 genes), and we
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FIGURE 1
Stemness index (mRNAsi) stratifies canine cell lines. (A) Bars correspond to the mRNAsi predicted to each sample comparing stem cells to
normal cells (n = 35); (B) Same from (A) visualized by the group in boxplot and stratified by a median. Samples were accessed upon GSE152489,
GSE165639, and GSE135183. iPS: induced pluripotent stem cell fibroblast-derived; normal stroma: normal mammary gland stroma; cancer stroma:
cancer-associated stroma (match normal stroma dog patient). *** = p < 0.001; ns = not statistical significance; (C)mRNAsi of canine cell lines

(Continued )
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rebuilt the prediction model using the overlapping genes between

the original prediction model and the canine dataset. We

validated the canine prediction model of stemness by applying

it to public data comprising canine non-tumor somatic and

pluripotent stem cells. The canine pluripotent stem cells

presented a higher stemness index (mRNAsi) than somatic

cells represented by mammary gland stroma, matched cancer-

associated stroma and fibroblasts (Figures 1A,B), confirming that

the algorithm runs efficiently in canine molecular profiles.

We then applied the algorithm to estimate the stemness

index of four CMC cell lines: CF41.Mg, E20, M5, and M25. We

observed the highest mRNAsi in CF41.Mg and E20 in

comparison with M5 and M25 cell lines (Figures 1C,D; p <
0.0001). We then classified CMC cells into two different groups

based on the mRNAsi: CF41.Mg and E20 cell lines as high

mRNAsi (Hsi) and M5 and M25 as low mRNAsi (Lsi)

(Figure 1E and Supplementary Table S1).

A differential gene expression analysis between Hsi and

Lsi showed 1,933 upregulated genes and 1,926 downregulated

genes in the Hsi cell lines in comparison with Lsi cell lines

(FDR <0.01 and LogFC >1; < −1). Interestingly, functional

enrichment analysis showed that upregulated genes in Hsi cell

lines were related, mainly, to cell cycle and DNA replication

pathways such as cyclin a/b1/b2, mitotic spindle checkpoint,

G2/M checkpoints, cell cycle checkpoints, S phase, mitotic

G1 phase and G1/S transition, M phase, p53 signaling

pathway, AURKA activation by TPX2, TP53 regulates

transcription of cell cycle genes, SUMOylation of DNA

replication proteins, synthesis of DNA, DNA replication

pre-initiation, separation of sister chromatids, DNA

double-strand break repair, and DNA repair (Figure 1F,

Supplementary Table S2). In addition, several genes of

stemness signature were upregulated in Hsi cell lines

including ITGB3, EZH2, ITGA3, PXN, PTK2, TGFBI, SOX2,

KLF4, MYC, AURKA, AURKB, CDH1, EPCAM, TPX2,

IGF2BP2, PODXL, CDK1, DDX21, NOTCH1, PBX1, TP53,

WNT5A, WNT7A, WNT7B, BIRC5, TTK, KIF14, and

KIF18A (Supplementary Table S3).

Spherical cancer models, such as tumorsphere formation

assay, are relevant for studying stemness in cancer. Thus, we

further explored the correlation between the mRNAsi and

tumorsphere formation ability of the CMC cells observed in

our previous study (Xavier et al., 2018). Surprisingly, we did not

observe any correlation between the number of tumorspheres

and mRNAsi in the CMC cells (r = −0.2653; p = 0.73).

mRNAsi confirms stemness inhibition by
(+)-JQ1 in canine mammary cancer cells

In our previous study, we determined the BET protein

inhibitor, (+)-JQ1, as a promising compound to inhibit

stemness in CMC cells through the decrease of tumorsphere

and colony formation and downregulation of important genes

associated with self-renewal pathways (Xavier et al., 2019). Here,

we confirmed that (+)-JQ1-treated tumorspheres to the CF41.Mg

cell line exhibit a lower mRNAsi than tumorspheres treated with

the matched inactive control compound (−)-JQ1 (Figure 2A; p =

0.00014).

