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Artificial intelligence (AI) digital health systems have drawn much attention over the last

decade. However, their implementation into medical practice occurs at a much slower

pace than expected. This paper reviews some of the achievements of first-generation

AI systems, and the barriers facing their implementation into medical practice. The

development of second-generation AI systems is discussed with a focus on overcoming

some of these obstacles. Second-generation systems are aimed at focusing on a single

subject and on improving patients’ clinical outcomes. A personalized closed-loop system

designed to improve end-organ function and the patient’s response to chronic therapies

is presented. The system introduces a platform which implements a personalized

therapeutic regimen and introduces quantifiable individualized-variability patterns into

its algorithm. The platform is designed to achieve a clinically meaningful endpoint

by ensuring that chronic therapies will have sustainable effect while overcoming

compensatory mechanisms associated with disease progression and drug resistance.

Second-generation systems are expected to assist patients and providers in adopting

and implementing of these systems into everyday care.

Keywords: precision medicine, artificial intelligence, algorithms, variability, complex systems

INTRODUCTION

The use of artificial intelligence (AI)-based systems in medicine has drawn much attention over the
last decade (1). However, high expectations have not always been met by reality. Various obstacles
have arisen, blocking AI platforms’ validation and implementation (2). AI-based algorithm
applications have been slower to spread in medical practice than anticipated. Obstacles include
difficulty in achieving adequate algorithm stability, mainly due to difficulties associated with big
data analysis, and also the failure of these methods to contribute to noteworthy clinical effects. The
need for improved clinical outcomes, is a barrier to the adoption of AI by patients and healthcare
providers (3–7).

The AI “quadruple aim” of improving care, improving overall population health, reducing
healthcare costs, and improving the work life of healthcare providers, is still an unreachable
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objective for the majority of first-generation systems (8). These
platforms were designed to promote the 4P model of medicine:
Predictive, Preventive, Personalized, and Participatory, providing
patient autonomy (9). This paper reviews some achievements of
first-generation systems used over the last decade, and discusses
difficulties of implementing them in practice. The development
of second-generation platforms in the upcoming years may
overcome some of these hurdles. Second-generation systems
aim at focusing on a single subject and on improving clinically
meaningful endpoints and clinical outcomes. This makes their
implementation in everyday care more viable. Establishment
of personalized closed-loop platforms, which improve organ
function and response to chronic therapies, is presented, with the
introduction of individualized patterns of variability discussed as
an example application for second-generation AI.

Benefits of First-Generation Artificial
Intelligence Platforms in Clinical Practice
AI has been proposed to serve in augmented medicine platforms
to improve different aspects of clinical practice. However, AI’s
real world utilization in clinical practice is limited (1, 10–14).
Most algorithms do not inevitably result in better outcomes (10).
The term “AI chasm” is sometimes used, and this term suggests
that the improved accuracy sought by most platforms does not
necessarily represent better clinical efficacy (15). Unsurprisingly,
a lack of clear beneficial effects is a major obstacle to adoption of
AI in clinical medicine.

First-generation AI systems developed over the last decade
have largely focused on clinical decision making through big
data analysis as a way to generate evidence-based information.
These include supervised machine learning, where the algorithm
based on a labeled dataset, provides a model that the algorithm
can use to determine its accuracy on training data (16); An
unsupervised modeling which provides unlabeled data that the
algorithm attempts to fit by extracting patterns on its own (17);
recommender systems that seeks to predict the preference a
user would give to an item (18); expert systems which attempt
to match the decision-making ability of a human expert (19);
natural language processing which process and analyze large
amounts of natural language data (20); computer vision which
analyzes data from digital images or videos (21); and expert-
guided feature extraction schemes, where derived features are
based on an initial set ofmeasured data for facilitating subsequent
learning and generalization steps (22, 23).

Machine learning (ML)-based techniques and neural
networks can rapidly process numerous inputs. Thus, they can
discover complex associations which are not easily analyzed
by regular equations, which assists in reaching better clinical
conclusions (1, 24–26). Electronic medical records (EMR) and
digital databases are used for these purposes (27–29). Precision
medicine-based AI is aimed at optimizing diagnostic pathways,
therapeutic interventions, and prognoses using large datasets
comprising individual genes, other phenotypic parameters, and

Abbreviations: AI, artificial intelligence; EMR, electronic medical records; ML,

machine learning; RCT, randomized controlled trials; NLP, natural language

processing; TNF, tumor necrosis alpha; ConA, concanavalin A.

environmental measures. The algorithms are largely designed to
tailor their outputs on an individual basis (30).

