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Discovery of biomarkers is a continuous activity of the research community in the clinical

domain that recently shifted its focus toward digital, non-traditional biomarkers that often

use physiological, psychological, social, and environmental data to derive an intermediate

biomarker. Such biomarkers, by triggering smart services, can be used in a clinical trial

framework and eHealth or digital therapeutic services. In this work, we discuss the

APACHE trial for determining the quality of life (QoL) of cervical cancer patients and

demonstrate how we are discovering a biomarker for this therapeutic area that predicts

significant QoL variations. To this extent, we present how real-world data can unfold a

big potential for detecting the cervical cancer QoL biomarker and how it can be used

for novel treatments. The presented methodology, derived in APACHE, is introduced by

Healthentia eClinical solution, and it is beginning to be used in several clinical studies.

Keywords: digital biomarkers, machine learning, ai clinical trials, Healthentia, real world data, e-clinical platform

INTRODUCTION

The field of clinical research is undergoing a “data revolution.” The transformation of large volumes
of medical records to an electronic format, and the remarkable growth in the data collected by
health registries and during clinical studies provide opportunities to make risk prediction and
intervention selection more precise. This increasing availability of the so-called “Big Data” has
brought about a growing interest in machine learning (ML) algorithms for extracting knowledge
from observations, typically conceptualized as datasets, and for constructing personalized risk
prediction models.

The concepts of real-world data (RWD) and real-world evidence (RWE) have come to be
fashionable, along with those that describe outcome and experience from the perspective of the
patient [Patient-Reported Outcome Measures (PROMs), Patient-Reported Experience Measures
(PREMs)]. The advent of wearable technologies has made the objective measurement of lifestyle
possible to an unprecedented scale of dimensionality, and the collection of subjective information
about outcome and experience as PROMs and PREMs.
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However, in spite of the use of RWD/RWE (and
PROMs/PREMs) one important shortcoming in clinical research
is that the actual outcome of trials is usually different from
the expected one, and often not reproducible (1, 2). Evidence
included in the access-to-market dossier of any intervention,
pitched to a lesser extent with respect to the expected one, leads
to an economic loss in different ways, such as: (i) the tag price
agreed upon by regulators at the moment of pricing negotiations
drops due to the worse intervention results; (ii) the marketed
solution loses competitiveness; and (iii) the overall benefits to
the citizens are reduced.

Factors like trial-protocol adherence and compliance, dropout
rate, and surveillance of adverse effects have been traditionally
outlined as the most significant reasons behind this outcome
difference, and several types of interventions aimed at reducing
their impact have been put into place (3).

To mitigate unexpected results from clinical trials, along with
adherence and compliance issues, digital solutions as clinical
diaries have flourished and are vastly used in the running of
clinical trials to collect information on how patients are coping
through the trial itself by focusing on PROMs. These digital
solutions are termed ePRO.

ePROs generally do not take into account the impact of the
lifestyle and habits of the patient that can be measured using
wearables (the RWDas objectivelymeasured) on the effectiveness
of the intervention and focus, instead, on the PROMs and
PREMs. In addition to that, lifestyle has not yet been aggregated
into actionable predictors, or used to generate simulated models
to derive predictors, on outcomes and experiences.

The processing of patient-centered RWD represents an
innovative challenge for modern personalized medicine. Today,
various patient-well-being dimensions can be satisfactorily met,
using merely a multidimensional data collection approach. Data
collection platforms, able to collect, manage, and interpret RWD
of the patients, eventually supported by artificial intelligence (AI),
are fundamental.

In this study, we attempt to establish patient lifestyle and
behavior as the driving force of an effective treatment, by
addressing the following hypotheses:

1. Objectively-measured RWD correlate to PROMs and PREMs
and thus can predict them.

2. The impact of behavior/lifestyle, as expressed by measured
RWD, on PROMs and PREMs can be simulated by utilizing
biomarkers in models of patients and testing intervention
on them.

3. Groups of biomarkers identified via simulation of trials lead
to behavior/lifestyle phenotypes that can be used as clinical
endpoints and eligibility criteria in clinical trials.

4. Coaching on behavior/lifestyle can complete traditional
interventions in everyday practice.

This paper is organized around seven sections. Following the
paper, after the abstract and introduction, the subjective and
objective RWD as clinical outcomes are discussed in section
Subjective and Objective RWD as Clinical Outcomes, including
definitions and the role of RWD, RWE, and ePROs. section
Lifestyle Behavior as a Biomarker With Clinical Value and Types

of RWD presents the concept of lifestyle as a biomarker with
clinical value, and in section AI Technologies for Defining,
Modeling, and Simulating Lifestyle we present how AI can
support the discovery and extraction of such biomarkers during
clinical studies. Furthermore, in section Pilot Study to Evaluate
the Hypothesis, we present elements from a series of clinical
studies that utilize the Healthentia eClinical platform (4) to
capture insights that can lead to advanced services, and section
Expected benefits, Early Findings and Next Steps presents the
expected benefits, the early findings, and discusses the next steps.
Finally, the conclusions are drawn in section Conclusions.

