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Listeria monocytogenes (Lm) is a Gram-positive bacillus responsible for

listeriosis in humans. Listeriosis has become a major foodborne illness in

recent years. This illness is mainly associated with the consumption of

contaminated food and ready-to-eat products. Recently, Lm has developed

resistances to a broad range of antimicrobials, including those used as the first

choice of therapy. Moreover, multidrug-resistant strains have been detected in

clinical isolates and settings associated with food processing. This scenario

punctuates the need for novel antimicrobials against Lm. On the other hand,

increasingly available omics data for diverse pathogens has created new

opportunities for rational drug discovery. Identification of an appropriate

molecular target is currently accepted as a critical step of this process. In

this work, we generated multiple layers of omics data related to Lm, aiming to

prioritize proteins that could serve as attractive targets for antimicrobials against

L. monocytogenes. We generated genomic, transcriptomic, metabolic, and

protein structural information, and this data compendiumwas integrated onto a

freely available web server (Target Pathogen). Thirty targets with desirable

features from a drug development point of view were shortlisted. This set of

target proteins participates in key metabolic processes such as fatty acid,

pentose, rhamnose, and amino acids metabolism. Collectively, our results

point towards novel targets for the control of Lm and related bacteria. We

invite researchers working in the field of drug discovery to follow up

experimentally on our revealed targets.
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Introduction

Listeria monocytogenes (Lm) is a short, motile, non-

sporulated, and Gram-positive bacillus responsible for

listeriosis in humans. Lm infections have become a major

foodborne illness in recent years. They are mainly associated

with the consumption of contaminated food such as meat, fish

and vegetables and the so-called ready-to-eat products (Olaimat

et al., 2018). This disease has two different clinical presentations:

an invasive and a non-invasive form. The non-invasive form

includes symptoms such as fever, gastroenteritis, headache, and

muscle pain. The invasive form is more severe and may cause

bacteremia, meningitis, meningoencephalitis, abortion, and

prenatal infection. Patients who are more susceptible to these

clinical manifestations are immunosuppressed, older adults,

infants, and pregnant women with an alarming fatality rate

that can reach up to 30%, even with the current antibiotic

therapy administration (Scallan et al., 2011; Authority, 2015;

Garner and Kathariou, 2016).

The therapy of choice to treat listeriosis is based on β-

lactams, penicillin G, or ampicillin combined with or without

a classical aminoglycoside as gentamicin. An alternative

treatment based on trimethoprim and sulfamethoxazole is

considered for penicillin-allergic patients. Additionally,

tetracycline, erythromycin, and vancomycin have also been

used to fight human listeriosis (Temple and Nahata, 2000;

Pagliano et al., 2017). In the last decades, Lm has developed

resistances to a wide range of antimicrobial agents, even those

used in reference treatments. The first multidrug-resistant Lm

strain was discovered in France in 1988 (Poyart-Salmeron et al.,

1990). Since then, multidrug-resistant strains have been detected

in clinical isolates and food processing environment (Morvan

et al., 2010; Pesavento et al., 2010; Gómez et al., 2014; Dahshan

et al., 2016; Şanlıbaba et al., 2018; Basha et al., 2019; Kayode and

Okoh, 2022).

Pesavento et al. (2010) studied the presence of Listeria spp. In

raw meat and retail products, reporting that 20% of Lm strains

showed resistance to three or more antibiotics. Şanlıbaba et al.

(2018) evaluated the antibiotic resistance of 17 L. monocytogenes

strains isolated from ready-to-eat food. All strains were resistant

to nalidixic acid, ampicillin, penicillin G, linezolid, and

clindamycin. In recent reports, Basha et al. (2019) showed

that Lm isolated from fish and fishery environments harbored

resistance to the most commonly β-lactams (ampicillin and

penicillin), macrolides (erythromycin), tetracycline and

clindamycin. Kayode and Okoh (2022) observed that 71.43%

of Lm isolates obtained from milk and derivatives harbored one

or more resistance genes.

In face of this critical situation, the design of novel

antimicrobial agents is pressingly required. Currently, it is

accepted that the identification of appropriate targets is a

critical step in designing new drugs. In the postgenomic era,

integrative computational approaches facilitate the identification

and prioritization of candidate targets. In this sense, Target-

Pathogen (http://target.sbg.qb.fcen.uba.ar) (Sosa E. et al., 2018) is

a unique resource that combines structural druggability datasets,

essentiality analysis, metabolic context, genomic and expression

data to rank proteins according to their potential to be used as

novel targets. Previous reports from our and other groups have

selected and prioritized molecular targets of several relevant

pathogens such as Mycobacterium tuberculosis (Defelipe et al.,

2016), Klebsiella pneumoniae (Ramos et al., 2018; Serral et al.,

2021, Serral et al., 2022), Bartonella bacilliformis (Farfán-López

et al., 2020), Trypanosoma cruzi (Osorio-Méndez and Cevallos,

2018; Coutinho et al., 2021) and Schistosoma mansoni (Lobo-

Silva et al., 2020) using Target-Pathogen.