A relatively limited number of settings in clinical practice
currently benefit from the application of first-generation systems.
A review of 450 published AI articles highlighted four areas:
risk stratification of populations at risk, clinical decision support,
disease screening, and tools for patient self-management (31).
First-generation AI can reduce variations in clinical practice,
improve efficacy and reduce medical errors (32). It has shown
advantages when extracting and analyzing a large volume of
data from EMR (33), developing risk scores (34), predicting
mortality, readmission risks, prolonged length of stay, and failure
to attend appointments (35, 36), and for summarizing doctor-
patient consultations (10, 37).

First-generation systems have also been found useful for
detection of atrial fibrillation and epilepsy seizures (11). These
methods also showed some degree of success when interpreting
phenotype and genomic data for genomics-based diagnosis
(38), and for assessment of cancer risk (39–42). Benefits were
also documented for identifying cancerous skin lesions (43–
45), diagnosing cancer in computational histopathology (46),
interpreting retinal imaging (47–51), detecting arrhythmias
(52, 53), polyp detection from colonoscopy (54), identifying
genetic conditions from facial appearance (10, 55), predicting
acute kidney injury (56), detecting epilepsy (57), process
images from endoscopy (58, 59), and predicting outcomes
of gastrointestinal bleeding (58, 59). Some advantages were
likewise shown for decision making in sepsis management
(60), and in pharmacogenomics (61, 62). Even self-monitoring
of blood glucose can be facilitated by AI (63), helping to
improve blood glucose control, reduce hypoglycemic episodes,
and reduce diabetes-related complications (31). The resulting “do
it yourself ” automated insulin delivery for diabetics exemplifies
democratization of medicine by providing privacy, intelligent
computing, and sharing of information (64).

In the field of imaging, AI showed benefits for interpreting
chest radiographs (65–67), detecting cancer in mammograms
(68), analyzing computer tomography scans (69, 70), identifying
brain tumors in magnetic resonance images (71), and predicting
the development of Alzheimer’s disease from positron emission
tomography (72). AI can also assist radiologists by identifying
abnormal or negative exams. Centralized interpretation of chest
radiographs can compensate for a shortage of radiologists in
under-resourced areas (73). Web-based applications can be
used to augment psychiatric services (74). Smartphone-based
applications are used to improve adherence to medications,
and to monitor heart rate, activity levels, sleep levels, and
electrocardiogram (ECG) tracings (75, 76). Algorithms
outperformed cardiologists in diagnosing heart attacks by
ECG (77), and outperformed dermatologists in classifying skin
lesions as benign or malignant, due to their rapid learning
from multiple cases (43). These algorithms also performed
better than experts in analyzing pulmonary tuberculosis in chest
radiographs (78).

In addition to these applications, AI can support preventative
medicine by determining the risks for complications that would
warrant intervention. Patients identified as low risk receive
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reassurance while high-risk patients are referred for intervention
(1). AI is used for precision therapeutics, for repurposing drugs,
and for drug development, by analyzing large volumes of data
(30). Several algorithms have yielded unanticipated findings, such
as predicting breast cancer prognosis using stromal cells (79),
predicting cardiovascular risks using fundus photographs (80),
identifying atrial fibrillation from ECGs acquired during sinus
rhythm (53), and earlier diagnosis of dementia using retinal
imaging (10, 81).

Many of the studies described above were retrospective
and used historical data for training the algorithms. However,
prospective studies are required to prove software’s utility in
real world. Prospective studies have shown limited benefit
in diabetic retinopathy grading (82–84), detection of breast
cancer metastases in lymph node biopsies (85), wrist fracture
detection (86), colonic polyp detection (87), and detection of
atrial fibrillation in Apple watch users (10, 88). Results have been
shown when predicting risk of certain cancers (39, 89, 90) and for
cardiovascular diseases (80, 91). Lesser results have been noted
for epilepsy, and for neurodevelopmental disorders, including
intellectual disability and autism spectrum disorder (30, 92, 93).

Only a few AI-based randomized controlled trials (RCTs) have
been conducted to date. These include a trial to detect childhood
cataracts which showed lower performance compared to senior
clinicians (94), a single-blinded RCT that demonstrated reduced
blind-spot rate in gastroscopy (95), an open non-blinded trial
for polyp detection by colonoscopy which showed improved
detection rate of diminutive adenomas and hyperplastic polyps
(96), a trial to detect acute neurologic events (97), and an open
trial for analyzing cardiotocographs during labor that showed no
improvement in clinical outcomes (98).