We further explored the top genes comprising the mRNAsi

signature and observed their expression to differ between

(+)-JQ1-treated tumorsphere and (−)-JQ1-treated tumorsphere

genes (Figure 2B). We also identified differentially expressed

genes between (+)-JQ1-treated tumorspheres and (−)-JQ1-

treated tumorspheres and explored EMT and cell cycle genes

that are supposed to be associated with stemness. Genes clustered

differently between the two groups (Figure 2C) and some of these

EMT/cell cycle genes were downregulated in (+)-JQ1-treated

tumorspheres including ZEB2, THBS1, THBS2, BMP4, CDH13,

andNOTCH1. In addition, (+)-JQ1 upregulated the expression of

G2/M checkpoint- and cell death-associated genes such as BTG2,

CCNG2, BMP7, and BCL2L11.

mRNAsi confirms stemness inhibition by
(+)-JQ1 in triple-negative breast cancer
cells

We also investigated if (+)-JQ1 could decrease mRNAsi in

human TNBC cells using public data. We found two studies that

treated MDA-MB-231, a well-established model of TNBC, with

(+)-JQ1. The former study included transcript levels from 1 µM

(+)-JQ1-treated MDA-MB-231 cells versus DMSO-treated

MDA-MB-231 cells for 24 h (Zanconato et al., 2018), while

the latter included transcript levels from 500 nM (+)-JQ1-

treated MDA-MB-231 cells versus DMSO-treated MDA-MB-

231 cells for 18 h (Ren et al., 2018). We applied the OCLR

stemness prediction algorithm to these RNAseq data. In the first

study, we observed that mRNAsi of (+)-JQ1-treated cells was

significantly lower than the mRNAsi of DMSO-treated cells

(Figure 3A; p = 0.0004906). Then, we observed the differentially

expressed genes between (+)-JQ1-treated MDA-MB-231 and

FIGURE 1
from the previously published dataset. CF41.Mg and E20 cells present the highestmRNAsi in comparisonwith M5 andM25. *** = p < 0.001; ns =
not statistical significance (one-way ANOVA); (D) discovery dataset statistic; (E) heatmap of gene expression clustering Hsi cells (CF41.Mg and E20)
and Lsi (M5 and M25) in distinct groups. Hsi: high stemness index; Lsi: low stemness index; (F) pathway analysis from upregulated genes in Hsi cells
(FDR <0.05). Gene ratio is the proportion of genes from differential expression output related to the number of genes annotated to the
biological pathway—gene set. Database accessed: KEGG, Reactome, STRING.
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DMSO-treated cells. We could find 1,617 downregulated and

1,601 upregulated genes in (+)-JQ1-treated MDA-MB-231 cells

in comparison with DMSO-treated cells. Downregulated genes

in (+)-JQ1-treated MDA-MB-231 cells were strongly enriched

for several pathways associated with cell cycles such as DNA

replication, cell cycle, G2/M DNA replication checkpoint,

G0 and early G1, G2/M DNA damage checkpoint, mitotic

spindle checkpoint, cyclin A/B1/B2 associated events during

G2/M transition, cell cycle checkpoints, mitotic G1 phase and

G1/S transition, S phase, and M phase (Figure 3B,

Supplementary Table S4).

When we analyzed the mRNAsi of samples of the second

study, we also observed a decrease in stemness after treatment,

although not significantly (Figure 3C; p = 0.6886). To further

investigate these data, we also observed the differentially

expressed genes between (+)-JQ1-treated MDA-MB-

231 and DMSO-treated cells. (+)-JQ1-treated cells had

447 upregulated and 1,007 downregulated genes in

FIGURE 2
Stemness inhibition by (+)-JQ1 correlates to mRNAsi prediction in canine mammary cancer cells. (A) CF41.Mg tumorspheres upon
(+)-JQ1 treatment. *** = p < 0.001 (t-test) compared to (−)-JQ1 (B)Heatmap of gene expression levels of CF41.Mg-(+)-JQ1 treatment compared to
(−)-JQ1 regarding the most relevant genes in stemness signature (439 genes). (C) Heatmap showing (+)-JQ1-treatment effect compared to
(−)-JQ1 in differential gene expression levels (FDR ≤0.01 and log-fold change (LogFC) > 1); < −1. Epithelial and mesenchymal genes were
retrieved fromMak 2016 Epithelial-to-Mesenchymal Transition signature. Cell cycle gene sets were retrieved from GSEA signatures. All of the genes
are present in Malta’s stemness signature with the respective importance (absolute value of gene weight).
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comparison with DMSO-treated cells. Interestingly,

downregulated genes were not enriched for cell

cycle–associated pathways in this study but for pathways

such as microRNAs in cancer, proteoglycans in cancer,

MAPK signaling pathway, PI3K-AKT pathway, pathways in

cancer, and TGF-beta receptor signaling.

