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Seasonal changes in meteorological factors [e.g., ambient temperature (Ta), humidity,

and sunlight] could significantly influence a person’s sleep, possibly resulting in the

seasonality of sleep properties (timing and quality). However, population-based studies

on sleep seasonality or its association with meteorological factors remain limited,

especially those using objective sleep data. Japan has clear seasonality with distinctive

changes inmeteorological variables among seasons, thereby suitable for examining sleep

seasonality and the effects of meteorological factors. This study aimed to investigate

seasonal variations in sleep properties in a Japanese population (68,604 individuals)

and further identify meteorological factors contributing to sleep seasonality. Here we

used large-scale objective sleep data estimated from body accelerations by machine

learning. Sleep parameters such as total sleep time, sleep latency, sleep efficiency,

and wake time after sleep onset demonstrated significant seasonal variations, showing

that sleep quality in summer was worse than that in other seasons. While bedtime did

not show clear seasonality, get-up time varied seasonally, with a nadir during summer,

and positively correlated with the sunrise time. Estimated by the abovementioned sleep

parameters, Ta had a practically meaningful association with sleep quality, indicating that

sleep quality worsened with the increase of Ta. This association would partly explain

seasonal variations in sleep quality among seasons. In conclusion, Ta had a principal role

for seasonality in sleep quality, and the sunrise time chiefly determined the get-up time.

Keywords: sleep seasonality, meteorological factors, big data, acceleration data, Japanese

INTRODUCTION

Several meteorological factors, such as ambient temperature (Ta), humidity, and sunlight, have
significant influences on human biological rhythms, including endogenous circadian rhythms
(e.g., rectal temperature and melatonin rhythms) and sleep–wake cycles (1–3). Especially, seasonal
climatic changes act as rhythmic external cues or perturbations on biological systems that regulate
homeostatic and endogenous processes (1, 4, 5). The response of the systems to these seasonal
inputs results in seasonal variations of biological variables, such as those of sleep properties.
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Seasonal variations in sleep quality or prevalence of insomnia
has been well-studied in terms of associations with characteristic
seasonal changes in sunlight durations, such as the midnight sun
in summer and the dark period in midwinter, especially among
Nordic populations. In the epidemiological survey on Norwegian
sleep using questionnaires, insomnia wasmore frequent in winter
than in other seasons of the year (6). Other Nordic interview
surveys demonstrated that the prevalence of reported insomnia,
particularly sleep onset problems, increased from summer to
winter in northern Norway but decreased in the southern
regions (7). Meanwhile, in a general population in Finland, the
prevalence of sleep dissatisfaction increased during summer (8).

Those sleep seasonality are often explained by an entrainment
of the circadian time-keeping system to photoperiodic changes
(5, 9, 10). However, interestingly, people living in areas with
limited daylight variations had significant sleep seasonality (11,
12). For example, in a survey conducted among young Africans
living in a dry tropical area, the number of awakenings increased
during hot season (11). Furthermore, polysomnography (PSG)
revealed that European expatriates living in a similar tropical
climate showed seasonal differences in sleep quality and that sleep
quality was significantly associated with Ta (12). Hence, seasonal
sleep variations could not be fully explained by the sole basis
of photoperiodic changes among seasons, and sleep seasonality
is probably affected by the modulation of thermoregulatory
processes passively induced by climatic temperature alterations
(5, 11, 12).

Indeed, both laboratory and real-life settings have shown
significant Ta effects on sleep; a study conducted under a
temperature-controlled laboratory reported that Tas outside a
thermoneutral zone were destructive to sleep (13). Further, subtle
manipulations of skin temperature improved sleep latency (SL)
in the elderly (14), while sleep depth enhanced in young adults
(15), without causing alterations in core body temperatures.
Even in a field-based study participated by the elderly with
actigraphy, sleep disturbances were significantly related to skin
temperature fluctuations (16). Therefore, ambient climate (e.g.,
bedroom climate), which possibly affects skin temperature, has
strong modulating effects on sleep quality (17).