Overall, the data have shown some benefits of first-generation
platforms for certain tasks with a defined input and a binary
output (1).

Obstacles Faced by First-Generation AI
Systems Associated With Limited
Penetration Into Clinical Practice
The data used by the first-generation systems are a major cause
of difficulties. Large databases sometimes lack well-structured
training sets that are stable over time. Many of the current
algorithms lack the ability to make clinically relevant associations
when used for analysis of EMR, physicians’ notes, natural
language processing (NLP), identification of patterns within
datasets, or attempts to associate patients’ phenotypes and
genotypic markers (30, 99). Sources may suffer from the absence
of a unifying data format across centers (100). Batch effect
technology biases are obstacles in analyzing population scale
omics and imaging data (101–103). Inadvertent discriminatory
bias, inapplicability outside of training domains, and propagation
of unintentional biases in clinical practice all affect outputs.
Moreover, a lack of valid interpretability and of reliable measures
for model confidence affects accuracy (1, 10). Input data is
produced within non-stationary settings with shifting patient
populations, and changes can occur in clinical practices. Dataset
shifts, which happens when test and training inputs and outputs

have different distributions, commonly occur when these realities
are disregarded (10, 104).

The retrospective designs of most studies and their limited
sample sizes lead to selection bias and overfitting. Selection
bias is introduced by selection of data in a way that proper
randomization is not achieved, thereby ensuring that the sample
obtained is not representative. Overfitting is a modeling error
that occurs when a function is too closely fit to a limited set of
data points (10, 58, 105). Small sample sizes also lead to marked
variability in predicting risk, such as for cardiovascular disease,
decline of glomerular filtration rate in polycystic kidney disease,
and risk of progressive IgA nephropathy (106, 107). Using fitting
confounders rather than true signals, unintentional fitting of
confounders, or “over-fitting”may impact the accuracy of output.
Accidentally fitting confounders vs. true signals or simply using
whatever signals are available to achieve the best performance
in a dataset are ML practices associated with bias (10). AI may
give undue importance to spurious correlations within past data,
as exemplified by a failure to predict seasonal prevalence of
influenza (108).

Data-related obstacles such as differences between sites’ EMR,
laboratory equipment, coding definitions, and clinical practices
undermine the reliability and generalizability of medical AI
systems (10). Comparing algorithms across studies is a major
difficulty, as they often use different methodologies on diverse
populations. Discriminatory bias can lead to inaccuracies when
working with minority subgroups, as AI can disproportionate
affect groups disadvantaged by factors such as race, gender, and
socioeconomics (10, 68, 109–113). Implementing generalizations
is challenging across new populations where specificity at a
fixed operating point varies across independent datasets (65,
70). For instance, one system would classify a skin lesion as
malignant if an image included a ruler, which correlated with
an increased likelihood of diagnosing a cancerous lesion (43).
Another interpreted surgical skin markings falsely as evidence
of increased melanoma probability scores (114). A third system
classified images of malignant moles, but was trained on fair
skinned patients, and underperformed on images of lesions in
dark skin (43, 115, 116).

A lack of validation sets is also a major drawback for some
of the platforms used (10, 117, 118). A recent review found that
only 6% of 516 eligible published AI studies performed external
validation (109). Real-world clinical performance necessitates
external validation. By testing the algorithms on properly sized
datasets collected from multiple institutions, it can be ensured
that variations in patient demographics and disease parameters
are represented in the model (113).

AI can examine multidimensional data and identify patterns
that capture multiple parameters which determine disease
progress and response to therapy. These include genotype,
metabolism, drug pharmacokinetics, disease characteristics,
comorbidities, and environmental factors (30). Individualizing
phenotypic or genotypic patterns requires high-performance
computing for processing multidimensional datasets (30, 49, 55,
119–122). Despite this, high phenotype overlap between different
disorders, and phenotypic variability between individuals with
the same diagnosis, may lead to misdiagnosis (112, 123,
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124). Quantifying risks from patterns of genomic variation
involves marked heterogeneity, variable penetrance of risk
variants, and environmental factors (30, 92, 112, 125–129).
Numerous penetrant variants are linked with more than one
clinical manifestation, while several diagnoses are described by
variable presentations (30, 122, 130). Inability to address gene-
gene interactions involving more than few genes (131, 132),
and overlap between gene lists and/or protein/co-expression
networks for different diseases, reduce diagnostic accuracy
(125, 128). A high degree of overlap in common-SNP based
genetic etiology and patterns of differentially expressed genes are
associated with a low diagnostic accuracy (133, 134). To make
matters worse, unknown variants’ penetrance can be a hurdle
in classifying mutations according to clinical relevance. While
low penetrance is common, high penetrance variants are not
unheard of. Most variants are non-coding, and defining their
pathogenicity requires multidimensional data analysis (3, 105,
121). Many syndromes are diagnosed by a threshold number
of symptoms and clinical history. The availability of data varies
between subjects. Lack of concordance among experts, and
dynamicity of symptoms which change over time, complicate the
use of AI to reach accurate clinical results (135).

