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Accurate prediction and monitoring of patient health in the intensive care unit can inform

shared decisions regarding appropriateness of care delivery, risk-reduction strategies,

and intensive care resource use. Traditionally, algorithmic solutions for patient outcome

prediction rely solely on data available from electronic health records (EHR). In this pilot

study, we explore the benefits of augmenting existing EHR data with novel measurements

from wrist-worn activity sensors as part of a clinical environment known as the Intelligent

ICU. We implemented temporal deep learning models based on two distinct sources

of patient data: (1) routinely measured vital signs from electronic health records, and

(2) activity data collected from wearable sensors. As a proxy for illness severity, our

models predicted whether patients leaving the intensive care unit would be successfully

or unsuccessfully discharged from the hospital. We overcome the challenge of small

sample size in our prospective cohort by applying deep transfer learning using EHR

data from a much larger cohort of traditional ICU patients. Our experiments quantify

added utility of non-traditional measurements for predicting patient health, especially

when applying a transfer learning procedure to small novel Intelligent ICU cohorts of

critically ill patients.

Keywords: machine learning, deep learning, transfer learning, intensive care unit, electronic health records,

intelligent ICU

1. INTRODUCTION

Patients admitted to a hospital’s intensive care unit (ICU) have life-threatening conditions or the
propensity to develop them at any moment. An estimated 5.7 million adults are admitted to ICUs
in the United States annually, and their precarious and often rapidly-changing state of health
necessitates increasedmonitoring and hospital resources that costs the U.S. healthcare systemmore
than 67 billion dollars every year (1).

A typical ICU stay occurs in an environment of high-frequency patient monitoring involving
a wide variety of physiological measurements such as vital sign tracking, bedside nursing
assessments, and laboratory test results. These clinical data points serve as a window into
patient illness severity, and taken over time can indicate improving or worsening physiological
health. The robust clinical data generated during an ICU stay can aid caregivers in diagnosis
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and influence clinical decision-making regarding medication
administration, appropriateness of clinical procedures and
surgery, and duration and resource requirement of intensive care.

The rich data associated with a typical ICU stay is routinely
captured in modern electronic health record (EHR) systems. As
of 2017, more than 99% of U.S. hospitals use some form of
EHR (2). These longitudinal systems store a large magnitude
of patient information including demographics and admission
information, vital signs, diagnoses and procedures, laboratory
tests, prescriptions andmedications, bedside assessments, clinical
notes, and more. While inherently useful for care delivery and
administrative hospital tasks like billing, EHR systems also
function as a rich source for more automated data-driven patient
monitoring applications.

Given the potential for health instability commonly associated
with patients undergoing intensive care, the timely and accurate
assessment of illness severity is invaluable and can inform
shared decision-making among patients, families, and providers.
Traditionally, overall patient acuity can be measured using
a variety of manual, threshold-based scoring systems such
as Sequential Organ Failure Assessment (SOFA) (3), Acute
Physiology And Chronic Health Evaluation (APACHE) (4),
Simplified Acute Physiology Score (SAPS) (5, 6), Modified
Early Warning Score (MEWS) (7), and others. More recently,
clinical informatics research has demonstrated the validity and
accuracy of more automated machine learning approaches using
the rich data from EHR systems (8–12). In particular, modern
algorithmic techniques using deep learning have been shown to
outperform traditional bedside severity scores for predicting in-
hospital mortality as a proxy for real-time patient acuity (13).
Automated approaches for assessing patient illness severity can
help eliminate reliance on overburdened providers, improve the
precision of personalized acuity estimates, and be computed in
real-time when combined with streaming EHR platforms.

One potential disadvantage of automated patient monitoring
solutions is that such systems are limited to physiological data
that is recorded in EHR databases. This common paradigm
omits important aspects of patient care, including environmental
factors (such as noise, light, and sleep), facial expressions that can
indicate pain, agitation, or affective state, and aspects of patient
mobility and functional status.