Here, we report the application of a multidimensional data

integration strategy to prioritize drug targets in Listeria

monocytogenes EGD-e. Combining multilayers of genomic-

scale information of Lm, which included genomic,

transcriptomic, metabolic, and protein structural data sources,

we were able to delineate candidate proteins with features that are

relevant to target selection in Lm and related pathogens. We

expect that our results will be particularly useful to accelerate the

initial steps of drug discovery through the identification of

attractive targets.

Materials and methods

Generation of structural homology-based
models

L. monocytogenes EGD-e genome was obtained from NCBI

GenBank (NC_003210.1). 184 experimental structures for Lm

were obtained from the Protein Data Bank (PDB). For all

remaining proteins, we attempted to predict their structure by

homology modeling. Protein sequences were used as a query for

PSI-BLAST searches (Iterations: three; E-value: 1e-05) against

UniRef90 (Suzek et al., 2015). After generating each position-

specific scoring matrix (PSSM), they were used as input to search

against the PDB in order to find templates. When an adequate

template was found, homology-based models were built using

MODELLER (https://salilab.org/modeller/) (Webb and Sali,

2016) following a pipeline previously described (Defelipe et al.

, 2016; Sosa E. J. et al., 2018; Ramos et al., 2018). With this

approach, we generated 1,741 homology-based models. Out of

2,867 predicted proteins that form the Lm proteome, we obtained

1,925 structures.

Structure-based druggability assessment

The druggability concept refers to the capacity of a protein to

bind drug-like compounds, modulating its activity in the desired

way. From the structural point of view, a protein is considered
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druggable if it has a well-defined pocket with suitable

physicochemical properties to allow drug binding-sites

prediction.

Druggability prediction of each target was performed

following a pipeline developed by our group (Radusky et al.,

2014). This methodology is based on fpocket (https://github.

com/Discngine/fpocket) (Le Guilloux et al., 2009), an open-

source pocket detection algorithm that integrates

physicochemical descriptors in order to estimate the pocket

druggability and can be used in a genomic scale.

Protein pockets were grouped in four categories according to

their Druggability Score (DS): non-druggable (0.0 ≤ DS < 0.2),

poorly druggable (0.2 ≤DS < 0.5), druggable (0.5 ≤DS < 0.7) and

highly druggable (0.7 ≤DS ≤ 1.0). This classification is based on a

previous analysis of DS distribution of all pockets found in PDB

structures that were crystallized binding a drug-like compound

(Radusky et al., 2014; Sosa E. et al., 2018).

L. monocytogenes metabolic network
construction and analysis

The metabolic network of Lm EGD-e was built using the

PathoLogic module from Pathway Tools v. 23.0 (http://

bioinformatics.ai.sri.com/ptools/) (Karp et al., 2011) that

generates a Pathway/Genome Database (PGDB) containing

the predicted reactions and metabolic pathways. This database

was built using as input a Genbank file obtained from NCBI

(NC_003210.1). The reconstruction consists in making gene-

protein-reaction associations principally based on each gene

product annotation or its enzyme commission (EC) number.

Once finished the automatic reconstruction process, the

metabolic network was refined through manual curation. The

Pathway Hole Filler algorithm was used to identify candidates

that can fill the enzymatic holes present in incomplete pathways.

Additionally, missing pathways with biological evidence were

added and false-positive predicted pathways were removed.

The curated metabolic network was exported in systems

biology markup language (SBML) format, considering only

the reactions included in the small-molecules metabolism

(Ramos et al., 2018). An in-house Python script was used to

calculate the frequency at which each compound was present in

the network reactions. The metabolites involved in a high

number of reactions were filtered out (such as ATP, NAD,

water, and protons) given that ubiquitous compounds can

generate artificial associations in the network. After manual

inspection, a total of 27 compounds were filtered to avoid the

creation of artificial links on the reaction graph, and the resulting

SBML file was transformed into a reaction graph in a simple

interaction file (sif) format.

Cytoscape_v3.8.1 (https://cytoscape.org/) (Shannon et al.,

2003) was used for network visualization and subsequent

analysis. In this representation, reactions are represented as

nodes and there is an edge connecting two nodes if the

product of a reaction is consumed as a substrate for the

reaction that follows. Choke-points (reactions that uniquely

produce or consume a given metabolite) identification was

also conducted. The Betweenness centrality of every node was

also calculated as described previously (Sosa E. J. et al., 2018).