Many studies comparing the efficiency or accuracy of AI
to that of clinicians can be shown to have an unreliable
design, to be hard to replicate, or to lack validation (11, 112,
136, 137). A flowchart approach combines history taking and
symptoms for diagnosis and requires large amounts of data.
A database approach is based on the use of ML or pattern
recognition to identify groups of symptoms or certain clinical
image patterns (76). But since numerous signs can only be
observed by a physician, many of these platforms are inferior
to humans. AI-based software has been claimed as improving
interpretation of pulmonary function tests, but the study was
criticized for the AI scoring lower than average scores provided
by clinicians (138). Computer-assisted diagnosis in screening
mammography showed suboptimal positive predictive values,
false positives, sensitivity, and specificity values (139–141).
The study’s algorithm, developed by reviewing 640,000 digital
mammograms, could only reach a specificity, sensitivity, and area
under the receiver operator curve similar to those of the bottom
10% of radiologists (142). When searching for a diagnostic of
serious disease, AI can easily identify trivial data relationships
which may be of no clinical significance, and therefore worsen
over-diagnosis and overtreatment (143).

Many AI systems fail to explain the decision-making
algorithm in an understandable way (10). Concerns regarding
unacceptable results, the risk of unquantified biases that may
prove difficult to identify, and the potential to use inappropriate
confounding variables, all make it extremely desirable that the
AI be explicable (10). AI trained by high volume data may
recognize patterns that are not observable to humans (144), and
which may be difficult for humans to deduce by observation.
However, the trade-off between performance and explicability
implies that the best performing models will often be the least
explicable, whereas linear regression or decision tree models,
which show poorer performance, are more explicable (10, 73,
113, 119, 145). Furthermore, increased administrative burdens

associated with EMR and the lack of a legal framework defining
liability when adopting or rejecting algorithm recommendations
present additional barriers to the adoption of medical AI (11,
146–149).

Taken together, these examples highlight some of the barriers
which underlie medical AI’s limited accuracy and inability to
achieve significant, reliable clinical impacts. These limitations
help to explain the low penetration of first-generation AI into
clinical practice.

Second-Generation Systems Provide the
“5th P”: Focus on Improving the Clinical
Condition of a Single Patient
Healthcare applications of AI research have received extensive
investments in recent last year’s (76, 150). However, the
stereotypical “Silicon Valley mindset” calling for engineers
to “move fast and break things” is clearly inappropriate for
applying AI to healthcare (143, 151). Currently most tasks
performed by these platforms are limited, leaving the primary
responsibility of patient management with a human doctor
(1). First generation systems were designed to promote the
4P model of medicine: Predictive, Preventive, Personalized,
and Participatory, providing patient autonomy (9). Second-
generation AI systems are anticipated to add the “5th P:”
Progress, an improvement of a clinically meaningful endpoint
in a subject-tailored manner. Rather than analyzing data for
assisting in diagnosis, prediction, or tailoring therapy, second-
generation platforms focus on improving biological processes.
Several fundamental changes needed for achievement of the “5th
P” are described below.

Aiming at Clinical Outcomes
A focus on clinically meaningful endpoints and clinical outcomes
that have a quantifiable benefit, and on improving patient
outcomes, is expected to assist in adoption of these new platforms
by patients and caregivers (10). These systems, when designed to
assist in response to interventions, will need to generate outputs
based on quantified clinical responses. If a clinical benefit is not
achieved, the likelihood of these algorithms being implemented
is low (30).

Improving Organ Function and Response to

Therapies
For second- generation AI to improve quantifiable symptomatic
or laboratory endpoints, it will have to improve organ function,
mental healthcare, and response to drugs. The algorithms ought
to improve biological systems, but not by attempting to change
them, nor by pushing them in the opposite direction from the one
they are tilted toward by a disease. Their goal should be “getting
the train back on track,” independently of which direction the
system has been skewed (152, 153).