SUBJECTIVE AND OBJECTIVE RWD AS
CLINICAL OUTCOMES

New Extended Meanings for Old Medical
Definitions
A biomarker (5) is the value of a quantity that characterizes
the outcome (of a disease) or diagnoses a disease stage. Digital
biomarkers (5) are biomarkers whose method of collection
involves sensors and computational tools implemented in
software or hardware. Traditionally, biomarkers have been split
into direct and indirect (6). A direct biomarker is a single
measurement of one of the factors or products of the disease
that allows diagnosing a disease outcome or stage. Direct
biomarkers are usually biochemical, measured obtrusively in a
lab. An indirect biomarker is also a single measurement, obtained
easily using ubiquitous devices, indirectly associated but highly
correlated with a factor or product of the disease. For example,
body temperature T is an indirect biomarker for flu if:

T − 37◦C > 0

Is body temperature the only biomarker for the flu? No, but it
certainly is a good standalone one. Is body mass a biomarker
for obesity? Consider a person with a body mass of 120 kg. That
person is obese only if their height is <2m, based on their
body mass index (7). Any standalone measurement can give
indications on some disease, but the full power of measurements
comes into effect when they are combined together into a
composite biomarker. A composite biomarker (6) is thus the
usually non-linear combination of multiple measurements into a
single metric used in disease diagnosis or outcome prediction. In
simple cases, the combination can be done analytically, e.g., the
body mass index already mentioned is a composite biomarker for
obesity that non-linearly combines the height h and mass m of a
person as:

m

h2
− 30 > 0

Such simple cases are the exceptions. Usually, there are many
measurements forming a vector x and the biomarker non-
linearly combines them into F (x). Discovering the non-linear
combination function F( ) is not done manually, resulting in an
equation. Instead, it is done using an ML algorithm that learns
F( ) for the measurements x, yielding the metric to be evaluated
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for disease diagnosis or outcome prediction. In ML terminology,
x is the feature vector, and F( ) is the discriminant function of
the classifier (8). Hence composite biomarker discovery is about
training a classifier or regressor using some ML algorithm.

Finally, a contextualized composite biomarker (6) is
the combination of intrinsic factors (that comprise the
composite biomarkers) and extrinsic factors, that is, the
environment, providing a metric (classifier or predictor output)
for personalized disease management.

In sections AI Technologies for Defining, Modeling and
Simulating Lifestyle and Pilot Study to Evaluate the Hypothesis
of this paper, we are detailing a methodology to discover digital
contextualized composite biomarkers in RWD with outcome
prediction capabilities.

RWD and RWE: Definition and Usefulness
in Clinical Research
The 21st century Cures Act of 2016, a harbinger of the increasing
use of electronic health records (EHRs) and insurance claims
data for medical research in the United States, required the Food
and Drug Administration (FDA) to develop guidance on the use
of RWE in the studies of medical product safety and outcomes
for both postapproval studies and studies of new indications of
approved drugs. Hence, FDA has issued the following definition:
RWD are “data related to patient health status and/or the delivery
of health care routinely collected from EHRs, claims and billing
data, data from product and disease registries, patient-generated
data including home-use settings, and data gathered from other
sources that can inform on health status, such as mobile devices.”
(9). The European Medicine Agency address the same items
accordingly, in Organization for Economic Co-Operation and
development (OECD)/World health Organization (WHO) (10).

Real-world data are analyzed to create RWE, which is clinical
evidence about “the usage, and potential benefits or risks, of a
medical product derived from analysis of RWD.” (9).

Compared with evidence collected in randomized
controlled trials, RWE better reflects the actual clinical
environments, in which medical interventions are used,
including patient demographics, comorbidities, adherence, and
concurrent treatments.

When RWE is intended as the data generated in an
observational trial, we notice that there is a significant increase in
the number and quality of this type of trial with the consequence
of a very significant increase of data assets. It is also well-known
that when EHRs are used as a source of RWE, the vast majority of
this data, up to 80%, is unstructured. Moreover, insurance claims
are a rich source of information and they can cover ontologies
not normally included in EHRs, such as the experience of the
patients, extensive information on comorbidities (that in EHR
is normally highly unstructured), etc., but they are not good for
measuring disease severity, biomarkers and, in general, detailed
clinical information. In this setting of increasing dimensionality
and heterogeneity of data, ML methods are gaining traction as
tools to analyze massive and complex datasets (11). When RWE
coming from EHRs has been analyzed with ML techniques to
create predictive models vs. outcome, these have outperformed

traditional ones (12) even in real-time analysis executed, for
example, in the emergency setting (13). Some concerns are raised,
however, regarding the readiness of EHRs systems to support
machine-learning methods from a data quality standpoint (12).

In general, the value of RWE has been well-understood, to the
point that many initiatives (and national registries) are amassing
insurance claims and EHR curated data.

Real-world evidence derived from observational clinical trials
is traditionally collected, objectively as such as data stemming
from experimental trials. However, in the observational trials, the
setting is entirely uncontrolled and this makes the advancing of
“causal learning” to identify direct causes of a certain outcome
more difficult. This uncertainty can be overcome by means
of modern AI techniques that have proven to be effective, as
well, in the setting of synthetic data created by simulation (14).
Last but not the least, AI has been proven to mitigate the
issue represented by missing data that can impact the process
of learning of the causal structure (risk/intervention/outcome).
Missing data in real world, moreover, are a significant threat to
the understanding of the inference and they are very common;
however, AI techniques (in particular Bayesian Networks) do not
need complete information on any single record (case/patient) to
derive a response variable (15).

To the best of our knowledge, RWD stemming from lifestyle
have never been used to train AI-powered simulators alone or
along with RWE.

Patient Reported Outomes: Definition and
Usefulness in Clinical Research
The FDA deffinition of Patient Reported Outomes (PROs) is “any
report of the status of the patient’s health condition that comes
directly from the patient, without interpretation of the patient’s
response by a clinician or anyone else” (16). Indeed, PROs may
be referred to symptoms related to a disease, functional statuses
or multidimensional constructs such as, for example, the health-
related quality of life, as defined in Revicki et al. (17).