This topological metric indicates the participation of a reaction as

an intermediary in the network.

Essentiality analysis

The proteome of Lm was used as a query in BLASTp against

the Database of Essential Genes (DEG) (http://origin.tubic.org/

deg/public/index.php) (Luo et al., 2021). E-value = 1e−05,

identity ≥50% were used as cut-off values. DEG is a database

that stores the essential genes identified by high-throughput

experiments. As essential genes are broadly conserved in

microorganisms, homologous genes found in this analysis are

likely to be also essential.

Off-target criteria

All Lm EGD-e proteins were subjected to NCBI BLASTp

against the human proteome (version GRCh38. p10) to identify

non-host homologous targets.

Hits with an E-value smaller than 10–5 and identity ≥50%
were filtered out, as they can share a high structural similarity

with a human protein. This minimizes the possibility of adverse

effects produced by cross-interference. In this respect, protein

inhibition in organisms that inhabit the human intestine could

generate an impact on the host’s normal flora. To reduce this

possibility, the proteome of Lm EGD-e was also compared to the

proteins of the 226 representative microorganisms of the gut flora

sequenced by the Human Microbiome Project (NIH HMP

Working Group et al., 2009), obtaining the number of

organisms that present at least one significant hit

(E-value ≤10–5; identity ≥50%).

Analysis of conservation among
pathogenic L. monocytogenes

Mauve (https://darlinglab.org/mauve/mauve.html) (Darling

et al., 2004)was used to find groups of orthologs (identity ≥60%
and coverage ≥70%) among 25 clinically relevant pathogenic

strains of L. monocytogenes genomes available in NCBI (Bergholz

et al., 2016; Chen et al., 2016; Kwong et al., 2016). Proteins

conserved in several genomes are attractive targets because this

implies that a drug could be used to control multiple strains of

this microorganism including from different serotypes and

serogroups.
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Expression data of L. monocytogenes

Very important shifts in the expression profile of genes are

involved during the passage of Lm from a saprophytism to

virulence lifestyle. To capture the transcriptome landscape of

L. monocytogenes we analyzed some previously published work

that used microarrays analysis for gene expression from relevant

physiological conditions that mimic the pathogenic environment

during infection: intracellular replication in macrophages (Lobel

et al., 2012) and intestinal lumen and blood (Toledo-Arana et al.,

2009). The knowledge of protein targets with a critical role during

infection might serve as new targets for the development of

antilisterial compounds. Information about overexpressed

proteins (436 in intestine, 541 in blood and 809 in

macrophages) was added to Target Pathogen.

Target prioritization

All previously calculated data was integrated into Target-

Pathogen (Sosa E. J. et al., 2018). Target-Pathogen has been

designed and developed by our group as an online resource to

allow genome-wide based data consolidation from diverse

sources focusing on structural druggability, essentiality, and

metabolic role of proteins. By allowing the integration and

weighting of this information, this bioinformatic tool aims to

facilitate the identification and prioritization of candidate drug

targets for pathogens. Using Target Pathogen, non-essential,

non-druggable proteins (DS < 0.5) and close human

homologs were filtered out. Afterward, a score was assigned to

each protein following the equation:

SF � CP + C + Cv − GM (1)
where CP and C reflect metabolic information. If the protein is

associated with a choke-point reaction, CP takes the value of 1

(otherwise CP � 0). C shows the ratio between the node

betweenness centrality of the associated reaction and the node

with the highest centrality within the network. Finally, Cv is the

proportion of hits of the protein in pathogenic Lm and GM is the

proportion of gut microbiome organisms that have at least one

homologous protein with Lm.

Eq. 2 incorporates expression data, where Intestine +
Blood + Intracellular takes the value of one if the protein is

overexpressed in those conditions, respectively.

FIGURE 1
Schematic diagram of the prioritization pipeline.
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SF � CP + C + Cv − GM

4
+ Intestine + Blood + Intracellular

3
(2)

Results and discussion

All results are organized with the following scheme. We will

begin analyzing the structural druggability of the Lm proteome

performing a broad classification of the proteins. Secondly, we

will present a highly-cured metabolic network of this pathogen

and at last, we combined this data with diverse layers of omic data

in Target Pathogen in order to identify and prioritize novel drug

targets with the potential to develop new antimicrobials against

Lm. A general scheme of our prioritization pipeline is shown in

Figure 1.

Listeria monocytogenes protein structures are enriched in

druggable pockets.