Controlling for the Dynamic Nature of Host and

Disease
Biological systems are dynamic by nature. Subjects, disease
processes, and responses to therapies continually change.
Chronic diseases move along a dynamic trajectory, creating
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a challenge of unpredictable progression, which is often
disregarded by first-generation AI (30). The internal and external
parameters that determine the progression of chronic disease and
host response vary constantly. These require constant adaptation
of therapeutic regimens (154). Furthermore, many therapies
do not show efficacy or loss of response until considerable
time has passed. Subjects may remain essentially untreated for
several months in cases where reaching an effect requires several
attempts. For many drugs, secondary loss of response occurs
following an initial benefit (155, 156). Second-generation AI
systems which are designed to improve response to therapies,
must therefore facilitate analyzing inter-subject and intra-
subject variabilities in response to therapies over time (157–
160). The dynamicity of biological systems requires algorithms
to implement continual, periodic system-wide updates and
identification of performance deficits over time in an individual
subject (10).

Overcoming Big Data Challenges by Implementing an

n = 1 Concept
Most first-generation AI systems extract data from large
databases, and artificially impose a rigid “one for all” algorithm
on all subjects. Attempts to constantly amend treatment regimens
based on big data analysis might be irrelevant for an individual
patient. Imposing a “close to optimal” fit on all subjects does not
resolve difficulties associated with dynamicity and the inherent
variability of biological systems. Second-generation AI systems
must therefore focus on a single patient as the epicenter of an
algorithm and to adapt their output in a timely manner. They are
required to continually respond to feedback in an individualized
manner while generating an insightful database that can be used
to further improve the algorithm for other patients.

These platforms may not require a large volume of high-
quality data. Second-generation systems are expected to be able
to function based on input from a single patient (158–160).
Conventional ML systems developed to analyze massive datasets
are not analogous to the way brains perform. The brain learns
by analyzing data within a certain context. It does not need to
watch a thousand airplanes to differentiate an airplane from a
bird. This difference in approach is problematic when trying to
achieve good outcomes for individual patients. Generalizing from
large datasets to a single patient is unsuccessful in many cases,
due to a large heterogeneity among subjects, and to ongoing
individualized changes in disease triggers and host responses.
The n = 1 concept can be implemented into second-generation
platforms by focusing on dynamicity of disease and response to
intervention in a single patient. The multiple host, disease, and
environment-related variables learned from big datasets can be
implemented into a single subject-based algorithm that analyzes
input from, and generates output to, that subject (158–160).

In addition to the above four requirements for second-
generation platforms, several additional parameters must be
considered. These platforms should improve patient care, cost-
effectiveness, and workflow for everyday clinical practice in terms
of decision making and the physicians’ workload (1, 161). They
must use metrics which are clinically important and intuitive
to clinicians (10). Reducing bias, using explainable approaches,

and using common statistical methods are also desirable, as they
improve transparency and trust, and encourage adoption by
clinicians (10, 162–164).

Establishment of a Second-Generation AI
System: Implementing Individualized
Signatures of Variability for Promoting a
Subject-Tailored Improved Response to
Therapy
Variability Characterizes Biological Systems
Algorithms that implement natural patterns into biological
systems are being evaluated (160, 165–169). Rather than
enforcing an artificial change on a biological process, such
algorithms are designed to make use of rules that are inherent
to the system.

Biological systems are characterized by a high degree of
variability and randomness. The rules by which these systems
behave are not fixed and continually change over time. Their
dynamicity, and the multiple variables that continually affect
these biological laws, stand in contrast to the laws found
in physics. In physics, laws are regulated by more constant,
more predictable rules (170–173). In contrast to randomness
in physics, where only a fixed range of possibilities exists, in
biology this range is itself variable, and sometimes even randomly
constituted (174–177). Some may argue that biological systems
may be less random and appear random when represented by
linear or additive models. While these theories are more easily
explainable when represented as complex systems, they do not
rule out the option of some degree of intrinsic variability (178).

The term “randomness” in biological systems is thus used
with several meanings. In some studies, it describes disorder
in a thermodynamic sense; others use it when referring to
a high degree of complexity of a process (153, 160, 165,
179, 180). Randomness is used to describe noisy or stochastic
behavior of a system, or when referring to unpredictability of
its structure and behavior (166, 174, 180–183). Randomness has
evolutionary associations, wherein variation and probability are
linked to the adaptability of a system (184, 185). Darwinian
evolutionary processes are partially ascribed to an ability to
adapt to unpredictable environmental changes. Neo-Darwinism
suggests “blind chance” as an origin of variation. Spontaneous
and induced mechanisms of phenotypic adaptation indicate a
role for chance in compensatory processes (185–190). Chaos
theory describes the process of disorder arising in deterministic
systems that are sensitive to initial conditions, increasing the
unpredictability of the systems (191).