PROs are currently used as clinical trial endpoints following a
constant increase of their recognition as such over the last two
decades. Along with PROs, other measurements related to the
patient–reported experience and patient-reported behavior are
being used more and more as endpoints in clinical trials.

Structured and validated PROs reduce significantly the
heterogeneity of the responses of patients making possible, to a
higher extent, the understanding of the real differences in the
perception of the outcome, as compared with the information
collected via open-end questions. In this setting, the value of
PROs is not only recognized by the regulator and competent
authorities but, as well, by many scientific societies.

PROs can be used as primary, secondary, or even
exploratory/tertiary endpoints for the hypothesis generation.
Interventional trials experimenting with a new medicinal
product do have PROs, normally, as secondary endpoints,
whereas palliative care trials or rehabilitation ones can have
PROs as primary endpoints.

Following the lines of simplification and according to (18), the
benefits of including PROs into clinical trials are:
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1. Better understanding of the cost/benefits of a treatment;
2. Better understanding of the patients’ experience beyond the

biomedical outcomes, especially in the domains of pain,
fatigue and inconvenience from any other symptom;

3. Better tools to improve methodologies of trials.

From the regulatory perspectives, the strength of the
methodology PROs used in the trial could allow the achievement
of the status of “PRO labeling” for approved products, which, in
turn, allows PRO-supported claims.

We consider PROs, thus defined and characterized as very
reliable endpoints, to measure, in conjunction with the impact
on the PROs themselves, the variations in the lifestyle behaviors;
these are discussed in the following paragraph under the
assumption that they may be considered as biomarkers with
clinical value.

LIFESTYLE BEHAVIOR AS A BIOMARKER
WITH CLINICAL VALUE AND TYPES OF
RWD

Lifestyle behavior includes all features that characterize the daily
living of people, without considering possible diseases in a direct
manner. The importance of observing lifestyle behavior lies
upon the evidence that lifestyle is a health determinant and
has a two-way link with the disease. A patient with a chronic
disease can see the health deteriorationmapped into their lifestyle
behavior, whereas changes in daily living can have a significant
contribution to health, besides any intervention provided.

Lifestyle and Health
There are several studies that provide solid evidence about the
relation of lifestyle with health. A study related to diabetes
prevention (18) suggests that lifestyle behaviors are important to
the outcomes in youth and adults, with evidence that obesity in
adults has risen from <5% to more than 40% in some states, and
similar increases in prevalence have been seen in type 2 diabetes, a
disease that has increased in prevalence over the last 20–30 years.

Another study (19) shows that good-health-promoting
lifestyle behavior, especially health responsibility, physical
activity, and stress management behavior are determinants of
overweight and obesity, which are major risk factors for the
development of cardiovascular diseases, type II diabetes, and
some form of cancer.

We quantify lifestyle by obtaining RWD in four fields:
physiological, psychological, social, and environmental.
Information in all these fields can be objectively measured using
devices, or can be subjectively reported by people by answering
questionnaires. This information will form the constituents of
our proprietary composite biomarker, making up the feature
vector to be used as an input to the underlying ML algorithm
implementing this biomarker. Not everything we are discussing
in the following subsections will be used in the final biomarker.
As it is presented in section Composite Lifestyle Biomarker
Discovery, domain-knowledge, and feature-importance analysis
of the biomarker design process will drive the selection on a
per-case basis, but here we give the extensive list.

Types of RWD
We have identified several types of RWD that can be grouped
into four categories. In the physiological category of RWD,
we mainly encounter RWD that are mostly measured using
activity trackers and/or smartphones. Activity-related features
are steps walked, distance, elevation, energy dissipation, time
spent in different activity intensity zones (e.g., mild, moderate,
and high intensity physical activity, as it is formally defined as a
function of age) and exercise activities (walking, running, cycling,
etc.), and their distribution in the day. Presence indoors or
outdoors is also of importance. Specialized physical activity is also
measured via composite tests like the 6-min walk, the frailty test,
or games specifically designed to measure muscular responses
(taping on a mobile phone screen for Parkinson’s disease or
performing other exercises which are monitored and analyzed
by depth cameras to measure features important in stroke or
accident rehabilitation). All these tests are scripted and hence can
be measured using sensors and audiovisual instructions to the
people on their smartphones. Heart-related features include the
continuous measurements of the heart rate variability, the time
spent in different heart rate zones, and the daily resting heart
rate measurement. Sleep-related features include continuous
measurements on the time spent in the different sleep stages
(awake in bed, light, REM, deep sleep). More physiological
aspects are reported. We collected reported symptoms (e.g.,
headache, body temperature, blood pressure, pains, diarrhea,
fatigue, nausea), including their intensity. We regularly collected
reported weight and height also. Nutrition is paramount, starting
at a higher level with the number of meals in the day and themain
ingredient of the meal (plant vs. meat-based meal), but a more
detailed analysis can also be used when available. Water, coffee,
and alcohol intake are reported, and so are toilet visits. Finally,
the menstrual cycle is also of importance.

Most RWD types in the psychological category are reported
and include a high-level simple emotional state self-assessment
or the 11 aspects of the OECD better life index (20), but
when deemed necessary the collected information goes deeper
using standardized reports from professional therapists who
are monitoring the patients. Measurements can also be used
to indirectly capture psychological aspects. Emotion can be
recognized from the face video, the voice audio, or the social
media text posts. Places visited (which, how diverse they are)
are also an indication of the psychological state. Aspects like
the weather or spending unusual time in commuting can have
some importance.

Real-world data in the social category can be measured
indirectly from the usage of the phone (diversity, duration,
and frequency of calls) and social media (diversity, number,
and frequency of interactions). More direct information can be
reported using questionnaires on activities with friends, family,
or co-workers.