Our analysis began by classifying all the domain structures of

Listeria monocytogenes, including our own generated homology-

based models and those directly retrieved from PDB, according

to their structural druggability. For comparison, we also

calculated the DS for all ligand-bound structures in a non-

redundant subset of PDB (PDB95), revealing an important

enrichment of druggable pockets in the Listeria models

(Figure 2) in line with previous results in other pathogenic

bacteria (Defelipe et al., 2016; Ramos et al., 2018; Farfán-

López et al., 2020). Afterward, we grouped the proteins,

according to how their structure was retrieved and their DS,

into four categories. The two first categories include proteins that

were directly retrieved from the PDB. One corresponds to those

which have been experimentally obtained bound to an inhibitor

or drug-like compound (ED + group). The second one includes

proteins also obtained from the PDB but without binding a drug

(ED-). The remaining two categories include homology-based

models.

The Modeled With Drug group (MD+) includes protein

structures modeled from a template that was co-crystallized

with a drug-like compound, thus the proteins of this group

are likely to be druggable. The last category groups all

modeled proteins whose structure was resolved from proteins

deposited in the PDB with no drugs or associated inhibitors

present (MD-).

We then computed all the possible pockets and their

corresponding Druggability Score (DS) for each protein using

fpocket. According to their DS, we classified all the structures

into four druggability groups (Table 1), according to the criteria

set in materials and methods. As expected, most of the Listeria

monocytogenes structures crystallized in the presence of a drug

presented high DS. As expected, the results showed that most of

the proteins in the MD + group (98.5%) have DS Scores higher

than 0.5 (Table 1) validating our methodology, according to

previous works (Defelipe et al., 2016; Ramos et al., 2018). The

first group of interest from the target selection point of view

concerns the MD + -D group (druggable proteins in the MD +

group). The fact that both, an association (assignation to MD+)

and a structural criteria (DS > 0.5) match is a strong argument for

the selection of these 468 proteins as drug targets (Supplementary

Table S1).

Listeria monocytogenes metabolic
network reconstruction and refinement

We performed a whole-genome-based reconstruction of the

Listeria monocytogenes metabolic network (Lm-MN) using

Pathway Tools followed by manual curation. The automatic

reconstruction of Lm-MN with Pathway Tools resulted in a

draft metabolic model composed of 172 metabolic pathways

and 1,272 reactions (1,165 with enzymatic activities and

11 with transport function). We identified 120 pathway holes

(reactions without associated genes) in this draft model, which

were distributed across 70 metabolic pathways with different

degree of completeness. Refinement of Lm-MN began by

manually inspecting the draft MN using the Pathway Hole

Filler (PHF) algorithm. Based on this tool, 22 holes could be

filled. During this process, reactions corresponding to

17 metabolic pathways were evaluated, and nine could be

completed (i.e., all their reactions had a gene assigned). In the

last refinement step, using bibliographic evidence, eight pathways

were added and six were removed after being identified as false

FIGURE 2
Histogram of Druggability Score (DS). Representation of all
Protein Data Bank (PDB) structures that host a drug-like
compound (red line) and all modeled structures of L.
monocytogenes (black line). Protein pockets were grouped
in four categories according to their DS: non-druggable (0.0 ≤
DS < 0.2), poorly druggable (0.2 ≤ DS < 0.5), druggable (0.5 ≤ DS <
0.7) and highly druggable (0.7 ≤ DS ≤ 1.0).
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positives during manual curation. Correct and complete

associations between reactions and genes are paramount to

downstream uses of any metabolic network. Such is the case

of target prioritization, our focus in the following sections. Once

constructed, this network was analyzed using graph theory,

allowing the calculation of topological metrics related to node

importance as the betweenness centrality. High centrality nodes

(reactions) are attractive from the target discovery point of view

TABLE 1 List of the 1925 protein structures obtained for L. monocytogenes classified according to their Druggability Score (DS).

Experimental Model Total

ED+ ED- MD+ MD-

Non-druggable 0 (0%) 10 (6.7%) 0 (0%) 20 (1.6%) 30 (1.6%)

Poorly druggable 0 (0%) 14 (9.4%) 7 (1.5%) 32 (2.5%) 53 (2.8%)

Druggable 6 (17.1%) 32 (21.5%) 73 (15.4%) 173 (13.7%) 284 (14.8%)

Highly druggable 29 (82.9%) 93 (62.4%) 395 (83.2%) 1,041 (82.2%) 1,558 (80.9%)

Total 35 (100%) 149 (100%) 475 (100%) 1,266 (100%) 1925 (100%)

ED+: Lm structures retrieved from the PDB, that contained a drug-like compound; ED-: crystallized proteins without drugs; MD+: structures modeled from a template co-crystallised with a

drug-like compound; MD-: structures modeled from crystallized proteins without a drug.