Currently, patient pain can be measured by scoring systems
such as the Non-Verbal Pain Scale (NVPS) (14) and the
Defense and Veterans Pain Rating Scale (DVPRS) (15), and
patient activity can be assessed by scoring systems such as the
Progressive Upright Mobility Protocol (PUMP) Plus (16) and the
ICU Mobility Scale (IMS) (17). However, these manual scores
are much less granular than the corresponding physiological
measurements and require either self-reporting or repetitive
observations by ICU staff (18, 19). The reduced frequency and
granularity of these types of patient data can hinder timely
intervention strategies (20–25).

To overcome the limitations of current approaches to
automated patient monitoring, recent studies have begun to
explore the benefits of intensive care units augmented with
continuous and pervasive sensing technology. In a study dubbed
the Intelligent ICU, Davoudi et al. augmented traditional

EHR-based data with patient-worn accelerometer sensors,
room-equipped light and sound sensors, and a patient-facing
camera (26) (Figure 1). Their initial pilot study demonstrated
the positive impact of these novel clinical data streams in
characterizing delirium in a small prospective cohort of ICU
patients. While these non-traditional ICU data sources have
shown promise for improving modeling of critically ill patients,
Intelligent ICU rooms equipped with pervasive sensors are still
in early stages of research.

In this study, we build upon the work of Davoudi et al. by
utilizing the data generated by Intelligent ICUs for automated
patient acuity assessment using deep learning techniques. In
particular, we show that by augmenting existing EHR data with
continuous activity measurements via wrist-worn accelerometer
sensors, models are better able to capture illness severity by way
of more accurate predictions of hospital discharge disposition.
We overcome the issue of small sample size in the Intelligent
ICU cohorts by employing transfer learning techniques, where
learned knowledge and representations from a much larger
cohort of EHR-only patients is used as a starting point for
subsequent incorporation of the non-traditional data streams. By
combining transfer learning with augmented ICU monitoring,
our work demonstrates the utility, efficacy, and future promise
for using Intelligent ICUs for more personalized and accurate
illness severity assessments.

2. MATERIALS AND METHODS

2.1. Study Aims
The primary goal of our study is to characterize the effectiveness
of augmenting traditional EHR patient data with a novel
Intelligent ICU data source as it pertains to patient acuity
assessment using machine learning techniques. Specifically, we
combine datasets consisting of several common vital signs with
continuous measurements from a wrist-worn activity sensor,
and use these augmented datasets to make predictions of a
patient’s eventual successful or unsuccessful hospital discharge
as a proxy for illness severity. In this study, we consider a
discharge to home or rehabilitation facility as successful, with in-
hospital mortality or transfer to another hospital or hospice being
considered unsuccessful.

Our second aim is the evaluation of transfer learning as a
solution to cope with the issue of small sample size in our
prospective Intelligent ICU patient cohort. We hypothesized that
building upon algorithmic patient representations from a much
larger cohort of traditional ICU stays would result in improved
predictive performance in the smaller cohort of interest.

2.2. Study Cohorts
Our primary cohort of interest, which we refer to as the
Intelligent ICU cohort, includes 51 distinct ICU admissions
at University of Florida Health between September 2015 and
February 2020. These intensive care episodes were made up of
51 unique patients undergoing 51 unique hospital encounters,
and occurred within specialized intensive care units outfitted
with several unconventional monitoring systems (Figure 1). The
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FIGURE 1 | Intelligent ICU room introduced by Davoudi et al. (26). In this study, we augment traditional vital signs from electronic health records with novel activity

data from wrist-worn accelerometer sensors.

Intelligent ICU cohort included 33 successful discharges (64.7%)
and 18 unsuccessful discharges (35.3%).

For transfer learning experiments, we constructed a much
larger second cohort of 48,400 distinct ICU admissions occurring
at University of Florida Health between January 2011 and July
2019. We refer to these admissions as the Conventional ICU
cohort, as it comes from standard intensive care units that
contain only the data available in typical EHR systems. These ICU
admissions included 32,184 patients undergoing 45,147 unique
hospital encounters. The Conventional ICU cohort included
36,392 successful discharges (75.2%) and 12,008 unsuccessful
discharges (24.8%).