Despite that sleep seasonality and its relationship with
meteorological factors have been extensively reported (6–8,
11–13, 17–20), large-scale population studies remain limited.
Besides, almost all population studies largely relied on subjective
sleep assessments. Though sleep seasonality has been intensively
examined in high-latitude countries (e.g., Nordic countries) or
low-latitude areas (e.g., tropical areas close to the equator), that
in middle-latitude countries (e.g., temperate zone areas) has not
been well-elucidated. Furthermore, most studies examined the
effects of only a single meteorological factor on sleep, without
considering the comprehensive effects of various meteorological
factors (e.g., sunrise time, Ta, and humidity).

In examining the seasonal influences of meteorological factors
on sleep, Japan is the best location because it is situated in a
temperate zone with four distinctive, meteorologically separated
seasons (spring, summer, autumn, and winter). Meteorological
variables such as Ta, humidity, and day length change remarkably
among seasons; for instance, in Tokyo, the monthly-based mean

atmospheric air temperature varies from a few degrees to roughly
30◦ throughout a year, and the sunrise time changes from 4:30
AM to 7:00 AM approximately (Figure 1).

Although sleep seasonality is poorly investigated using
objective measures in Japanese populations, two distinctive
studies have been published (16, 19). An actigraphic study in
the elderly reported the decrease of total sleep time (TST) and
sleep efficiency (SE) and the increase of SL and wake time after
sleep onset (WASO) in summer in comparison with those in
winter (16), although the sample size is small. Another sleep
study using a contactless biomotion sensor also reported the
significant increase ofWASO and decrease of SE in summer (19).
However, these two previous studies had some inconsistencies
in sleep parameter values. For example, the SE in the former
study declined ∼10% from winter to summer (winter: 91%,
summer: 81%), but that in the latter declined slightly (winter:
88%, summer: 86%).

Very recently, we examined the effects of age and gender on
sleep among Japanese individuals by using a large-scale trunk
acceleration data recorded from around 80,000 Japan residents
(21, 22) (Figure 2). In that study, we developed an algorithm
to determine sleep–wake states from the acceleration data using
machine learning approaches and then obtained objective sleep
parameters (e.g., sleep duration and SE). The present study aimed
to examine the seasonal variations of sleep parameters in a
Japanese population by using large-scale objective sleep data and
to identity which meteorological factor significantly contributed
to seasonal variations in each sleep parameter, if they exist,
by multiple regression analysis combined with a bootstrapping
method. In other words, this study is a comprehensive sleep
research that used objective sleep measures to examine the effects
of various ambient meteorological factors on Japanese habitual
sleep at the population level.

MATERIALS AND METHODS

Acceleration Database—ALLSTAR
Research Project
We used a database constructed by the ALLSTAR research
project (23–25). The ALLSTAR database has been thoroughly
explained elsewhere (23–25). Briefly, the database stores 24-
h electrocardiography (ECG) data and tri-axial acceleration
data measured by Holter recorders (Cardy Series; SUZUKEN
Co., Ltd.) for clinical purposes by medical facilities all over
Japan (47 prefectures in total). Since November 2007, the
database has stored more than 300,000 analyzable ECG
data (sampling frequency, 250Hz) and ∼80,000 acceleration
data simultaneously measured with ECG (sampling frequency,
31.25Hz), with accompanying information, including the
patient’s age and gender, the recording date and time, and
location (the medical facility’s postal code). Considering that
Holter monitoring is generally conducted in natural daily
circumstances, not in laboratory settings, over 24 h without any
restrictions affecting the patient’s daily activities, we can access
the patient’s physiological data (e.g., acceleration data) during
habitual sleep.
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FIGURE 1 | Monthly variations of meteorological variables; (A) atmospheric air temperature, (B) humidity, (C) barometric pressure, (D) sunrise time, and (E) sunset

time as a function of month. The monthly mean values were calculated for each month by averaging the daily meteorological data recorded at a prefectural capital of

each medical facility on each Holter recording date.

FIGURE 2 | A schematic flow chart of whole research.