Real-world data in the environmental category include
environmental indicators for the assessment of the quality of life
(QoL) that can be reported by the patients using questionnaires.
Precise measurements of living or working environment quality
can be obtained by integrating relevant commercial devices (e.g.,
for air quality analysis).
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AI TECHNOLOGIES FOR DEFINING,
MODELING, AND SIMULATING LIFESTYLE

Risk and outcome predictions in clinical medicine have become
more precise due to the remarkable growth in the data collected,
and with RWE and the growing interest in AI techniques, the
construction of personalized risk and outcome predictionmodels
is now more robust.

Composite Lifestyle Biomarker Discovery
Our digital biomarkers are composite contextual ones, in the
sense, that they comprise numerous diverse (usually) indirect
measurements, including environmental aspects (5). In Guthrie
et al. (21) a methodology for discovering digital biomarkers is
introduced that comprises choices on outcomes, features and
modeling techniques, and model validation and explanation.
Our biomarker discovery is a variation of this methodology.
We propose a workflow of specifically designed trials where
our biomarker discovery is done in three stages (definition,
RWD selection, and iterative design), followed by performance
assessment. Our contribution is the introduction of the iterative
design where we follow the steps of Guthrie et al. (21) in
validating and explaining the models, but we also use the results
of this explanation to redefine our RWD selection and retrain the
model in iterations.

During the biomarker definition stage, the domain experts
select the clinically significant outcomes that need to be predicted
by the biomarker(s). In most cases, the investigators are
interested in whether these outcomes are reached or not by the
patients. Then the biomarker is implemented as a binary classifier
that predicts success or failure in reaching the outcome (21).
There can also be cases where it is interesting to predict the
actual values of the different outcome quantities. Then, either
a classifier with discrete states predicts outcome value ranges
(21), or a regressor predicts an outcome value (22). In essence,
this definition stage leads to the number of biomarkers needed,
and the underlying ML algorithm family (predictor—binary or
multiclass, or regressor) to be employed for implementing each
of them.

Other aspects that have to do with training the ML algorithms
are also defined at this stage: Primarily, based on the different
algorithmic needs and the clinical considerations, the ideal
amount of data that needs to be collected is established by
deciding on the number of trial people participants and the
duration of the trial. If the biomarker is expected to be used
during the trial, then the training period of the biomarker needs
to be defined. During this training period information is collected
to train the ML algorithm but no prediction is attempted. If the
purpose of the trial is to discover the biomarker for future use,
then the split of the trial population into training, validation, and
testing datasets is defined. The design stage is carried out prior to
the trials, and the choices made are reflected in their protocols.

In the biomarker RWD selection stage, domain knowledge is
applied to manually narrow down the list of RWD in all four
fields discussed in section Lifestyle Behavior as a Biomarker
With Clinical Value and Types of RWD, into those that are
relevant to the disease/condition in question. Only established

irrelevant RWD are omitted at this stage, since one purpose
of the biomarker discovery is to establish if some aspects of
RWDdiscussed in section Lifestyle Behavior as a BiomarkerWith
Clinical Value and Types of RWD do impact the condition in
question. Another factor for the RWD selection is the ease of
measurement. RWD that are collected unobtrusively are usually
in the initial selection, since its collection does not impact
the everyday life of the participant. RWD requiring manual
input using complicated questionnaires needs to be adequately
justified. A user-centric design of the interface of the ePRO
greatly helps at this stage, since it can remove the burden
of collecting certain RWD. The outcome of this stage is the
identification of the initial constituents of the feature vectors
to be used as input to the ML algorithms implementing the
biomarkers. This stage is also carried out prior to the trials to
finalize their protocols.

The core of our biomarker discovery workflow is the
biomarker iterative design stage. It involves the iterative
retraining of the classifier or regressor implementing the
biomarker. In this loop, the ML algorithm is used to train the
biomarker using the current version of the feature vector. After
training, the results are analyzed to refine the feature vector
and repeat the process as long as the validation results are
improved. The initial training happens when the first outcomes
are collected after the end of the training period. Such outcomes
can be intermediate ones, or even the final ones, meaning that
the biomarker discovery cannot enter phase three before the end
of the trial. At the end of the process, the feature vectors of all
people are collected, together with the actual outcomes for the
duration of the trial. During the iterations of this design stage,
the training set is used to train the ML algorithm of choice. The
choice depends on the problem at hand, the most determining
factors being the size of the training set and the dimensionality of
the feature vector. Classifiers that are able to uncover nonlinear
decision surfaces are preferred, namely subclass linear methods
(23–25), Kernel methods (26), random forests (27), and (deep)
neural networks (28). The validation set is used in iterations
to tune the parameters of the underlying ML algorithm of the
biomarker and determine which of the feature vector elements
strongly contribute to the predictions of the biomarker (either
toward positive or negative outcomes). Such an analysis can be
done using Pearson correlation coefficients (29, 30) or, more
importantly, Shapley additive explanations (SHAP) analysis (31–
33). SHAP analysis is applied on every feature vector instance,
yielding the effect of each feature vector element toward a positive
or negative prediction. Via SHAP analysis, we identify those
feature vector elements that are consistently not contributing to
either positive or negative predictions, and those feature vector
elements whose value groups (large, medium, or small) do not
consistently push toward a positive or negative prediction.