This study was approved by University of Florida Institutional
Review Board by IRB 201900546. A summary and comparison of
admission and demographic descriptors for each cohort is shown
in Table 1.

2.3. Data Extraction and Processing
2.3.1. Traditional EHR Data
Whether receiving care in an Intelligent ICU or conventional
ICU room, all patients have the same set of data recorded into
their electronic health records. In this study, for both cohorts we
extracted all ICU measurements of six commonly recorded vital
signs: diastolic blood pressure, systolic blood pressure, heart rate,
respiratory rate, oxygen saturation (SpO2), and temperature.

A multivariate time series of vital signs was constructed
for each ICU stay by temporally ordering measurements and
resampling to a fixed 1-h frequency, where the mean value was
taken if multiple measurements existed in the same 1-h window.

We extracted measurements from the entirety of each ICU stay,
thus each vital sign sequence was variable length based on the
number of hours a patient was in the ICU.

2.3.2. Intelligent ICU Data
The novel environmental and pervasive sensing technology
was unique to the 51 ICU stays occurring in our Intelligent
ICU cohort. Among all available non-traditional data sources
(Figure 1), in this pilot study we opted to explore the added
utility of wrist-worn activity sensors. Since this is the first study
of its kind, we intentionally chose to limit the inclusion of novel
data sources as a starting point for exploring and discussing the
potential benefits of Intelligent ICU rooms for enhanced patient
acuity assessment. While, we provide a brief summary of the
technology and data streams contained within Intelligent ICUs,
we refer interested readers to the work of Davoudi et al. (26) for
a more comprehensive overview.

Patient activity data was collected from an Actigraph GT3X
sensor (ActiGraph, LLC. Pensacola, Florida) placed on the
patient’s dominant wrist when possible, and on the opposite wrist
when medical devices prevented ideal placement. These sensors
generate activity based on magnitude of wrist motion (27) and
sample at a frequency of 100 Hz. In this study, we aggregated
accelerometer data into 24-h intervals, and extracted nine
statistical features from each consecutive 24-h window after ICU
admission. These features included minimum, maximum, mean,
variance, standard deviation, immobile count, interquartile range
(IQR), root mean square of successive differences (RMSSD), and
standard deviation of RMSSD.
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TABLE 1 | Summary of Intelligent ICU and Conventional ICU cohorts.

Descriptor Intelligent ICU Conventional ICU

(n = 51) (n = 48,400)

Patients, n 51 32,184

Hospital encounters, n 51 45,147

Hospital length of stay (days), median

(25th, 75th)

14.9 (9.0, 21.7) 7.3 (4.2, 12.9)

Successful hospital discharge, n (%) 33 (64.7) 36,392 (75.2)

Unsuccessful hospital discharge, n (%) 18 (35.3) 12,008 (24.8)

ICU stays, n 51 48,400

ICU length of stay (days), median (25th,

75th)

10.3 (6.4, 13.9) 3.0 (1.6, 6.0)

Age (years), median (25th, 75th) 63.2 (43.3, 73.0) 61.2 (48.8, 70.9)

Body mass index, median (25th, 75th) 27.3 (22.9, 33.2) 27.1 (23.1, 32.1)

Charlson comorbidity index, median

(25th, 75th)

2.0 (0.0, 4.0) 2.0 (0.0, 4.0)

Sex

Female, n (%) 18 (35.3) 20,188 (44.7)

Male, n (%) 33 (64.7) 24,959 (55.3)

Race

White, n (%) 44 (86.3) 34,702 (76.9)

Black, n (%) 5 (9.8) 7,615 (16.9)

Other, n (%) 2 (3.9) 2,830 (6.2)

Ethnicity

Hispanic, n (%) 1 (2.0) 1,677 (3.8)