Samples
The dataset we used is the same as that reported in our
previous study (22). We utilized 68,604 individual acceleration
data (30,485 males, 37,951 females, and 168 individuals with
unknown gender; age range: 10–89 years old; data length >

20 h) gathered from 2010 to 2016 across Japan. These data were

recorded by more than 1,500 medical facilities in 47 prefectures
in Japan. Table 1 summarizes age and monthly distributions of
the samples. Further, Table 2 shows the mean subjects’ age (±
standard deviation) stratified by month. The ethics committee of
Osaka University approved our study, which conformed to the
Declaration of Helsinki.
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TABLE 1 | Number of samples stratified by month and age group.

Age group Sample size Month

1 2 3 4 5 6 7 8 9 10 11 12

10s 1,314 70 64 101 103 169 180 160 135 92 84 63 93

20s 1,421 111 109 139 114 133 134 144 95 112 121 89 120

30s 2,816 269 208 234 206 216 245 268 186 204 263 245 272

40s 5,448 507 435 508 411 447 452 454 350 376 478 491 539

50s 7,361 694 674 688 559 596 580 640 458 506 682 668 616

60s 14,727 1,305 1,250 1,457 1,264 1,179 1,219 1,085 858 1,067 1,434 1,363 1,246

70s 21,710 1,856 1,783 2,160 1,824 1,780 1,846 1,698 1,242 1,667 2,172 1,939 1,743

80s 13,806 1,157 1,081 1,283 1,197 1,156 1,227 1,084 856 1,100 1,371 1,233 1,061

Total 68,603 5,969 5,604 6,570 5,678 5,676 5,883 5,533 4,180 5,124 6,605 6,091 5,690

Note that the recording of month was missed for one subject.

TABLE 2 | Sleep parameter values by month.

Month Sample number Age TST In-bed time Get-up time SL SE WASO WEP

mean ± SD [min] [hh:mm] [hh:mm] [min] [%] [min] [count]

1 5,969 66.0 ± 15.7 437.8 ± 1.8 22:19 ± 0:01 6:27 ± 0:01 14.1 ± 0.3 92.4 ± 0.1 36.7 ± 0.6 3.78 ± 0.05

2 5,604 66.3 ± 15.4 430.6 ± 1.8 22:26 ± 0:01 6:27 ± 0:01 13.4 ± 0.3 92.3 ± 0.1 36.7 ± 0.7 3.81 ± 0.05

3 6,570 66.4 ± 15.8 426.2 ± 1.7 22:20 ± 0:01 6:18 ± 0:01 13.8 ± 0.3 92.0 ± 0.1 37.8 ± 0.6 3.94 ± 0.05

4 5,678 66.7 ± 16.1 421.0 ± 1.8 22:17 ± 0:01 5:59 ± 0:01 14.7 ± 0.3 91.7 ± 0.1 39.2 ± 0.7 4.19 ± 0.06

5 5,676 65.6 ± 17.2 409.1 ± 1.8 22:22 ± 0:01 6:08 ± 0:01 15.0 ± 0.3 90.7 ± 0.1 42.5 ± 0.7 4.81 ± 0.06

6 5,883 65.6 ± 17.2 402.6 ± 1.7 22:17 ± 0:01 5:59 ± 0:01 16.0 ± 0.3 90.4 ± 0.1 43.5 ± 0.7 5.24 ± 0.06

7 5,533 64.7 ± 17.5 398.6 ± 1.9 22:23 ± 0:01 6:06 ± 0:01 16.0 ± 0.3 89.3 ± 0.2 48.0 ± 0.7 5.9 ± 0.07

8 4,180 64.9 ± 17.6 404.4 ± 2.2 22:13 ± 0:02 6:02 ± 0:02 15.8 ± 0.3 89.4 ± 0.2 49.0 ± 0.9 6.07 ± 0.08

9 5,124 66.7 ± 16.3 404.7 ± 1.8 22:13 ± 0:01 6:01 ± 0:01 16.4 ± 0.4 89.6 ± 0.2 47.5 ± 0.7 5.67 ± 0.07

10 6,605 66.9 ± 15.6 417.2 ± 1.6 22:15 ± 0:01 6:10 ± 0:01 14.8 ± 0.3 90.7 ± 0.1 43.3 ± 0.7 4.73 ± 0.06

11 6,091 66.7 ± 15.3 425.4 ± 1.7 22:19 ± 0:01 6:17 ± 0:01 14.1 ± 0.3 91.9 ± 0.1 39.0 ± 0.7 4.05 ± 0.05

12 5,690 65.3 ± 16.3 429.7 ± 1.8 22:25 ± 0:01 6:23 ± 0:01 13.4 ± 0.3 92.6 ± 0.1 35.3 ± 0.7 3.69 ± 0.05

Sleep parameter values are represented as mean ± SEM. SD, standard deviation.