Cases of SHAP values are shown as rows of point clouds
in Figure 1. Each point cloud (row) corresponds to a feature
vector element, whose importance in the overall decision is
being assessed. Each point in the clouds corresponds to the
corresponding element of one feature vector on which the
decision is based. The color of the point indicates the value of
the element (from small values in blue to large values in red).
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The placement of the point on the horizontal axis corresponds
to the SHAP value. Values close to zero correspond to feature
vector elements with negligible effect on the decision, whereas
large positive or negative values correspond to feature vector
elements with large effect. The vertical displacement of the point
within its row indicates how many feature vectors fall into the
particular range of SHAP values. Thus, thick point cloud areas
correspond to many feature vectors. The point clouds marked

FIGURE 1 | Example SHAP values from a Random Forest classifier predicting

weekly health variation.

as (a) correspond to feature vector elements that have a large
impact on decisions (either positive or negative). The point cloud
marked as (b) corresponds to a feature vector element whose
large, medium, or small value seems to push the decision to
random directions. The point cloud marked as (c) corresponds
to a feature vector element that has a small impact on decisions.
Feature vector elements falling in any of the categories marked
as (b) or (c) are candidates to be dropped in the next iteration of
biomarker retraining.

The performance of the biomarker is assessed at the biomarker
performance assessment stage that follows after the iterative
process. The RWD test set is used at this stage. It needs to
be noted that for biomarkers predicting final trial outcomes,
there are only as many feature vectors as there are patients
in the trial. When the number of participants is low, then the
validation stage is done using the test set itself, or in more
tight cases the process is run repeatedly employing the “leave
one out for testing” method, where all features are individually
used to test classifiers or estimators trained and tuned using all
the rest. The three biomarker-discovery phases and the resulting
biomarker assessment are summarized in our proposed workflow
for biomarker discovery trials, shown in Figure 2.

Using the Biomarkers for Digital
Therapeutics
By employing AI discovered biomarkers that successfully predict
clinically significant outcomes, it is possible to drive decisions
in digital therapeutics (DTx) (21, 34, 35). When a disease
is considered, then the aim is to drive the intervention.
The biomarker predictions indicate intervention strength (drug
dosage), which usually is not one of the feature vector elements.

FIGURE 2 | Proposed biomarker discovery and application trial workflow.
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The usage of a biomarker in DTx involves balancing the trade-
off between its specificity (its ability to correctly identify those
patients who do not achieve the desired clinical outcome) and
its sensitivity (the ability to correctly identify those patients that
achieve the desired clinical outcome). Usually, high specificity is
required not to reduce the intervention to patients who actually
need it. If at that high specificity the biomarker also yields high
sensitivity, that is, identifies the patients who should receive less
strong intervention, then the biomarker is a successful one. This
is usually quantified by the area under the receiver operating
characteristic (ROC) curve.

Digital therapeutics is also applied in themore general, disease
agnostic, and well-being areas. In this area, a biomarker is used
to drive behavioral change in a virtual coaching setup. The
explainable AI elements already discussed in the previous section
determine the elements of the feature vector of the particular
patient who had the most positive and negative influence on
the probability of a successful outcome. Then the person is
coached in these elements. The virtual coach selects the feature
vector elements of the strong influence that are related to the
behavior (physiological, psychological, and social aspects) and
to the environment. If they have a strong negative influence, it
coaches the person to change behavior. If they have a strong
positive influence, it encourages the person to keep up the good
lifestyle in those aspects.

While recently the use of ePRO and digital monitoring devices
in clinical trials is ever-increasing, and many of those aim at
deriving digital biomarkers (6), to the ’knowledge of the author
there are no trials that already have evaluated DTx applications.
It is our hypothesis that our digital biomarkers and the SHAP
analysis of their individual decisions can be applied in a DTx
context by driving coaching of the patients.

PILOT STUDY TO EVALUATE THE
HYPOTHESIS

Study Description
The study APACHE, which is an advanced patient monitoring
and AI-supported outcomes assessment in cervical cancer using
Internet of things technologies, is a cofinanced monocentric
observational study using a remote monitoring device for
patients affected by locally advanced cervical cancer. Patients are
considered as such if staged larger than or equal to IB2 according
to the FIGO staging system (an international staging system for
locally advanced cervical cancer), with primary lesions larger
than 4 cm. The patients undergo chemoradiotherapy (CRT)
followed by either radical surgery or brachytherapy boost and
are treated in Fondazione Policlinico Universitario “A. Gemelli”
IRCCS of Rome, Italy. The foreseen study duration is 24 months.
The study protocol foresees inclusion and exclusion criteria. The
inclusion criteria require the patients to be younger than 70 years,
be clinically able to use portable technologies, and be able to
understand and sign informed consent. The exclusion criteria
involve a major psychiatric disorder, inadequate performance
status (larger than 3 according to the Eastern Cooperative
Oncology Group score, that is, capable of only limited selfcare;

confined to bed or chair for more than 50% of waking hours), and
ongoing pregnancy or breastfeeding. Patient enrolment began in
October 2020 and continues to date. A total of 50 patients are
foreseen for this exploratory study. The selection procedure of
patients adhering to the study protocol criteria foresees only a
brief interview during the first visit to the advanced radiation
therapy center of Gemelli for the initial radiotherapy treatment.
During the interview, the informed consent is acquired by the
attending physician, and papers describing the trial and expected
role of the patient are provided. If the patient is motivated
and computer literate, the whole procedure does not take more
than 15–20min. Please note that the initial inclusion criteria on
cervical cancer has been widened to include other pelvic cancers,
as discussed in section Expected Benefits, Early Findings, and
Next Steps.

The primary objective of the study is to assess the experience
of patients using Healthentia (see section Healthentia Platform)
and a wearable tracker during the multimodal oncological
therapies and follow-up period. The study has three secondary
objectives. Firstly, to compare PROs with corresponding clinical
records about toxicity, instrumental activities of daily living
(IADLs), and stress/coping levels. Secondly, to profile patients
based on their scores and activity, and lastly, to trainmodels using
ML on the patient-reported and monitored data.