The noisy or stochastic behavior of biological systems
characterizes their dynamic and adaptable behavior in response
to internal and external triggers (169, 192). Intrinsic stochasticity
has been described for numerous intracellular pathways (181,
193). Organisms are dissimilar to each other, and undergo
unpredictable changes affected by multiple irregular variables
(158–160, 194, 195). Intra-subject and inter-subject biological
variability is observed at every level from cellular organelles to
whole organs (160, 196–201).
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FIGURE 1 | Establishment of a second-generation AI platform. Depiction of a closed-loop platform where a patient with a chronic disease is placed at the center. The

closed feedback loop is responsive to the effect of therapy on clinical outcomes. The algorithm adapts itself dynamically to the effects of therapy on the endpoint. The

algorithm quantifies personalized variability patterns and implements them into therapeutic regimens. In parallel, the algorithm generates an insightful database which

evolves from analyzing outputs on the endpoint. The dataset collects the relevant variability-based quantifiable parameters which are associated with improved clinical

outcomes. The dataset is continuously being updated based on the clinical response of each of the treated subjects.

The Crick and Watson interpretation of molecular biology,
influenced by quantum mechanics, holds that functional order is
a result of order at the molecular level, where information passes
from DNA to proteins (202, 203). However, DNA-dependent
processes do not assure functionality at molecular levels. Proper
function involves multiple correlations between processes at a
higher level. As Schrödinger once argued for the physics of
subatomic particles, it has been proposed that molecules in an
organism cannot avoid stochasticity (203–206). Variability has
been described in nucleotide substitutions in DNA sequence
(207), and when referring to evolving ancestral DNA sequences,
as they begin to take different forms in populations of the
same species (208). Random genetic drift is an example of
fluctuating gene variants in a population (209). Variability has
been shown for cell proliferation and death decisions, evolving
from heterogeneity in founder cells (210, 211). Phenotype
variability has been described for biomarkers on lymphocyte
subpopulations. Antibody response to pathogens comprises
expansion of antigen-specific cells and involves stochastic
competition among competing cell fates or deterministic cell fate
decisions (212). A high rate of variability in generating regulatory
T cells has been observed in immune disease responses (213). Ex
vivo cytokine release tests have manifested high inter-individual
and intra-group variability (214).

Variability Contributes to Proper Function of

Biological Systems
Variability should be viewed as a property of causal processes
that contribute to proper functions of systems (158, 159, 196).
Keeping “steadiness” is not a mandatory objective of physiologic
control under all conditions. It can prohibit normal adaptation
to ongoing changes (158–160, 194, 195). Non-linear systems can

function far from equilibrium, and their dynamicity is part of the
plasticity required for optimizing their function (203, 215–217).
Biological variability is desirable for the evolutionary dynamics
that contribute to stability through adaptation (153, 160, 180,
218, 219). It should be regarded as a method used for generating
“new order,” assisting in overcoming errors in assembly and
functions (166, 220). For stochastic cellular processes such
as single-cell responses, randomness-based modeling improves
deterministic models (221–223). Additional examples include
gatherings of cells within heterogeneous spaces and random
control of associations of biomolecules, which lead to an array
of synchronized functions, including transcription, translation,
ribosome biogenesis, chromosome replication, and metabolism
(160, 196, 224–226). The dynamic instability of microtubules
likewise demonstrates that variability is required for their normal
structure and function (196, 227).

An Advanced Model for Disease Involving Loss of

Variability
Since variability characterizes the normal function of systems,
health can be perceived as a continual adaptation which requires
constant adjustments. Appearance of “order” in a system that
is inherently disordered is associated with the occurrence of a
disease, representing rigid dysfunction of a system (228–231).
Loss of complexity in diseased states is related to a reduced
ability to adapt to changes, and may underlie chronic illnesses
and aging (232–234).

Irregularity in Response to Disease-Inducing Triggers

and to Therapies
Variability occurs between subjects and within the same subject
in the response triggers that induce a disease. An example
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of personalized response to disease-inducing triggers has been
shown in a concanavalin A (ConA)-induced immune-hepatitis
model. Marked variability in individualized responses to a
disease-trigger was documented under similar conditions (180).