Sleep–Wake Inference From the
Acceleration Data Using Machine Learning
Sleep and wake states are often inferred according to body
movements measured by wearable devices (26–29). Following
these approaches, we recently developed algorithms to accurately
estimate minute-by-minute sleep–wake states, as well as sleep
parameters, from trunk acceleration data measured by the Holter
recorder. In this study, we utilized the sleep parameter values
calculated by our algorithms in our previous work (21, 22). Our
algorithms are summarized below.

Using a support vector machine (SVM), we constructed
a sleep–wake classifier (30, 31) that converted tri-axial trunk
acceleration data into a sequence of “sleep” and “wake” labels,
with 1-min time resolution using the statistical features extracted
from the acceleration data. More specifically, we used upper-
body tilt angles and local variances of trunk acceleration data
as input vectors to the machine. Our method was validated by
comparing the outputs of a watch-type sleep monitor (referred to
as an actigraph) manufactured by Ambulatory Monitoring Inc.
(AMI, Ardsley, NY). An AMI actigraph correctly distinguishes

sleep from wakefulness with high accuracy (>90%) (32, 33) and
high sensitivity (>95%) (33, 34) compared with PSG, which is
the gold standard for sleep assessment. Therefore, the actigraph
has been widely used in sleep studies as a PSG substitute (26,
29, 32). Our validation study demonstrated that our SVM-based
method was consistent with the AMI actigraph (accuracy =

94.4% ± 3.8%, specificity = 94.2% ± 5.2%, sensitivity = 94.8%
± 3.9%, and F1-score = 92.0 ± 4.5) (21, 22). Note that while
we used a classical machine learning approach for the sleep–
wake classification, state-of-the-art methods, such as ensemble
tree-based algorithms [e.g., extreme gradient boosting (XGBoost)
(35), or light gradient boosting machine (LightGBM) (36, 37)],
or deep neural networks [e.g., long short-termmemory (38–40)],
may improve classification performance significantly.

Sleep Parameters
We examined seasonality of the following seven sleep parameters
(22, 28, 29): in-bed time, get-up time, SL, WASO, wake episodes
(WEP), TST, and SE. In-bed time is the clock time when a patient
gets into bed to sleep and then switches the light off, while get-up
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time is when a patient finally wakes up in the morning. In-bed
time and get-up time are often ascertained by using data from
the event marker of an actigraph, sleep diary, or ambient light
sensor (29). However, such data were unavailable in the database;
hence, we determined those timings from the acceleration data
(21, 22). Moreover, SL refers to the time it took a patient to fall
asleep; it is the number of minutes between in-bed time and sleep
onset, where sleep onset is the time at the start of the first 10
consecutive minutes of sleep after in-bed time. WASO is the sum
of the awakening minutes from sleep onset to the get-up time.
WEP refers to the number of awakenings between sleep onset and
get-up time. TST is the number of minutes asleep between sleep
onset and get-up time; it can be calculated by subtracting SL and
WASO from time in bed (practically, time in bed was defined by
the period between in-bed time and get-up time). Lastly, SE is
the ratio of TST to time in bed multiplied by 100. Note that these
sleep parameters were strongly related with dynamics in sleep
structures commonly assessed by PSG.

Meteorological Variables
Japan locates in the northern hemisphere, and its climate
is separated into four seasons, namely, spring, summer,
autumn, and winter. Many meteorological variables, such
as Ta and photoperiod length, distinctively change among
seasons (Figure 1). Each season generally lasts 3 months.
Monthly average of atmospheric air temperature is highest
during summer (June–August) and lowest during winter
(December–February). Meanwhile, spring (March–May) and
autumn (September–November) bridge a gap between summer
and winter (Figure 1A). Therefore, atmospheric data show an
annual sinusoidal pattern. Japan experiences a short rainy season,
which generally lasts from the beginning of June to the middle of
July, making the area dampish (Figure 1B).

