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Objectives: Sleep time information is essential for monitoring of obstructive sleep apnea

(OSA), as the severity assessment depends on the number of breathing disturbances

per hour of sleep. However, clinical procedures for sleep monitoring rely on numerous

uncomfortable sensors, which could affect sleeping patterns. Therefore, an automated

method to identify sleep intervals from unobtrusive data is required. However, most

unobtrusive sensors suffer from data loss and sensitivity to movement artifacts. Thus,

current sleep detection methods are inadequate, as these require long intervals of good

quality. Moreover, sleep monitoring of OSA patients is often less reliable due to heart

rate disturbances, movement and sleep fragmentation. The primary aim was to develop

a sleep-wake classifier for sleep time estimation of suspected OSA patients, based on

single short-term segments of their cardiac and respiratory signals. The secondary aim

was to define metrics to detect OSA patients directly from their predicted sleep-wake

pattern and prioritize them for clinical diagnosis.

Methods: This study used a dataset of 183 suspected OSA patients, of which

36 test subjects. First, a convolutional neural network was designed for sleep-wake

classification based on healthier patients (AHI < 10). It employed single 30 s epochs

of electrocardiograms and respiratory inductance plethysmograms. Sleep information

and Total Sleep Time (TST) was derived for all patients using the short-term segments.

Next, OSA patients were detected based on the average confidence of sleep predictions

and the percentage of sleep-wake transitions in the predicted sleep architecture.

Results: Sleep-wake classification on healthy, mild and moderate patients resulted

in moderate κ scores of 0.51, 0.49, and 0.48, respectively. However, TST estimates

decreased in accuracy with increasing AHI. Nevertheless, severe patients were detected

with a sensitivity of 78% and specificity of 89%, and prioritized for clinical diagnosis.

As such, their inaccurate TST estimate becomes irrelevant. Excluding detected OSA

patients resulted in an overall estimated TST with a mean bias error of 21.9 (± 55.7) min

and Pearson correlation of 0.74 to the reference.

Conclusion: The presented framework offered a realistic tool for unobtrusive sleep

monitoring of suspected OSA patients. Moreover, it enabled fast prioritization of severe

patients for clinical diagnosis.

Keywords: sleep, sleep apnea, unobtrusive sensor, ECG, respiration, convolutional neural network,
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1. INTRODUCTION

Obstructive Sleep Apnea (OSA) is themost common sleep related
breathing disorder. It is characterized by events of breathing
disturbances causing hypoxemia, intrathoracic pressure changes
and arousals from sleep. Consequently, OSA is an acknowledged
risk factor for excessive daytime sleepiness, hypertension and
cardiovascular diseases (1). As OSA is closely associated with
obesity and advancing age, the prevalence is expected to further
increase (2). Nevertheless, many patients remain undiagnosed.
One of the reasons is the limited hospital capacity for performing
polysomnography (PSG) (3). Furthermore, the clinical diagnostic
procedure poses a high level of discomfort for the patient.
Therefore, it is desired to identify OSA patients at risk with
unobtrusive sensors at home, allowing a comfortable sleeping
environment and follow up over multiple nights. Clinically,
the severity of sleep apnea is assessed by the Apnea-Hypopnea
Index (AHI), which is the number of respiratory events (apneas,
hypopneas and respiratory effort-related arousals) per hour of
sleep. The events are annotated based on the patient’s airflow
and oxygen saturation (4). A patient is then categorized as not
suffering from OSA if 0 6AHI< 5, mild OSA if 5 6AHI< 15
with presence of symptoms, moderate OSA if 15 6AHI< 30
or severe OSA if AHI > 30 (5). The calculation of this AHI
requires the quantification of the hours of sleep, i.e., Total Sleep
Time (TST). In fact, there are five sleep stages defined by the
American Academy of Sleep Medicine, which are Wakefulness,
Rapid Eye Movement sleep (REM sleep) and non-REM (NREM)
sleep 1, 2, and 3 (respectively N1, N2, and N3) (4). Usually,
stages N1 and N2 are referred to as light sleep and N3 as deep
sleep. The rules for annotating sleep stages (i.e., performing sleep
staging) are based on patterns and wave characteristics found
in the electroencephalogram (EEG), the electrooculogram, and
the submental electromyogram. The PSG records these signals,
among others such as the respiratory airflow, oxygen saturation
and electrocardiogram (ECG). To facilitate the sleep staging,
these signals are scored in consecutive windows of 30 s, which
are referred to as epochs (6). Hence, in this paper, monitoring of
sleep apnea patients refers to the whole process of sleep staging,
sleep time estimation and severity assessment.