Similarly, marked inter-subject variability in the response
to immunomodulatory therapies has been shown by marked
differences in degree of alleviation of the immune-mediated liver
injury. A personalized response has been documented for the
effect of therapies on cytokine levels and on expression of cell
epitopes on lymphocyte subsets (180). A physiological lattice
model for liver metabolism of drugs has shown that variability
of sinusoidal structure underlies variances in drug response
in individual hepatic veins at different times, suggesting that
individual ports react differently in response to drugs (235). In
humans, unpredictability has been described when discussing the
response to chronicmedications with high rate of loss of response
over time, and in some cases paradoxical exacerbation of diseases.
Inter and intra-patient variability in drug serum levels between
days has been shown (236, 237).

Variability in response to medications among subjects
is commonly attributed to pharmacogenomics and
pharmacodynamics-based drug metabolism (237–240).
However, heterogeneity cannot be solely attributed to these
mechanisms (241). The unpredictability of responses to
drugs is partly due to the changing dynamic rules by which
biological systems function. Complex intracellular drug-target
interactions which are not defined solely by simple diffusion
and intrinsic chemical reactions, and that are beyond “simple”
pharmacodynamics, have been demonstrated. Non-specific
interactions can slow the incorporation kinetics of DNA-binding
drugs, and can be responsible for irregular drug diffusion in
cells (241).

Loss of Response to Chronic Therapies
Individual resistance to drugs is highly variable and results
from multiple genetic and environmental factors. This implies
that deterministic equations are unsuitable for examining dose-
response relations (242). For instance, a secondary loss of
response to anti-tumor necrosis alpha (TNF) occurs in 25–61%
of patients with rheumatoid arthritis following an initial effect
(243–245). More generally, cancer drug resistance associated
with patients’ genetic background or acquired by tumors is
common in patients with malignancies (246, 247). Resistance to
anti-depressant medications occurs in a third of patients (248).
Similarly, about a third of epileptics develop resistance to anti-
epileptic agents (249).

Implementing Personalized Variability Patterns for

Improving Function of Biological Systems and

Response to Drugs
Regular fixed therapeutic regimens may not be compatible with
physiological variabilities in biology, and can underlie loss of
response to chronic drugs (158–160, 250, 251). Fixed regimens
are incompatible with the variable trajectories which underlie
the pathogenesis of diseases and compensatory responses to
therapies (215). Introducing variability into therapeutic regimens
can improve response to drugs. Dose escalations, reductions, and

intermittent dosing with drug holidays can exert clinical benefits
while minimizing adverse effects (252–256). For instance, in a
prospective trial of patients with inflammatory bowel disease
treated with anti-TNFs, loss of clinical response was observed
in 36% of patients on fixed dosing compared with only 13% in
subjects treated using a (de-) escalation dashboard (257).

The variability which characterizes properly functioning
biological systems, their response to disease-inducing triggers,
and their response to therapies, along with real-world
data showing beneficial effects of drug holidays and dose
escalation/reduction, supports implementing variability-based
regimens. This holds promise for improvement of organ
function and response to therapies (158, 159, 165, 180, 258–265).
Introducing variability into systems increases their degree of
complexity and improves their function (160, 266). The resulting
variability pattern tracks a similar trajectory to that used by
the body while responding to disease-triggers and to therapies.
This is expected to improve response to interventions under
unpredictable conditions (158–160, 165, 166).

It has been proposed that the type andmagnitude of variability
in a biological system should ideally be personalized (158, 159). It
has been suggested that continuously quantifying individualized
variability patterns and implementing them into algorithms
enables personalized and dynamic tailoring of therapeutic
regimens. Patterns of variability can be quantified from genetic
profiling, immune testing, chronotherapy measures, heart rate
variability, and additional host and disease-related variability
signatures (162, 163, 170, 171). This type of improved precision
medicine is compatible with the principles according to which
diseases and hosts behave. Rather than imposing a rigid artificial
regimen, algorithms continuously adapt to individual changes
in disease and the patient’s responses to interventions (158–
160, 166). Therefore, a patient-tailored approach based on
individualized variability patterns implemented into AI systems
is expected to improve the efficiency and sustainability of the
beneficial effects of chronic therapies.

A Continuously Adapting Individualized-Variability

Based Closed-Feedback Loops for Ensuring

Plasticity and Improved Function of a Biological

System
The establishment of the second-generation AI systems
described herein is performed in steps (267). In the first
step, the effect of introducing variability into therapeutic
regimens of patients who have partially or completely
lost their response to chronic medications should be
evaluated. These algorithms have embedded pseudo-random
number generators which introduce variability in times
of administration and dosages within an approved range.
These pseudo-random number generators function within
regulatory-approved therapeutic dosing and pharmacodynamics
windows and can be implemented instantly. From a
regulatory authorities’ perspective, the use of these systems
may be viewed as reminders for improve of patient’s
adherence (268).