FIGURE 3
Reaction graph of the L. monocytogenes metabolic network. Predicted Lm reactions are depicted as nodes and there is an edge connecting
two nodes if the product of a reaction is consumed as a substrate for the reaction that follows. In this representation, node size is proportional to
betweenness centrality and choke-point reactions are colored red. MetaCyc IDs (http://metacyc.org) are also shown.
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because their inhibition would lead to an imbalance in many

different pathways. We also identified choke-points (CPs) in the

Lm-MN, i.e. reactions that uniquely consume or produce a given

compound. Choke-point reactions are attractive for drug

targeting because their blockage can lead to the depletion of

an essential metabolite or the accumulation of a toxic compound.

A total of 89 proteins were associated with reactions strictly

classified as producing CPs, while 297 proteins with strictly

consuming CPs. On the other hand, 26 proteins were mapped

with reactions classified as CPs on both producing and

consuming sides. Since many CPs involve the transformation

of indispensable compounds, they have been proposed as

attractive drug targets (Yeh et al., 2004). We identified that

while 21% of the Lm proteome is composed of predicted

essential proteins, 40% of identified CPs are associated with

essential proteins, reinforcing the usefulness of this parameter

in our target prioritization strategy. The projection of Lm-MN

onto a reaction graph also allowed the calculation of relevant

topological metrics. Figure 3 depicts the resultant Lm-MN graph,

with node sizes proportional to betweenness centrality. The

presence of a few high-centrality nodes indicates that these

hubs may be of special importance to the cohesiveness of the

network. We did not limit our analysis to solely filtering choke-

point nodes or hubs identification. Rather, this information was

incorporated into the scoring function that allowed ranking of

the potential Lm targets within the proteome of this organism.

The complete list of choke-points and centrality measures is also

available within Target-Pathogen, as well as the complete

metabolic annotation of Lm.

Integration of structural and druggability information,

conservation and metabolic analysis and off-target criteria

allows prioritization of potential molecular targets for drug

development against Listeria monocytogenes.

After integration of the generated multi-omic datasets, we

score individual proteins according to their potential to be used

as targets of novel drugs to combat L. monocytogenes. At first, we

rule out all non-essential, non-druggable, and close human

homologs proteins. A total of 434 essential, druggable proteins

with no close homologs in the human genome were kept

(Supplementary Figure S1, Supplementary Table S2).

Afterward, we take into account different features that a

protein should exhibit to serve as an attractive target. These

include the contextualization of its function into the metabolic

context and presence/absence in related pathogens, which degree

of conservation ultimately defines the spectrum activity

(Supplementary Figure S2). Based on the gathered data, we

define a scoring function (see Eq. 1 in materials and methods)

that allowed us to rank all proteins in the Lm proteome. The

15 highest-ranking proteins are presented in Table 2. This

analysis can also be replicated in the Target-Pathogen interface.

As can be appreciated in Table 2, most of the best-ranked

proteins participate in pathways with great relevance in bacteria

metabolism such as fatty acids and amino acid biosynthesis. Fatty

acid pathway is essential for bacteria viability and growth, and is

required for the production of phospholipids, lipoproteins, and

lipopolysaccharides. There are significant differences between

human and bacterial fatty acid biosynthesis systems that include

the organization and structure of enzymes and the specific roles

played by fatty acids (Wang et al., 2007). In Lm, β-ketoacyl-ACP

synthase III (FabH, the best-ranked protein) catalyzes the first

condensation reaction of short-chain fatty acid thioesters, i. e the

conversion of acetyl-CoA and malonyl-ACP to β-ketoacyl-ACP

products (Costa et al., 2016). This protein harbors a highly

druggable pocket (SD: 0.85), is conserved in all the analyzed

pathogenic strains, and does not present close homologs in

humans and their microbiota. Moreover, from a metabolic

point of view, it catalyzes a choke-point, highly central,

reaction. Platensimycin, platencin, cerulenin, thiolactomycin,

and thiotetromycin are known selective inhibitors of FabH.

These natural compounds were exhaustively analyzed

elsewhere (Wang et al., 2006; Jayasuriya et al., 2007; Shang

et al., 2015). Two other genes, implicated in fatty acid

biosynthesis, were also prioritized in our analysis: accA and

accD encoding alpha and beta subunits of Acetyl-CoA

Carboxylase Carboxyltransferase (ACC) respectively. Both

subunits are part of the essential enzyme complex that

catalyzes the acetyl-CoA carboxylation to form malonyl-CoA

in the initiation of the fatty acid pathway (Freiberg et al., 2004).

These proteins not only comply with our employed structural

druggability criterion (presenting a high druggable score), but

they are also essential and conserved in all Lm strains considered

(Figure 4).