Patients have received a state-of -the-art wearable device
(Fitbit INSPIRE) during their first visit prior to CRT start, that
collects at a daily basis RWD like activity (i.e., steps per day),
sleep, and vital signs. During the whole observation period,
patients are asked to report their weekly well-being by completing
dedicated questionnaires sent to the ePRO App on their phone.
A dedicated research nurse will flank the patients enrolled in the
study in filling the e-questionnaires in case of need and follow up
the correct flow of the questionnaires.

The following scoring systems are selected to assess specific
aspects of the experience of the patient during the multimodal
treatment period:

1. Early and late toxicity will be assessed using the NCI-PRO-
CTCAETM ITEMS-ITALIAN Version 1.0 for the cutaneous,
gastro-intestinal, and genito-urinary sections

2. Therapy impact on instrumental daily activities will be
assessed using the Lawton Brody IADL

3. QoL will be assessed using the EORTC QLQ C30
4. Nutritional status will be assessed using the malnutrition

screening tool
5. Psychological status will be assessed through self-administered

tests, namely the distress thermometer, DT6 for distress
evaluation and theMental Adjustment to Cancer Scale, MINI-
MAC 7, Italian version for coping evaluation

6. User experience and technology acceptance will be assessed
using a customized questionnaire on the Healthentia App on
enjoyment, aesthetics, control, trust in technology, perceived
usefulness, and intention to use.

The collected data are transferred through the Healthentia app
on the smartphone of the patient to Healthentia platform.
Clinicians can monitor lifestyle behavioral patterns, detect
changes in the health status, and be informed on clinical
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endpoints via the Healthentia portal web application. More
information on the Healthentia eClinical solution is given in
section Healthentia Platform.

The collected RWD, i.e., objective data from wearable
devices and subjective data collected from questionnaires (e.g.,
IADLs, toxicity, QLQ, etc.) are fused together and define a
multidimensional vector for each patient that consists of steps,
resting heart-rate, sleep, etc., which characterizes their behavior
throughout the day. After the models are trained from the
RWD collected over an initial period, it is possible to predict
outcomes and system scoring of the above scoring systems i.e.,
IADLs or QLQ, by feeding the system with the automatically
collected vectors.

The RWD that is being collected is currently grouped into
five lifestyle aspects described in Table 1. Most of the aspects
can be considered generic (applicable to people in general,
not just cervical cancer patients). Only the aspect on QoL,
since it focusses on low toxicity adverse effects, is dedicated to
the particular condition under study in APACHE. Each aspect
is measured via a set of parameters (different measurements
of questions). The parameters are concatenated into a set
of scores, as described in the section on the manual RWD
selection stage. It is through these scores that the five aspects
are quantified.

Manual RWD Selection Stage
Each of the five lifestyle aspects (see Table 1) combines multiple
parameters (measurements or questionnaire answers). In most
cases, these parameters are aggregated into one or more scores
quantifying the performance in the respective lifestyle aspect.
The physiological lifestyle aspect parameters are measured on
a daily basis using Fitbit activity trackers. Four scores are
derived from these measurements. A sleep score is derived
from the total sleep duration, and the REM and deep sleep
durations, the sleep efficiency (ratio of time being asleep, over

TABLE 1 | Lifestyle aspects grouping of the Real-World Data collected in

APACHE, their parameters, and their scores.

Lifestyle

aspect

Questionnaire/

measurement

Parameters/score

Physiological Fitbit activity

measurements

16 parameters, aggregated into

4 scores: sleep quality, steps,

activity score, resting heart rate

Independence Instrumental Activities of

Daily Life (IADL)

8 parameters, aggregated into 1

score

QoL (Low

toxicity adverse

effects)

EORTC QLQ (CX24,

CX30)

25 parameters aggregated into 4

scores

NCI/DRO/CTCAE 45 parameters, aggregated into

5 scores

Psychological Mini Mac Scale 40 parameters, aggregated into

5 scores

Distress thermometer 1 parameter/score

Nutrition Nutrition score 1 parameter/score

the total time in bed), sleep disturbances (count of wake-
up times), and the bedtime alignment to the habits of the
patient. An activity score is determined by the active vs.
inactive time (excluding sleep), positive or negative deviation
from habits, and auto-detected training count. Steps are used
as a standalone score since they are the most usual activity
tracking metric and are easy to compare against different
activity trackers. Finally, the resting heart rate is another
standalone score due to its clinical importance as a biomarker on
body condition.

The independent lifestyle aspect is reported on a weekly basis
using the IADL questionnaire. There are eight questions covering
telephone use, shopping, food preparation, housekeeping,
laundry, transportation, medication adherence, and finances
management. Each of these parameters contributes equally to the
overall independence score.

The QoL lifestyle aspect is assessed using two questionnaires.
The EORTC QLQ assesses parameters on symptom experience
(15 parameters, assessed weekly), body image (three parameters,
assessed weekly), sexual/vaginal functioning (four parameters,
assessed weekly), and sexual worry/activity/enjoyment (three
parameters, assessed monthly). These four groups are the four
scores from EORTC QLQ, three of them obtained weekly and
one monthly.

The NCI/DRO/CTCAE questionnaire collects 45 parameters
on a weekly basis, all having to do with different symptoms
(their occurrence, frequency, and/or distress level). They are
grouped into five categories, the gastrointestinal (16 parameters),
the skin (13 parameters), the neuro (2 parameters), the sexual
(2 parameters), and the urinary (8 parameters). There are also
two parameters that cannot be classified in the above groups
of interest and are ignored by our scoring of the APACHE
outcomes. They have not been removed from the data collected
to maintain the integrity of the questionnaire used. These
five categories are the five scores from NCI/DRO/CTCAE,
obtained weekly.