Discussion

In the present study, we used a one-class logistic regression

(OCLR) machine-learning algorithm to quantify cancer stemness

and generate a stemness index (mRNAsi) in canine mammary

cancer cells and we confirmed that the BET proteins inhibitor

FIGURE 3
Stemness inhibition by (+)-JQ1 correlates tomRNAsi prediction in human breast cancer cells (MDA-MB-231). (A)mRNAsi of MDA-MB-231 cells
upon JQ1 treatment from the GSE102407 study (Zanconato et al., 2018). *** = p < 0.001 (t-test). (B) Pathway analysis from downregulated genes in
(+)-JQ1-treated MDA-MB-231 cells (FDR ≤0.05). Gene ratio is the proportion of genes from differential expression output related to the number of
genes annotated to the biological pathway – gene set. Database accessed: KEGG and Reactome. (C) mRNAsi of MDA-MB-231 cells upon
JQ1 treatment from the GSE115550 study (Ren et al., 2018). ns = not statistical significance (one-way ANOVA).
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(+)-JQ1 is able to decrease stemness in the high mRNAsi CMC

cell, CF41.Mg. In addition, using public data, we showed that

BET inhibition by (+)-JQ1 decreased stemness in the human

TNBC cell line, MDA-MB-231.

Stemness is an important phenotype in cancer progression

and malignancy and has been studied using in vivo and in vitro

models. In addition, stemness phenotype can exhibit a particular

molecular signature. Malta et al. (2018) took advantage of this

profile and proposed the OCLR algorithm that can be applied to

determine a stemness index in different cells and tissues in

addition to being able to reveal the stemness levels in different

human cancers such as lung cancer (Liao et al., 2020; Zhang et al.,

2020), bladder cancer (Pan et al., 2019), medulloblastoma (Lian

et al., 2019), breast cancer (Pei et al., 2020), and glioma (Tan et al.,

2021). In this study, we showed that mRNAsi can also be

determined in canine species correlating to stemness features.

We applied the OCLR algorithm to four different CMC

cells from our cell bank. These cell lines were previously

classified into mesenchymal-like cells (M5, M25, and

CF41.Mg) and epithelial-like cells (E20) with mesenchymal-

like cells being able to generate tumorspheres in low-adherent

plates, while E20 was unable to do so (Xavier et al., 2018). In

addition, mesenchymal-like cells’ upregulated genes were

enriched for important pathways associated with

epithelial–mesenchymal transition (EMT), invasiveness, and

tumorigenicity (Santos et al., 2021). Based on these previously

established phenotypes, our hypothesis was that

mesenchymal-like cells would exhibit higher mRNAsi than

E20 since several studies report an association between EMT

and stemness (Fabregat et al., 2016). However, the E20 cell line

showed the highest mRNAsi along with CF41.Mg. Despite

these findings being controversial, Malta et al. (2018) also

observed a negative association between stemness and EMT

gene signatures and a positive association between epithelial

phenotypes and increased stemness index, which can explain

the high mRNAsi in the E20 cell line. Furthermore, the

E20 cell line expresses high levels of EpCAM, considered a

mediator of stemness and marker of cancer stem cells in breast

cancer (Al-Hajj et al., 2003; Visvader and Lindeman, 2008;

Munz et al., 2009; Wang et al., 2018). However, the lack of

correlation between the mRNAsi and tumorsphere formation

in these cells still needs to be better studied and understood. So

far, tumorsphere and colony formation, which would feature

self-renewal and tumorigenicity, seems to be associated with

overexpression of EMT pathways and genes including

ZEB1 and ZEB2, in mesenchymal-like CMC cells.