Ongoing clinical trials (NCT03843697; NCT03747705) are
evaluating the effects of these regimens in patients with
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inflammatory bowel disease who have lost their response to anti-
TNFs, and in patients with epilepsy who have lost response
to anti-epileptics. Data from these studies is expected to find
improved response to medications when applying variability-
based therapeutic regimens. While this type of variability may
not always fit into an underlying personalized variability pattern,
it is likely to provide improvement over the fixed regimens which
underlie drug resistance.

In the second step, a closed-loop algorithm should be
implemented, where inputs are based on clinical outcomes
chosen to generate therapeutic regimens. This step requires
regulatory approval, as it involves changes of dosing regimens
outside approved ranges, based on subject’s clinical response,
while keeping dosages within pre-determined safety boundaries.
The algorithm may prevent certain unwanted side effects, as it
enables skipping doses, but should not provide dosages which
might potentially induce drug complications (267).

In the third step, host and disease-related patterns of
variability would be quantified in a personalized manner, and
then implemented in a true-random number generator. This
step is expected to further improve the response rate and
sustainability of beneficial effects of therapies in patients with
chronic diseases. It involves a process of continuous adaptation
of algorithm output to inputs from quantifiable variability
parameters. These will be parameters associated with disease
pathogenesis, host response, and the mechanism of action
of the drug. For example, heart rate variability parameters
can be used an input for generating therapeutic regimens
for patients with heart failure; and measuring variabilities
in cytokine response will help treat patients with immune
disorders (267).

For all steps, genotypic and phenotypic parameters, which
may impact algorithm output, are “ignored” by the platform. The
algorithm continuously adapts itself to a clinically meaningful
output as its sole endpoint. The sums of effects of all potential
factors on a clinical endpoint are thus being considered without
splitting them into individual variables. This contrasts with
attempts made by most first-generation AIs to dissect and
quantify only some of these parameters. Thus, the second-
generation medical AI will not consider many unquantifiable
measures, or use fixed rules which are based on artificial
parameters, or on fitting of data from large datasets. Instead, the
proposed platform adapts itself to a sum of all parameters via
their effects on a sole measured endpoint in a single subject. The
continually individualized dynamic and unpredictable changes
in disease, host response, and environmental triggers will be
accounted for via their effects on clinical outcomes, generating
a dynamic output by the algorithm.

In the fourth step, an insightful database would be generated
by the algorithm. Outputs from this database and from

conventional datasets would then be used to introduce additional
variables into the algorithm. The effects of these interventions
would be continuously measured by evaluating their effect on a
clinical endpoint in an individual subject (267).

Figure 1 shows a schematic presentation of a closed-loop
algorithm where a single subject with a chronic disease is at
the focus. A feedback loop is responsive to the effect of therapy
on a clinically meaningful endpoint. The algorithm aims at
this endpoint and adapts itself in a dynamic manner. The AI
platform then quantifies personalized variability patterns relevant
to the disease, host response, and environment-related variables.
It combines these variables into a dynamic therapeutic regimen.
In parallel, the algorithm generates its own insightful database
which evolves from analyzing its outputs on organ function
(160, 166).

All of this notwithstanding, doctors will most likely not
be entirely replaced by AI systems. The platforms discussed
here are expected to support physicians for improving patients’
management (149, 269). While first-generation systems
were designed to assist medical decisions, their penetration
into clinical workflow has been limited. Second-generation
systems are and will be designed to overcome some of the
obstacles experienced over recent years. These new platforms
should support better interactions between clinicians and
algorithms, showing that a combination of human and AI
outperforms either alone, and aiming at improvements
to clinical outcomes. The dataset collects the variability-
based quantifiable parameters which are associated with
improved clinical outcomes. It continuously updated in
accordance with the clinical response of each of the treated
subjects (10, 270).

The platform described herein introduces a novel method
wherein the focus of an algorithm is on improving clinical
outcomes of individual subjects. It implements an n =

1 concept into a personalized therapeutic regimen by
introducing individualized variability signatures into an
algorithm. The system is based on improving the beneficial
effects of therapeutic interventions. This makes it more
likely to gain adherence from both patients and healthcare
providers. The platform is designed to overcome compensatory
mechanisms associated with drug resistance and disease
progression, to ensure sustainable beneficial effects from
medications. Results of ongoing clinical trials and future
prospective studies are expected to enable further development
of these platforms.
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