The psychological lifestyle aspect is also assessed using
two questionnaires. The Mini Mac Scale assesses (every
3 months) parameters that are aggregated into scores (all
parameters contributing equally to their respective scores) on
the fighting spirit (16 parameters), helplessness/hopelessness (six
parameters), anxious preoccupation (nine parameters), fatalism
(eight parameters), and denial/avoidance (one parameter).

The distress thermometer comprises a single parameter
forming a score on a weekly basis. Finally, the nutrition lifestyle
aspect comprises a single parameter on malnutrition score
collected on a weekly basis.

Summarizing, the biomarkers discovered in APACHE
utilize 66 parameters and/or their grouping into 12 scores
as a feature vector. They are being trained to predict
significant variations in the three scores quantifying
QoL from the EORTC QLQ questionnaire. Training is
done on anonymized APACHE data using proprietary
scripts built on top of well-established implementations
of ML algorithms found in the Scikit Learn and
Tensorflow libraries.
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FIGURE 3 | Healthentia architecture.

Healthentia Platform
Healthentia (4) is an eClinical solution that facilitates
clinical trial optimization by accelerating the trial
processes, reducing the failure rate, and validating
drug/intervention efficacy and effectiveness with RWD
insights. In this way, pharmaceutical companies can
achieve cost savings, accelerate the drug approval
process, and obtain useful insights to develop drugs and
interventions of higher efficacy. Its architecture is shown in
Figure 3.

The Healthentia solution extends the use of a traditional
ePRO/eCOA application by adding behavioral and health-related
data collected from Internet of Things (IoT) devices. Utilizing
ML on this data, it is possible to discover behavioral biomarkers
and cluster patients into behavioral phenotypes, which allows the
activation of smart services to predict clinical outcomes, generate
prevention alarms, and link phenotypes with drug/intervention
efficacy. In addition, based on reported outcomes, the AI module
generates automatic alerts in case of adverse events. These
automatic and prevention alarms support decisionmaking by the
investigator during the clinical trial, for the benefit of the health
of the individual patient. For the AI module to do so online, the
biomarker needs to be trained first as discussed in sectionManual
RWD Selection Stage.

On top of in vivo clinical studies, Healthentia allows the
running of in silico trials that use the deep phenotyping outcomes
together with legacy data, to create synthetic control arms and
support pharmaceutical companies to design optimized studies.

Healthentia is available for clinical studies, under a strict
regulatory framework, and a SaaS environment, which is open
to the wider community. The SaaS version includes further
features, such as eRecruitment, eConsent, and Virtual Coaching.
Healthentia is already in use in APACHE, and we have received
ethical clearance for its use in more studies with a top
pharmaceutical company and a hospital. Results from its AI
module (for biomarker training) have been published (36), albeit
in a completely different domain.

EXPECTED BENEFITS, EARLY FINDINGS,
AND NEXT STEPS

The APACHE study has been running for a few weeks now,
albeit with lower enrolment rates than expected. The first RWD
are being collected, as shown in Figure 4, where the real-
time monitoring functionalities of Healthentia offer investigators
views of the RWD, like the depicted physical activity and MINI-
MAC cancer scale.

In the APACHE study, we have introduced new patient-
centered variables for risk stratification (i.e., toxicity onset,
malnutrition, or mental coping issues), allowing the prospective
setup of rapid and fully personalized therapeutic approaches.
The integration of such variables into clinical nomograms and
multidimensional predictive models is contributing to realizing
decisional support systems. The study contributes to the active
monitoring of toxicity and therapy-related side effects, aiming
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FIGURE 4 | (A) Monitoring of physical activity, and (B) low toxicity events in APACHE trial.

at their reduction, and in the optimization of monitoring and
follow-up strategies of the patients. Finally, the use of Healthentia

enhances self-awareness of the patients about global clinical
status and participated clinical decision making.
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Clinicians expect different benefits from the use of such
advanced monitoring techniques. First of all, the reduction
of toxicities may hamper QoL of the patient and their
compliance to the oncological multimodal treatments, thanks
to the identification of alert signs and early symptoms that
may be overlooked during the visits or considered negligible
by the patients themselves and not properly reported to the
attending physician. This may be translated into an active
personalization of the ongoing treatments (i.e., radiotherapy
replanning secondary to bowel toxicity) with significant expected
advantages in terms of treatment quality and overall clinical
outcomes. Furthermore, the use of this monitoring approach
may represent a key resource for coping strategies enhancement,
especially in hospitals where a psychoncology service is
not available.

As the volume of collected RWD increases, our next steps in
the analysis side have to do with modeling the different scores
and discovering a biomarker for the predictions of the QoL ones.
Due to conflicting studies that do not allow to run multiple trials
on the same cohort of patients, the enrollment has been slow, and
therefore an amendment has been proposed to enlarge the cohort
and grant the success of the trial. At the time being, patients
affected by other pelvic cancer undergoing CRT are allowed in the
study (e.g., endometrial, vaginal, vulvar, and rectal cancer). This
expansion of the inclusion criteria is justified by the similarities
of cervical to the other pelvic cancers in terms of treatment
(there is a radiotherapy does overlap) and most importantly the
common types of possible toxicity (linked to the irradiation of
the same pelvic organs, i.e., bowel, bladder, rectum) that allow
the reuse of the same questionnaires and eliminate differences in
data analysis.