The sunrise time and sunset time also varies between seasons
(Figures 1D,E). In summer, the sun rises earlier and sets later,
causing a longer daytime; conversely, the sun rises later and
sets earlier in winter, resulting in a shorter daytime. Thus, the
difference in the daytime length between summer and winter is
∼3.5 h. Of note, the daylight-saving time system has not yet been
introduced in Japan.

We downloaded daily meteorological data (mean Ta [◦C],
humidity degree (%), and barometric pressure [hPa]) measured
in the prefectural capital of each medical facility on each
Holter recording date from the open public database of Japan
Meteorological Agency (41). Considering that Holter recordings
were performed over 2 consecutive days to obtain continuous
24-h data, we used the average Ta, humidity, and barometric
pressure values over the recording days.

The sunset/sunrise time on the start/end day of the Holter
recording was downloaded from the public database of the
National Astronomical Observatory of Japan (42).

Statistics
Seasonality of Sleep Parameters
The seasonality (specifically, monthly variations) in each sleep
parameter was examined using a generalized linear model
(GLM). In fitting a GLM, the month of Holter recording was the

categorical variable. Patient’s gender and age were also included
into the GLM because the gender and age effects were significant
in all sleep parameters (21, 22). The age was categorized into eight
groups by 10-year intervals (Table 1).

In addition to the main effects of these categorical variables
(i.e., age group, gender, andmonth), the interaction term between
age and gender was considered as a possible factor affecting
the sleep parameter values. When the interaction term was not
significant, a separate GLMwithout it was created and then fitted
to the data again. If the interaction term was significant, we
stratified the data by gender or age and then tested simple main
effects (i.e., pairwise comparisons) with Bonferroni correction for
multiple comparisons. In fitting GLMs, in-bed time and get-up
time values were represented as an elapsed time (in minutes)
counted from 0:00 on the start day of a Holter recording; hence,
the values ranged from 0 to 2,880 (1,440min× 2 days). Similarly,
the sunrise time and sunset time were represented as an elapsed
time (in minutes) counted from 0:00 of the start and end day of
the recording. The sleep parameter values between July and other
months were compared.

All statistical data were analyzed using SAS software version
9.04 (SAS Institute, Cary, NC, USA). In addition, p-values
were adjusted by Bonferroni adjustment correction for multiple
comparisons. To avoid potential inferential biases caused by a
large sample size, we considered p < 0.01 statistically significant
(43, 44). The results were expressed as the mean and the standard
error of the mean (SEM) except for the coefficient values in
multiple regression analysis explained below.

Multiple Linear Regression Analysis
To identify which meteorological variable (i.e., Ta, humidity,
barometric pressure, sunset time, and sunrise time) contributed
to seasonal variations in each sleep parameter, we further
evaluated multiple linear regression models in which each sleep
parameter was a response variable and meteorological variables
were the explanatory variables.

Several meteorological variables highly correlated with each
other (e.g., Pearson’s correlation was r = 0.70 between Ta and
sunrise time). To avoid the variance inflation caused by high
multicollinearity in the regression analysis, we used a shrinkage-
based variable selection method, which allowed the exclusion of
redundant variables from a regression model. We also combined
a model averaging method based on a bootstrapping algorithm
[PROC GLMSELECT, ModelAverage (45), in SAS software] to
search for a robust and parsimonious model. Each step was
explained below in detail.

Variable selection step: Least Absolute Shrinkage and
Selection Operator (LASSO) (46), which is a popular method
for selecting shrinkage variables, can effectively select important
explanatory variables from a set of candidates potentially
correlated with a response variable, and then estimate the
coefficient values of regressors simultaneously. LASSO belongs to
a particular class of penalized least square regression with the sum
of absolute values of regression coefficients (or L1 norm), making
some coefficients estimated to be zero. In this study, we employed
the modified standard LASSO called the adaptive LASSO
algorithm (47); in forming the LASSO constraint (i.e., penalized
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term), weights were applied to each regression coefficient, leading
to better performance in identifying a parsimonious model. If all
entering explanatory variables were not significant at p < 0.01,
the selection process was terminated, and from the sequence of
models obtained by the selection process, the final model was
chosen using the Schwarz Bayesian Criterion (48). Hence, each
regression coefficient was ensured to be significant (p < 0.01).
To adjust both the gender and age effects, we also included the
categorical variables of gender and age in the regression models.