Nevertheless, not many antibiotics have been described to

possess selective ACC inhibition until now. The first natural

compounds analyzed were andrimid and their derivatives and,

pseudopeptidic pyrrolidinedione moiramide B. These

compounds present a broad-spectrum antibacterial activity

(Fredenhagen et al., 1987; Freiberg et al., 2004). The effect of

different herbicides was also evaluated as ACC inhibitors in M.

tuberculosis. Haloxyfop was shown to inhibit the AccA3-AccD6

complex activity (Daniel et al., 2007) meanwhile Diclofop was

described to inhibit AccA3-AccD5 acetyl-CoA carboxylation

(Oh et al., 2006). Thus, enzymes of the fatty-acid biosynthesis

pathway are attractive targets for the development of new drugs

against pathogenic microorganisms.

Other molecular targets prioritized in Table 2 are those

involved in central metabolism, particularly in the pentose

phosphate pathway (PPP). Transaldolases are enzymes

involved in the non-oxidative phase of PPP. PPP is

considered the predominant pathway of sugar metabolism

during infection (Fuchs et al., 2012). In line with this fact,

genes of the oxidative and non-oxidative branches of PPP were

found overexpressed in a macrophage cells infection model

(Chatterjee et al., 2006). It was also shown that Proteus

mirabilis talB knockout affected bacterial fitness during

urinary tract infections in a murine model, showing that
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transaldolase has an important role in vivo metabolism (Alteri

et al., 2015).

TrpB catalyzes the second-highest centrality reaction listed in

Table 2. This protein is implicated in the L-tryptophan

biosynthesis. The TrpB polypeptide functions as the β subunit

of the tetrameric (α2-β2) tryptophan synthase complex, and

catalyzes the final step of the synthesis of L-tryptophan from

indole and L-serine. TrpB is highly drugable (SD: 0.82) and

essential, it is conserved in all the strains analyzed and does

not present homology with the human proteome. It was also

associated with a choke-point reaction. The trp operon is highly

conserved in bacteria and is finely regulated. In Lm the trp

operon is composed of trpE, trpG, trpD, trpC, trpF, trpB and trpA

genes (Gutierrez-Preciado et al., 2005). These enzymes are

considered valuable therapeutic targets to combat pathogenic

microorganisms and currently, the continuing search for

effective inhibitors is of interest. Wellington et al. (2017) have

identified a novel azetidine, BRD4592, effective against

Mycobacterium tuberculosis through allosteric inhibition of the

tryptophan synthase.

Additionally, Table 2 presents the 3-phosphoshikimate 1-

carboxyvinyltransferase enzyme (aroE) which catalyzes the sixth

step in the biosynthesis of the aromatic amino acids (shikimate

pathway). This protein harbors a druggable pocket (DS: 0.66)

and, like the candidates mentioned above, it is also essential. It is

highly conserved among Listeria species and does not present

homology with the human and microbiota proteome. Also, it has

attractive features from a metabolic point of view (i.e catalyzes a

choke-point and highly central reaction) (Table 2). Since the

shikimate pathway is not present in vertebrates but is essential for

bacteria, it is commonly considered a valuable target for

antimicrobial discovery. Listeria monocytogenesaroE mutants

showed a strong reduction of growth rates in epithelial cells

and attenuated virulence in a murine model. Further, the aroE

mutant was unable to grow in a minimal medium in presence of

shikimate. Partial growth of the aroEmutant was shown when all

aromatic amino acids were supplemented, describing an essential

role in the aromatic amino acid pathway (Stritzker et al., 2004).

Prioritization of L. monocytogenes
proteins according to their expression in
infection-mimicking conditions

Once targets that complied with rules associated with gene

essentiality, protein druggability, metabolic importance, and

broad Lm conservation were identified, we further

incorporated in our analysis a term related to overexpression

in conditions that resemble infection in vivo.

It is known that upon ingestion with Lm contaminated food,

the pathogen can proliferate in the intestinal lumen environment

and, after passing the intestinal barrier, it can disseminate

through the lymph and blood to reach the brain, spleen, liver

or even cross the blood-placenta barrier. In our analysis,

expression data (Toledo-Arana et al., 2009; Lobel et al., 2012)

were taken into account to prioritize those genes that were

TABLE 2 List of L. monocytogenes highest-ranking proteins considering metabolic network metrics, conservation in pathogenic Lm and presence in
microbiome (Eq. 1).