Not Hispanic, n (%) 50 (98.0) 42,989 (96.2)

Language

English, n (%) 51 (100.0) 44,396 (98.3)

Non-English, n (%) 0 (0.0) 751 (1.7)

Marital status

Married, n (%) 24 (55.8) 20,513 (48.3)

Single, n (%) 14 (32.6) 13,606 (32.1)

Divorced, n (%) 2 (4.7) 4,149 (9.8)

Widowed, n (%) 1 (2.3) 3,341 (7.9)

Separated, n (%) 2 (4.7) 545 (1.3)

Life partner, n (%) 0 (0.0) 292 (0.7)

Provider

Medicare, n (%) 27 (57.5) 23,203 (53.9)

Private insurance, n (%) 13 (27.7) 10,707 (24.9)

Medicaid, n (%) 4 (8.5) 6,612 (15.4)

Uninsured, n (%) 3 (6.4) 2,550 (5.9)

Smoking status

Smoker, n (%) 7 (15.6) 8,514 (21.1)

Former smoker, n (%) 21 (46.7) 15,779 (39.1)

Never smoker, n (%) 17 (37.8) 16,060 (39.8)

A summary of all features used in our models for both the
Intelligent ICU and Conventional ICU cohorts is shown in
Table 2.

2.3.3. Final Data Preprocessing
For both sequences of patient data, outliers were capped at the
1st and 99th percentiles, with cutoff points determined by the

TABLE 2 | Summary of features used in our experiments.

Feature
Intelligent ICU Conventional ICU

(n = 51) (n = 48,400)

Median (25th, 75th) Median (25th, 75th)

Vital signs

Diastolic blood pressure, mmHg 62.3 (53.0, 73.0) 63.0 (54.0, 73.0)

Systolic blood pressure, mmHg 123.0 (110.0, 139.0) 121.0 (107.0, 137.5)

Heart rate, beats/min 91.0 (80.0, 103.0) 85.0 (74.0, 97.0)

Respiratory rate, breaths/min 18.3 (15.0, 22.5) 18.0 (15.0, 21.0)

Oxygen saturation (SpO2), % 98.0 (95.0, 100.0) 97.0 (95.0, 99.0)

Temperature, ◦C 37.0 (36.7, 37.5) 36.9 (36.7, 37.3)

Wrist activity, action counts

Minimum 0.0 (0.0, 0.0) N/A

Maximum 62.7 (39.5, 97.1) N/A

Mean 2.9 (1.2, 6.3) N/A

Variance 58.6 (16.3, 135.5) N/A

Standard deviation 7.7 (4.0, 11.6) N/A

IQR 1.8 (0.0, 8.0) N/A

RMSSD 7.1 (4.2, 11.6) N/A

RMSSD standard deviation 1.0 (0.9, 1.1) N/A

Number immobile 0.6 (0.4, 0.8) N/A

development set of each individual experiment. Any missing
extracted feature values in the resulting sequences were imputed
with the previous sequence value, if it existed, otherwise with
the feature median based on each experiment’s development
set. Finally, each feature was standardized to zero mean and
unit variance based on values from the development set of
each experiment.

2.4. Models
In this study, we employ single-layer recurrent neural networks
(RNN), a class of deep learning algorithms that are well-suited to
processing sequential data and have been validated in literature
as accurate clinical models for patient acuity assessment (13). In
particular, our RNN models utilize gated recurrent units (GRU)
and a linear prediction layer that is used to make a discharge
prediction after processing each 24-h data window (Figure 2). As
each sequential window’s features are made available, the model
learns a real-time cumulative representation of patient state that
is used to predict patient illness severity.

Our study involved the training of two distinct families
of recurrent neural networks that were designed to handle
either only traditional ICU data, or traditional data augmented
with the multi-modal Intelligent ICU data. When using the
augmented dataset of both EHR and Intelligent ICU data, we
utilized a parallel RNN architecture comprised of two recurrent
neural networks that independently processed each data source
on separate time scales, with the concatenation of hidden
representations passed to the linear prediction layer for assessing
final predicted hospital discharge status.
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FIGURE 2 | Collapsed (A) and expanded (B) view of a single-layer recurrent neural network with gated recurrent units (GRU) used as building blocks in our model.