Model averaging step: We employed a model averaging
method based on a bootstrap method (45, 49) to perform
more stable inferences of models. Model selections by the
adaptive LASSO regression were repeated on bootstrap samples.
The model selected by variable selection possibly varies from
sample to sample; therefore, the importance of each explanatory
variable was scored by using the number of times it was
incorporated in the selected model. Considering that frequently
selected explanatory variables were regarded as true underlying
regressors, we constructed a final model that used merely the
variables above the selection frequency cutoff value. In model
averaging, we calculated the ensemble average of each coefficient
value estimated by fitting the model to each bootstrap sample. In
each bootstrap analysis, 5,000 samples were randomly resampled
from the entire dataset. The frequency cutoff value in this study
was 70%. Effects of the choice of cutoff values were also examined.

RESULTS

Monthly Variations of Sleep Parameters
Figure 3 shows the monthly average values of each sleep
parameter (TST, in-bed time, get-up time, SL, SE, WASO, and
WEP) as a function of month. The mean TST showed a clear
annual cycle with shorter durations during summer and longer
durations during winter (Figure 3A). Specifically, it was shortest
in July (6.64 ± 0.03 h) and longest in January (7.30 ± 0.03 h),
showing a difference of∼40min monthly.

Seasonal variations were similar in both get-up time
(Figure 3C) and SE (Figure 3E), with a nadir in summer. The
mean get-up time was earliest in June (5:59 AM) and latest in
January (6:27 AM). The mean difference of get-up time between
summer and winter was ∼24min (overall mean get-up time:
6:02 AM during summer and 6:26 AM during winter). The
mean SE decreased slightly but significantly by∼2.7% in summer
compared with that in winter (overall mean SE: 89.7 ± 0.1%
during summer and 92.4± 0.1% during winter).

Themean in-bed time was almost constant acrossmonths; any
significant monthly difference was not found between July and
other months (Figure 3B). Overall mean in-bed time was 22:19
in our samples.

The monthly average of SL peaked in summer in an
annual cycle, although the amplitude of differences among
months was subtle (Figure 3D); the mean SL varied between
14.0 and 16.1 min.

Seasonality was noticeable inWASO (Figure 3F). The amount
of time of WASO exceedingly increased during summer, with the
longest duration of 49.0 ± 0.9min in August. Conversely, the
shortest duration of 35.3 ± 0.7min was observed in December.

Similarly, the number of wake episodes slightly, but significantly,
increased during summer compared with the remaining seasons
(Figure 3G).

Meteorological Effects on Sleep
Seasonality
According to multiple regression analysis, three meteorological
variables, namely, humidity, barometric pressure, and the sunset
time, did not significantly contribute to the seasonality of any
sleep parameter. Table 3 summarizes the coefficient values of the
final averaged model for each sleep parameter. Figure 4 shows
the scatter plots between the sleep parameter values and the
meteorological variables shown in Table 3. When the frequency
cutoff value was changed from 65 to 80%, the final averaged
model consistently selected regressors shown in Table 3.

The Ta was selected as a significant regressor in the final
averaged model for all sleep parameters, excepting get-up time.
The Ta was negatively associated with TST and SE (coefficient
value: −1.58 ± 0.04 for TST and −0.111 ± 0.004 for SE;
Figures 4A,C) but positively correlated with SL, WASO, and
WEP (coefficient value: 0.11 ± 0.01 for SL, 0.48 ± 0.01 for
WASO, and 0.082 ± 0.002 for WEP; Figures 4B,D). The linear
relations were considerably clear above 5◦C (Figures 4A–E).
Thus, sleep quality worsened as the Ta increased; this result
possibly explained the worsening of sleep quality during summer.
However, we also found a declining tendency in SE and
WASO below 5◦C (Figures 4C,D). These suggested a U-shaped
correlation of these sleep parameters with Ta.