The limitation of the APACHE study lies with the automatic
measurements. These need the compliance of the study
participant, whose familiarity with activity trackers significantly
declines with their age. The participant needs to understand
the importance of the physiological data being collected and
make sure their activity tracker is worn and is charged. Working
with the unavoidable gaps in the collected physiological data is
something we are investigating.

Scoring Considerations
In section Study Description we presented the study design,
which is complemented by the scoring mechanisms that we have
been prepared prior to the launch of the study. The physiological
scores combine diverse parameters, and their combination
weights will be investigated to obtain meaningful results. All the
other scores combine parameters that carry similar weights and
hence there are three combination options:

A linear combination does not discriminate between number
of events or their severity. As an example, consider four
parameters with values 0–4, 4 indicating maximum severity. An
average score of 1 is obtained with four 1’s or three 0’s and one
4. There are cases where the latter is more alarming than the
former. Some of the questionnaires used in APACHE do have
formal scoring suggestions (37–41), following the linear case.

Non-linear combination, on the other hand, allows the
investigator to put more weight on either the number of events

or their severity. Consider a set of possible events xn, each with a
value of zero if there is no symptom and integer values larger than
zero indicating increased severity of the symptom. The events are
combined into a single score s using:

s =
1

N

(

N
∑

n=1

xan

)1/a

Selecting a > 1 the investigator has a score that puts emphasis on
event severity vs. event count. On the other hand, selecting a < 1
puts the emphasis on the event count. Selecting a = 1 leads to the
linear case.

As already mentioned, the formal scoring of most of the
questionnaires is linear. This is followed to facilitate clinical
research. But to facilitateML, we also experiment with non-linear
scoring in APACHE. We are selecting the value of the exponent
for each combination leading to the different scores, based on
what the investigators need to emphasize with each one of them.

Iterative Design Stage
The iterative design phase has recently started with an initial
algorithm selection. Since there are 50 patients in the trial,
there are 50 feature vector instances to train and evaluate the
biomarkers. For this reason, algorithms like neural networks are
not expected to be used. The biomarkers will most probably
be based on a decision-tree classifier or random forests. Linear
methods (with careful feature engineering) will be used as
a baseline, together with their multiclass variants, since the
decision boundaries are not expected to be linear.

The biomarkers will be trained using the leave-one-out
method, each time keeping one patient for testing, training with
45 and using the remaining four for hyper-parameter tuning
during validation. The performance will be reported as the
number of correctly identified patients out of the 50 leave-one-
out experiments.

Early Findings and Next Steps
At the definition stage of the APACHE biomarkers discovery,
the clinically significant outcomes that need to be predicted by
the biomarker are selected. These are dictated by the goal of
APACHE, that is, the QoL in terms of low toxicity adverse effects,
as is quantified by the three scores of the lifestyle aspect. As
APACHE trial starts producing RWD, we will be training our
biomarker to predict significant variations of these scores. At
some milestone of the trial (currently planned for its end on
the 52nd week) the predictors of the biomarker will be able to
determine if a significant improvement of the 3 scores associated
with the QoL of the patients is to be expected.

Having trained the biomarker, we will be exploiting the
explainable AI techniques described in section Composite
Lifestyle Biomarker Discovery to determine the aspects in the life
of the patient to coach in favor or against. This way, as discussed
in section Using the Biomarkers for Digital Therapeutics, we will
be driving DTx in this therapeutic area.

Although the RWD collection and scoring presented in this
study is customized to the needs of the APACHE trial for cervical
cancer, the methodology for capturing and combining data, and
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most importantly, that for discovering biomarkers, is applicable
to other conditions as well. Preliminary results are available for
the application of this methodology on RWD for obesity, where
the discovered biomarker predicts significant short-term weight
variations and general well-being, where the biomarker classifies
the health outlook of general population, aiming at using it
for risk assessment and the analysis of its decisions in virtual
coaching.We have published these early results in Pnevmatikakis
et al. (36), and our next steps in biomarker discovery research
involve applying the discoverymethodology in the APACHE data
to predict the low-toxicity events.

CONCLUSIONS

The APACHE study addresses a very important milestone, that
is represented by the clinical validation of AI technologies
when creating models based on PROMs capable of predicting
any outcome of clinical value. In this modeling, endeavor the
clinical validation still represents a bottleneck. In particular,
the complexity of promoting RWE from basic clinical decision
support (needs validation from an accountable “real doctor”) to a
fully validated (rather “qualified”) digital biomarker RWD-from-
lifestyle-raw-material based is quite significant. The challenge is
represented by the robust regulatory framework set to qualify a
classical biomarker, herein adopted to evaluate a digital one vs.
strictly technological standards, requirements, and credentials.
If we consider the privacy endeavor (related to innovative
data capture and handling solutions) and the cyber-sec one,
these alone represent entirely new dimensions entering the
ethical/regulatory dialog.

In our perspective, extracting evidence with predictive values
from lifestyle in a very homogeneous cohort (and a technological
endeavor ethically and regulatory robust) of subjects undergoing
state-of-the-art treatment magnifies its value by offsetting this
RWE toward a very stable, and to a certain extent expected,
clinical outcome progression (observational nature of the
approach). In other words, a study like this creates the idea
sandbox to evaluate the training of an ML algorithm in a low
noise setting.

Clinically, extracting such RWE has significant implications.
Lifestyle-driven and outcome-connected digital biomarkers with
the predictive value could enrich the diagnostic tools with

agile (and relatively inexpensive) indicators (easy to collect in
a continuous fashion), for example, of the onset of significant
toxicity from an oncological treatment.

Training cycle by training cycle, moreover, these digital
biomarkers could pave the way to smart coaching that, in turn,
could be promoted toward validated digital content as an active
ingredient in a DTx perspective.
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