Rank Locus
tag

Gene Product Pathways
involved

DS C CP P
(%)

GM(%)

1 lmo2202 fabH 3-oxoacyl-ACP synthase Fatty acid biosynthesis 0.85 1.00 Yes 100 5

2 lmo0343 tal2 transaldolase Pentose phosphate pathway 0.92 0.65 Yes 100 22

3 lmo2743 tal1 transaldolase Pentose phosphate pathway 0.70 0.65 Yes 100 27

4 lmo1809 plsX glycerol-3-phosphate acyltransferase PlsX CDP-diacylglycerol biosynthesis 0.76 0.41 Yes 100 10

5 lmo1897 aspB aspartate aminotransferase L-aspartate biosynthesis 0.88 0.33 Yes 100 5

6 lmo1573 accD acetyl-CoA carboxylase subunit beta Fatty acid biosynthesis 0.84 0.44 Yes 100 17

7 lmo1923 aroE 3-phosphoshikimate 1-carboxyvinyltransferase Chorismate biosynthesis 0.66 0.32 Yes 100 7

8 lmo1089 tagD glycerol-3-phosphate cytidylyltransferase — 0.61 0.37 Yes 100 17

9 lmo2212 hemE uroporphyrinogen decarboxylase Heme b biosynthesis 0.92 0.18 Yes 100 3

10 lmo2211 cpfC ferrochelatase Heme b biosynthesis 0.80 0.15 Yes 100 2

11 lmo1628 trpB tryptophan synthase subunit beta L-tryptophan biosynthesis 0.82 0.67 Yes 100 54

12 lmo1439 sodA superoxide dismutase Superoxide radicals degradation 0.81 0.21 Yes 100 9

13 lmo1363 geranyltranstransferase Trans, trans-farnesyl diphosphate
biosynthesis

0.82 0.12 Yes 100 1

14 lmo2556 fbaA fructose-1,6-bisphosphate aldolase Glycolysis 0.53 0.36 Yes 100 27

15 lmo1572 accA acetyl-CoA carboxylase carboxyltransferase subunit
alpha

Fatty acid biosynthesis 0.66 0.44 Yes 100 35

DS, Druggability Score (highest scoring pocket); C, centrality; CP: choke-point; P(%), Presence in pathogenic strains; GM(%), Gut microbiome organisms with homologous protein.
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upregulated during the infection-mimicking conditions. The

selected conditions, which group different reports, comprise

survival and replication in intestinal, blood, and macrophage

environments. As shown in Table 3, the best-ranked protein,

transaldolase Tal2, participates in the non-oxidative branch of

the Pentose Phosphate Pathway. This protein is transcriptionally

upregulated in the intestine, blood, andmacrophage contexts and

meets the requirements of an attractive target. This protein is

essential, druggable (DS = 0.92), metabolically relevant, and

widely conserved within Lm pathogens. Another upregulated

gene involved in this pathway is lmo2661, which encodes a

ribulose-5-phosphate 3-epimerase. Although we could not

predict epimerase as an essential gene (and it was ruled out in

the filtering step), our results revealed its association with a

highly central and choke-point reaction. Moreover, lmo2661 is

highly druggable (SD: 0.82), conserved in all the analyzed strains,

and does not present close homologs in humans. The importance

of this pathway lies in the production of xylulose and ribose-5-

phosphate as precursors of nucleotides biosynthesis during

intracellular growth as was shown in another macrophage

infection model (Chatterjee et al., 2006).

The second best-ranked protein is implicated in the

rhamnose utilization pathway: rhamnulose-1-phosphate

aldolase protein RhaD (Table 3). RhaD would be an excellent

candidate to further study since we found it is essential and

highly druggable, is conserved in all the analyzed pathogenic

strains and does not present close homologs in humans, and their

microbiota. Particularly, it appears overexpressed under different

FIGURE 4
Representation of top-ranked proteins AccA, AccD, and FabH, involved in fatty acid biosynthesis. The structures of these targets are shown, with
the most druggable pocket in colored spheres.

Frontiers in Drug Discovery frontiersin.org09

Palumbo et al. 10.3389/fddsv.2022.969415

https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2022.969415


TABLE 3 List of L. monocytogenes highest-ranking proteins by incorporating protein overexpression in intestine, blood and intracellular environments (Eq. 2).

Rank Locus
tag

Gene Product Pathways
involved

DS C CP P (%) GM(%) Intestine Blood Intracellular

1 lmo0343 tal2 transaldolase Pentose phosphate pathway 0.92 0.65 Yes 100 22 Yes Yes Yes

2 lmo2847 rhaD rhamnulose-1-phosphate aldolase L-rhamnose degradation 0.89 0.09 Yes 100 6 Yes Yes Yes

3 lmo0794 hypothetical protein — 0.77 100 2 Yes Yes Yes

4 lmo2335 fruA PTS fructose transporter subunit IIABC — 0.77 100 7 Yes Yes Yes

5 lmo1838 pyrB aspartate carbamoyltransferase UMP biosynthesis 0.87 0.16 Yes 100 13 No Yes Yes

6 lmo1293 glpD glycerol-3-phosphate dehydrogenase Glycerol and glycerophosphodiester degradation 0.52 Yes 100 3 Yes No Yes