The sunrise time positively associated with get-up time
(coefficient value: 0.182 ± 0.006; Figure 4F); this result probably
explained the delay of get-up time in winter and the early get-
up time in summer. The sunrise time also significantly correlated
with SE, though the absolute magnitude of the regression
coefficient was practically small (coefficient value: 0.005± 0.001);
the effect size was below 1% even when the sunrise time changed
from 4:30 AM to 7:00 AM.Hence, the sunrise time had practically
no influence on SE. As well, the significant, but subtle negative
relation was confirmed between sunrise time and WEP. The
influence of sunrise time on sleep quality is thought to be limited.

DISCUSSION

The current study aimed (1) to examine seasonality in various
sleep parameters (TST, in-bed time, get-up time, SL, SE, WASO,
and WEP) by using a large-scale objective sleep data of a
Japanese population and (2) to identify meteorological factors
statistically associated with sleep seasonality. This study is the
largest population-based research that used objective sleep data in
real-life settings to examine sleep seasonality and its association
with climatic factors in Japan.

Seasonality in Sleep Parameters
We found clear seasonal variations with an annual cycle in all
sleep parameters, excluding in-bed time. Average monthly values
of TST, get-up time, and SE showed a sinusoidal functional
form with a nadir in summer, while mean SL, WASO, and
WEP peaked during summer. Thus, sleep quality worsened
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FIGURE 3 | Monthly variations of sleep parameters; (A) total sleep time, (B) in-bed time, (C) get-up time, (D) sleep latency, (E) sleep efficiency, (F) wake time after

sleep onset (WASO), and (G) wake episodes. The mean values of each sleep parameter are shown as a function of month (solid black circles). The sinusoidal

functional curve with 1-year period was fitted to the mean values of each sleep parameter (broken blue curve). The error bars are the standard error of mean.

*indicates a significant difference from July (p < 0.01).
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TABLE 3 | Coefficient values of the selected significant regressor by multiple

regression analysis.

Sleep parameter Meteorological variable (regressor)

Ambient

temperature [◦C]

Sunrise time

(elapsed time) [min]

Get-up time [min] - 0.18 ± 0.01

TST [min] −1.58 ± 0.04 -

SL [min] 0.11 ± 0.01 -

SE [%] −0.111 ± 0.004 0.005 ± 0.001

WASO [min] 0.48 ± 0.01 -

WEP [count] 0.082 ± 0.002 −0.0022 ± 0.0003

Values are represented as mean ± SD. The humidity, barometric pressure, and sunset

time were not selected as significant regressors in any regression model. Therefore,

the cells for those regressors are not shown. The bar (-) in a cell indicates that the

corresponding regressor was not selected in the final regression model.

SE, sleep efficiency; SL, sleep latency; TST, total sleep time; WASO, wake time after sleep

onset; WEP, wake episodes.

from winter to summer but then improved from summer to
winter. These are partly comparable with previous research
using objective sleep measures (16, 19), while there are some
inconsistencies in sleep parameter values, such as magnitudes of
seasonal differences or absolute values of SE. These discrepancies
could be influenced by numerous factors, including differences
in measurement devices, patients’ age and gender distributions,
and local climates. Furthermore, the incased frequency in WEP
during summer could be related with increased prevalence of
self-reported insomnia, especially difficulty in maintaining sleep,
in a Japanese population in summer (20).

In our study, seasonal variations were not confirmed in the
in-bed time compared with those in the get-up time. Under
well-controlled laboratory conditions, both sleep and wake-up
times in summer were significantly advanced (5). However,
other studies that objectively assessed sleep in real-life settings
could not find any seasonal shift in bedtime but wake-up time
was significantly advanced during summer (5, 19). Therefore,
bedtimes were less influenced by seasonal climate changes in
real-life settings. We hypothesized that sociocultural factors (e.g.,
lifestyle, work, social role, and family) have a large impact on
bedtimes in habitual sleep.