In a previous study, we found that inhibiting BET proteins,

an epigenetic reader associated with progression and

malignancy in different tumors, by low concentrations of

(+)-JQ1 decreased the number of tumorspheres and colony

formation of CMC cells. This was accompanied by G2/M cell

cycle arrest and downregulation of genes associated with self-

renewal pathways including WNT, NOTCH, Hedgehog, and

PI3K/AKT/mTOR (Xavier et al., 2019). Here, we confirmed

that (+)-JQ1 can also decrease stemness in CF41.Mg

tumorspheres. Likewise, we demonstrated that (+)-JQ1, in

specific conditions, can decrease stemness in human TNBC

cells. Other relevant studies have observed the effects of BET

protein inhibition in TNBC. Da Motta et al. (2017)

demonstrated that (+)-JQ1 decreased the number of TNBC

spheroids and tumor growth targeting FOXM1 and LM O 4

directly impacting angiogenesis, cell proliferation, hypoxia,

and metastasis. Furthermore, it was demonstrated that

(+)-JQ1 can influence TNBC stemness using different

approaches such as overexpression of CSC markers, self-

renewal ability, and high invasiveness (Serrano-Oviedo

et al., 2020). Different approaches have also been evaluated

to further understand possible mechanisms of TNBC

resistance to BET inhibitors, and synergistic strategies have

been implanted (Shu et al., 2016; Ge et al., 2020). Also, other

BET inhibitors such as OTX015 (MK-8628) demonstrated

antitumor activity in TNBC using in vitro and in vivo models

and are in clinical trials (Vázquez et al., 2017). The potential

use of other epigenetic inhibitors against cancer stemness has

been reported before when a connectivity map analysis

identified entinostat, trichostatin-a, and vorinostat as

potential compounds targeting stemness (Malta et al.,

2018). All these findings reinforce BET inhibition as a

promising strategy to target stemness and, to the best of

our knowledge, ours is the first study that investigates the

effect of (+)-JQ1 in cancer stemness using a machine learning

algorithm.

Here, we show that stemness levels are closely associated

with cell cycle and DNA replication. First, we observed that

upregulated genes in Hsi E20 and CF41.Mg cell lines were

enriched to several pathways associated with cell cycle.

Individually, we observed overexpression of Aurora Kinase

A (AURKA) and Aurora Kinase B (AURKB) in Hsi cells,

considered essential for self-renewal (Eterno et al., 2016;

Yang et al., 2017) and stemness (Pei et al., 2020) in breast

cancer stem cells. In addition, the Yamanaka factors SOX2,

MYC, and KLF4 were found overexpressed in Hsi cells. On the

other hand, (+)-JQ1-treated MDA-MB-231 cells showed

downregulation of several genes enriched for cell cycle and

DNA replication pathways including AURKA and AURKB,

and at the same time, important stemness-associated genes

such as ZEB2, KIF22, MCM4/6/7 were also downregulated

(Morimoto et al., 2020; Dong et al., 2021). We could not find a

significant difference in mRNAsi between (+)-JQ1 and

DMSO-treated cells in the second study that we

investigated, although the stemness seems to decrease after

the treatment. Interestingly, cells treated with a smaller

concentration of the compound and reduced incubation

time exhibited a minor impact of (+)-JQ1 on modulation of

gene expression in MDA-MB-231 cells. In the first study, we

found 3,218 differentially expressed genes, while only
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1,454 genes were disturbed in the second study. Moreover,

these genes were not enriched for stemness or cell cycle

pathways despite having been enriched for cancer-

associated pathways, suggesting that (+)-JQ1 can interfere

in different features depending on concentration and

incubation time. Thus, the fact that (+)-JQ1 was used at

different concentrations and incubation times hinders the

comparison between the two studies and is a limitation of

our analysis.

In conclusion, our findings support that the mRNAsi

algorithm can be used to determine cancer stemness in

species other than humans and consist of an unbiased and

systematic metric to evaluate stemness at the molecular level.

In addition, we confirmed that BET inhibition by

(+)-JQ1 decreases stemness in CMCs and, in specific

conditions, inhibits this phenotype in human triple-negative

breast cancer cells. Finally, we increase the knowledge about

the similar mechanisms that orchestrate the phenotype both in

canine and human species.
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