After processing multi-resolution sequences of vital signs and activity sensor data, a final hospital discharge prediction was made using the final hidden representation.

2.5. Experiments
Corresponding to our aims in section 2.1, we sought to evaluate
the effectiveness of augmenting traditional EHR data with
Intelligent ICU data formaking predictions of eventual successful
or unsuccessful hospital discharge in our cohort of patients
undergoing care in Intelligent ICU rooms. Given the small
sample size of our Intelligent ICU cohort (n = 51), we also
sought to explore the potential benefits of applying the technique
of transfer learning, whereby a source model, typically trained
on a larger dataset, is used to initialize a smaller model that is
subsequently fine-tuned on the smaller dataset of interest. In
our transfer learning experiments, we first trained a recurrent
neural network on the Conventional ICU cohort (n = 48,400),
and transferred its internal RNN weights and biases to a separate
model for predicting illness severity in the Intelligent ICU cohort.
This transfer learning process is shown in Figure 3.

This study includes four experimental variants designed to
evaluate our study aims, all using the same discharge disposition
targets. All results are reported on the target cohort of 51 ICU
encounters occurring in Intelligent ICU rooms.

First, we sought to evaluate predictive performance in the
target cohort without the application of transfer learning. The
first of these experiments involved the training of a single RNN
model on only the EHR data available in the target cohort. Next,
we performed a similar experiment using a parallel RNN model
with both the EHR and Intelligent ICU data available in the
target cohort. These two experimental settings were designed to
characterize potential benefits of augmenting traditional EHR
data with more novel Intelligent ICU data streams.

We then repeated the above two experiments in conjunction
with a transfer learning procedure. In each of these two transfer
learning experiments, we first trained a single RNN model on
the EHR data from the large Conventional ICU cohort of 48,400
ICU stays. Upon completion of training this source model, we

initialized the RNN weights and biases in the EHR portion of
the Intelligent ICU models using the final trained RNN weights
and biases from the Conventional ICU models (Figure 3). The
Intelligent ICU models were then trained as normal using the
data available in the target Intelligent ICU cohort, in a process
known in transfer learning literature as fine-tuning. In both
transfer learning experiments, only the final RNN designed
to process EHR data was initialized with pre-trained weights,
as the Conventional ICU cohort did not contain any novel
data sources. Consequently, the final RNN for processing the
novel data sources was always trained starting with randomly
initialized values.

All experiments on the target Intelligent ICU cohort were
performed using 100 repeated trials of randomized five-fold
cross-validation stratified by discharge target labels. Within each
of the 100 cross-validation experiments, we retained the mean
area under the receiver operating characteristic curve (AUROC)
across all five validation set folds. 95% confidence intervals
were obtained based on percentiles from these 100 averaged
AUROC results. When training the large source model on the
Conventional ICU cohort, we used the final chronological 20% of
ICU stays as validation data, and obtain confidence intervals via
100 bootstrapped iterations based on validation set predictions.

When training a deep learning model, we used a random 20%
of the development set for early stopping. Our deep learning
models used hidden units of 128 dimensions across all layers, and
were trained in batches of 32 samples with an Adam optimizer
with learning rate 10−3 and L2 weight decay of 10−3. All layers
used 25% dropout.

3. RESULTS

Training the single RNNmodel on 80% of the large Conventional
ICU cohort and evaluating on the remaining 20% validation set
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FIGURE 3 | Overview of transfer learning procedure. Our final Intelligent ICU model incorporates pre-trained representational knowledge from a source deep learning

model trained only on electronic health records data from a large cohort of traditional ICU stays (n = 48,400).

resulted in an AUROC of 0.752 (95% CI: 0.743–0.763). This
trained model was used in all later transfer learning experiments,
where the recurrent weights and biases were transferred to the
final Intelligent ICU model as shown in Figure 3.