Meteorological Effects on Sleep
Seasonality
The most noticeable finding of our study was the identification of
meteorological factors contributing to seasonal variations in sleep
parameters, using the robust multiple regression analysis. The
analysis revealed thatTa chiefly determined seasonal variations in
sleep quality (TST, SL, SE, WASO, and WEP) in real-life settings
in the Japanese population. It would be valuable to address
effects of a choice of different classes of sparse regressions. We
tested a ridge regression (L2 penalty) (50, 51) and Elastic net (a
combination of L1 and L2 penalties) (52). Both methods selected
the identical regressors to those of LASSO in the final averaged
models at the selection frequencies ranging from 65 to 80%. This
indicates the robustness of our results.

The seasonal differences in sleep–wake cycles or sleep quality
are commonly interpreted as a consequence of the entrainment of
circadian rhythm to photoperiodic changes among seasons (4–
7, 53–55). However, interestingly, meaningful contributions of
sunlight durations to sleep quality were not detected in our study.

Our results indicated that sleep quality worsened as the Ta
increases, suggesting the principal role of Ta for the seasonality
in sleep quality. Further, SE and WASO exhibited a deteriorating
trend at colder Ta (below 5◦C), indicating that sleep quality
worsened at colder or hotter Ta. These are supported by the
results of previous studies based on actigraphy or contactless
biomotion sensor (16, 19). Although the functional link between
Ta and sleep has remained poorly understood, the contribution
of a feedback system of skin temperature to sleep-regulating
brain areas (preoptic area/anterior hypothalamus) has been
suggested as a possible mechanism (56). Indeed, a direct
manipulation of skin temperature revealed a notable effect on
sleep propensity in the elderly with and without sleep insomnia
(14). Without alternating the core temperature, the induction
of a small increase (0.4◦C) in skin temperature suppressed
nocturnal wakefulness and shifted sleep to deeper stages in
healthy young and elderly, as well as in patients with insomnia
(15). These findings support the interpretation that seasonality in
sleep quality was caused by the modulation of skin temperature
induced by seasonal changes in Ta.

The get-up time did not correlate with Ta. This is explained
by the difference in the timing of a peak or a nadir in annual
cycle of get-up time and Ta; the mean get-up time was earliest
in June, while the Ta was highest in Aug. Meanwhile, the sunrise
time had a nadir in June, similar to get-up time. The results of the
regression analysis reflect such phase differences between sleep
parameters and meteorological variables.

Limitations
This study has several limitations. The first originates from an
ambulatory monitoring in real-life circumstances. Behavioral
thermoregulation, such as the use of air conditioning, clothing,
and bedspreads, might affect our results because it likely changes
both the actual skin and core body temperature. In addition, we
did not consider the duration and intensity of light exposure.
This limitation could be related to the lack of association between
photoperiodic changes and sleep quality. We also did not control
the regional differences. Considering that Japan covers several
degrees of latitude (from 20 to 46◦ north), the meteorological
variables largely differ between southern and northern areas; for
example, the sun rises earlier in northern areas than in southern
areas, and monthly Tas are usually lower in northern areas than
in southern areas.

Other significant limitations are related to the database. As
discussed in our previous study (22), the database probably
included selection biases because Holter recordings were usually
obtained from patients suspected of having some form of a
cardiovascular disease (57). In addition, other clinical conditions
(e.g., sleep problems and depression) were not controlled
because of the unavailability of such information. The effects of
imbalanced age distribution of the samples would be remained.
Further population studies controlled those factors might be
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FIGURE 4 | Scatter plots between sleep parameters and meteorological variables. (A) total sleep time, (B) sleep latency, (C) sleep efficiency, (D) wake time after sleep

onset (WASO), (E) wake episodes are shown as a function of Ta. (F) get-up time, (G) sleep efficiency, and (H) wake episodes are plotted as a function of sunrise time.

Sleep parameter values were averaged every 5◦C for Ta and 10min for sunrise time. The error bars are the standard error of mean. The straight line represents a linear

regression fit.
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important. In addition, assessments of sleep structures (e.g.,
sleep stages) might provide more deeper insights into seasonal
influence on nocturnal sleep. Nevertheless, our findings on sleep
seasonality derived from the largest Japanese population are
scientifically important and informative.
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