7 lmo0317 phosphomethylpyrimidine kinase — 0.87 Yes 100 6 Yes Yes No

8 lmo2681 kdpB potassium-transporting ATPase subunit B — 0.88 100 40 Yes Yes Yes

9 lmo2564 4-oxalocrotonate isomerase — 0.58 Yes 100 7 Yes Yes No

10 lmo2824 D-3-phosphoglycerate dehydrogenase Serine biosynthesis 0.93 0.01 Yes 100 11 No Yes Yes

11 lmo2090 argG argininosuccinate synthase Arginine biosynthesis and urea cycle 0.78 0.06 Yes 100 18 Yes No Yes

12 lmo0566 hisB imidazoleglycerol-phosphate dehydratase Histidine biosynthesis 0.95 0.12 Yes 100 26 No Yes Yes

13 lmo1989 leuC isopropylmalate isomerase large subunit Leucine biosynthesis 0.71 0.09 Yes 100 28 No Yes Yes

14 lmo1988 leuB 3-isopropylmalate dehydrogenase Leucine biosynthesis 0.76 0.04 Yes 100 37 No Yes Yes

15 lmo1986 ilvC ketol-acid reductoisomerase Valine and isoleucine biosynthesis 0.82 0.03 Yes 100 46 No Yes Yes

DS, Druggability Score (highest scoring pocket); C, centrality; CP: choke-point; P(%), Presence in pathogenic strains; GM(%), Gut microbiome organisms with homologous protein.
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contexts that mimic infection. Although only RhaD is an

essential target based on our bioinformatics pipeline, other

proteins in the rhamnose utilization pathway, such as

rhamnulokinase (RhaB) and rhamnose mutarotase (RhaM)

also harbor many features that make them attractive targets

(Figure 5). Interestingly, experimental data have shown that

Listeria monocytogenes ΔrhaB mutants grow less efficiently in

macrophage cells (Lobel et al., 2012). Is interesting to note, that

regardless of whether intestine, blood, or macrophages were

infected, the gene cluster involved in rhamnose catabolism is

transcriptionally upregulated. Moreover, it has been established

that the most abundant glycopolymer associated with the cell

wall of Lm are wall teichoic acids (WTA) that can be decorated

with rhamnose (Shen et al., 2017). WTA were postulated as

antigenic determinants (Kamisango et al., 1983). Rhamnose

metabolic pathway induction during infection could directly

FIGURE 5
Schematic representation of L-rhamnose degradation pathway. RhaD is highlighted, as a top-ranked protein in our analyses.
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impact on the cell surface architecture allowing the pathogen to

escape from immunity. Moreover, it was shown that

rhamnosylation of L monocytogenes WTA promotes resistance

to antimicrobial peptides by delaying interaction with the

membrane (Carvalho et al., 2015; Meireles et al., 2020).

Other top-ranking targets are those responsible for serine,

arginine, histidine and, brand chain amino acids (BCAA)

biosynthesis. It was shown that the novo biosynthesis of

amino acids is a key process of intracellular replication of L.

monocytogenes (Joseph et al., 2006; Schauer et al., 2010).

Overexpression of enzymes involved in amino acids

biosynthesis during intracellular replication (blood and

macrophages) might reflect the limited availability of these

important metabolites in the host cytosol. Moreover,

experimental data have shown that L. monocytogenes amino

acid metabolic mutants (ΔargD, ΔhisC, and ΔilvC) grow less

efficiently in macrophage cells (Lobel et al., 2012). In this respect,

our analysis has provided other interesting targets to be further

investigated that include expression, essentiality, and

druggability data (Table 3).

Conclusion

In this work, we developed and applied an integrative

analysis framework for the prioritization of protein targets in

L. monocytogenes. Various layers of information were combined,

including genomic structural and metabolic data that allowed

shortlisting of targets with desirable characteristics from a

druggability standpoint. Our integrative approach, where

multiple layers of omics information were overlaid, disclosed a

series of potential targets for antibiotic drug discovery, with fatty-

acid, pentose, rhamnose and amino acids metabolism emerging

as interesting dominant biological themes warranting further

consideration in the molecular target space of L. monocytogenes.

Further studies are warranted to follow-up experimentally on our

elicited targets, and we invite the scientific community dedicated

to this subject to help pursue these goals, thus strengthening the

ongoing fight against pathogenic bacteria.

Lm EGD-e 2,867 proteins were compared against DEG,

human and gut flora proteome. Its conservation was evaluated

among 25 clinically relevant pathogenic strains. The information

obtained from these analyses was integrated with protein

structures (184 experimental crystals and 1741 homology-

based models), metabolic annotations and previously

published expression data. Finally, a set of filters and a

scoring function were applied.

The structures of these targets are shown, with the most

druggable pocket in colored spheres.
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