The single-cohort and single-RNN Intelligent ICU model
using EHR data alone resulted in an AUROC of 0.734
(95% CI: 0.622–0.830). Augmenting the input data with
both novel Intelligent ICU data sources and combining
with the parallel RNN model resulted in an AUROC of
0.743 (95% CI: 0.644–0.842).

After the application of transfer learning using the model
trained on the Conventional ICU cohort, the single-RNN
model using only EHR data from the Intelligent ICU cohort

resulted in an AUROC of 0.828 (95% CI: 0.557–0.951). The
transfer learning model using the augmented dataset of EHR
and Intelligent ICU data sources resulted in an AUROC of
0.915 (95% CI: 0.772–0.975).

Results for all experimental settings are summarized in
Table 3.

4. DISCUSSION

In this study, we have provided the first attempts at incorporating
cutting-edge pervasive sensing technology for patientmonitoring
and precise acuity assessments in the intensive care unit. Based
on data from the Intelligent ICU environment of Davoudi et al.
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TABLE 3 | Hospital discharge prediction results for all experimental settings.

Target cohort Input data Training scheme AUROC (95% CI)

Conventional ICU EHR data Single cohort 0.752 (0.743–0.763)

Intelligent ICU EHR data Single cohort 0.734 (0.622–0.830)

Intelligent ICU EHR + Intelligent data Single cohort 0.743 (0.644–0.842)

Intelligent ICU EHR data Transfer learning 0.828 (0.557–0.951)

Intelligent ICU EHR + Intelligent data Transfer learning 0.915 (0.772–0.975)

(26), we explored the performance impact of augmenting deep
learning models with two novel data streams for the prediction
of successful vs. unsuccessful hospital discharge as a measure of
patient illness severity.

Several important takeaways can be gleaned from the
performance results summarized in Table 3. When comparing
single-cohort models trained on EHR data alone, the model
trained on the larger Conventional ICU cohort of 48,400 ICU
stays relatively outperformed a similar model trained on the
much smaller Intelligent ICU cohort of 51 ICU stays (AUROC:
0.752 [95% CI: 0.743–0.763] vs. 0.734 [95% CI: 0.622–0.830]).
While not unexpected given the large disparity in cohort sample
sizes, the relatively small magnitude of difference between the
cohorts is an interesting outcome, as one might expect an
even larger discrepancy in model accuracy. While potentially
attributable to a variety of factors, these results might suggest
clear input patterns associated with improving or worsening
health condition that yield diminishing returns as the sample size
exponentially increases.

Given the results in Table 3, it is also clear that augmenting
traditional EHR data with novel activity features in our
single-cohort Intelligent ICU model marginally improved its
predictive performance (AUROC: 0.743 [95% CI: 0.644–0.842]
vs. 0.734 [95% CI: 0.622–0.830]).

Model accuracy was greatly improved using both input
dataset variants after the application of transfer learning. When
considering EHR data alone, transfer learning increased model
accuracy from an AUROC of 0.734 (95% CI: 0.622–0.830) to
an AUROC of 0.828 (95% CI: 0.557–0.951). Compared with
the results yielded by the single-cohort model in the large
Conventional ICU cohort (AUROC: 0.752 [95% CI: 0.743–
0.763]), the final accuracy of the Intelligent ICU cohort was much
higher. We speculate that these performance improvements
point to the power of proper weight initialization in deep learning
models, especially for clinical applications using relatively small
patient cohorts. We note that although transfer learning with
EHR data alone resulted in substantial gains in model accuracy
over the model trained on the large Conventional ICU cohort,
the prediction confidence interval in the small Intelligent ICU
cohort was much wider (95% CI: 0.557–0.951 vs. 0.743–0.763),
highlighting the large variability among the cross-validation
repetitions. We speculate that this instability was due to the small
size of the prediction cohort (n = 51). Given that this is a pilot
study demonstrating transfer learning feasibility, we place less

emphasis on the fact that absolute accuracy in the smaller cohort
was greater than in the larger Conventional ICU cohort, which
we partially attribute to sample size disparities. Instead, we focus
on the relative performance increase in the same Intelligent ICU
cohort, which clearly show the benefits of transfer learning in
clinical situations where samples are not readily available.

Maximumoverall performance was achieved when combining
traditional EHR data with the novel Intelligent ICU data
and a transfer learning approach (AUROC: 0.915 [95% CI:
0.772–0.975]). These results indicate the utility of augmenting
traditional EHR data with pervasive sensing, and suggest that
further research and incorporation of even more novel data
streams could be beneficial to the real-time acuity estimation of
critically ill patients. These results indicate the power of applying
transfer learning in clinical settings with small patient cohorts.
It was only when using transfer learning that the predictive
benefits of augmented patient data truly became apparent.
Similar to the experiments using only EHR data, we focus
on the relative performance increase compared with the same
augmented dataset in the Intelligent ICU cohort, which show
clear benefits for using transfer learning to properly initialize
model weights corresponding to electronic health record data
from a much larger cohort of conventional ICU patients.

In all experiments using our target Intelligent ICU cohort of
51 ICU stays, the wide AUROC confidence intervals underscore
the large variability among the repeated applications of cross-
validation. This was not unexpected given the very small size of
the Intelligent ICU cohort, especially when used with complex
deep learning model architectures. However, when averaged
over 100 repeated cross-validation trials, a more clear picture
begins to emerge: predictive power is increased both when
augmenting traditional vital signs with activity data, and when
applying transfer learning, with optimal results achieved after
implementing both techniques. We present these results as
a pilot study indicating the feasibility of applying transfer
learning to small cohorts of patients monitored with non-
traditional data streams. While the small sample size of our
target Intelligent ICU cohort is less than ideal, we speculate
that relative performance increases within the same cohort show
future promise for more extensive studies once more Intelligent
ICU data becomes available.

Intelligent ICU rooms such as those used in our study are
unfortunately rare in practice. However, we feel that pervasive
sensing could play an important role in developing a more
comprehensive and personalized representation of patient health,
and we expect additional types of novel patient monitoring to
become more common in future automated patient monitoring
applications. Our preliminary results in predicting successful
or unsuccessful hospital discharge using a subset of available
Intelligent ICU data streams demonstrate the power of non-
traditional patient data. As these novel clinical environments
become more prevalent, our results also show the necessity of
transfer learning approaches to jump-start models using these
small augmented cohorts.

Non-traditional patient monitoring data that is not
routinely measured in electronic health records as part of
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a typical hospital encounter provides a unique opportunity
for enhancing clinical decision-making. As we have shown,
the accuracy of automated methods for assessing illness
severity can be improved when considering such types of
novel sensing data. As pervasive sensing becomes more
common in traditional intensive care settings, modern machine
learning approaches can begin to better understand inherent
patterns of data such as patient activity, facial expressions,
environmental factors, and more. Augmented patient data
can improve clinical decisions such as allocation of clinical
resources, altering the characteristics of the ICU room
environment, and can help provide objective measures of a
patient’s affective state and activity that can better inform
clinical caregivers regarding appropriateness of medications
or procedures.

This study was limited by the use of data from a single
institution. Additionally, only a subset of EHR data and
Intelligent ICU data was used in this preliminary study.
Future work will incorporate all available novel sensing
and EHR data, and will focus on even more granular
illness severity estimations using higher frequency sensor
measurements without aggregation to generate predictions on
hourly or sub-hourly time scales. As temporal deep learning
techniques continue to evolve, we believe their application to a
wide array of both conventional EHR and sensor-based patient
health data will lead to large improvements in clinical decision-
making and patient outcomes as health trajectories become
more accurately predicted and monitored using a more complete
perspective on patient health.
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