Although clinical sleep staging mainly relies on EEG
analysis, many emerging unobtrusive sensor technologies
for sleep monitoring are based on cardiac and respiratory
signals. Consequently, the development of novel algorithms for
automated sleep staging based on these unobtrusive signals is an
active topic of research. The following studies developed specific
sleep staging algorithms for OSA patients based on cardiac and
respiratory information. Often, feature-based approaches were
implemented to differentiate between sleep stages when expert
knowledge was available (7–10). This implied a disadvantage of
the method as prior knowledge was required to find appropriate

Abbreviations: AHI, Apnea-Hypopnea Index; CNN, Convolutional Neural
Network; OSA, Obstructive Sleep Apnea; ECG, Electrocardiography; EEG,
Electroencephalogram; IHR, Instantaneous Heart Rate; N1, N2, N3, Non-Rapid
Eye Movement sleep 1, 2, 3; PSG, Polysomnography; REM, Rapid Eye Movement;
RIP, Respiratory Inductance Plethysmography; SD, Standard Deviation; TST, Total
Sleep Time.

features. Another disadvantage was the extensive data processing
needed to perform accurate feature extraction. To alleviate the
manual feature extraction, a deep learning network can be
developed, as done by (11). The network required an input
sequence of 100 × 30 s epochs and obtained good performance
results for classifying the five sleep stages. These algorithms
by previously mentioned authors required long signal segments
surrounding a 30 s (or 60 s) epoch as an input for the epoch’s
sleep stage classification. As such, these longer segments provided
contextual information to improve classification performance.
However, long intervals of good quality are in reality not
available as unobtrusive sensors are very sensitive to movement
artifacts. In addition, OSA patients often show more movements
during their sleep compared to healthy subjects. Therefore,
the required algorithm input should consist of single and
independent signal epochs, to alleviate the requirement of
successive good quality segments. However, state-of-the-art sleep
staging algorithms rarely take into account the potential data
loss and distortion of unobtrusive sensors. Malik et al. (12)
did perform a two-class sleep-wake classification with an input
consisting of single 30 s epochs, or longer sequences. They solely
used the instantaneous heart rate (IHR) (i.e., tachograms) and
a one-dimensional convolutional neural network (1D CNN).
However, the method was only applied on healthy subjects and
the performance on 30 s epochs was insufficient. Also in the
study of (13), a sleep-wake classifier was developed with 30 s
epochs, for healthy to mild OSA patients and based on the
1D CNN of (12). A difference with the classifier of (12) was
that respiratory inductance plethysmography (RIP) signals were
added to improve performance. Moreover, the use of tachograms
allowed a straight-forward application of other sensors capturing
the beat-to-beat variability. As such, the CNN was preliminarily
tested with recordings from unobtrusive capacitively coupled
ECG. However, the study was based on a limited dataset.

Additionally, in OSA patients, heart rate disturbances
and sleep fragmentation complicates algorithm design and
validation (14, 15). The complexity and validation issue are
related to the increase of the uncertainty in clinical sleep staging
with the AHI of a patient. It is partially a consequence of
the restrictions posed by the scoring rules, as defined in (4).
For example, patients can pass through two or even three
different sleep stages during a 30 s interval, although sleep stages
are annotated per epoch of 30 s. Also micro-sleeps or micro-
awakenings of a few seconds will not be annotated. Additionally,
apneic events can only be scored if they last at least 10 s. State-
of-the-art non-EEG sleep staging algorithms are aware of the
decrease in prediction performance for a patient population,
however the problem is not mitigated (8, 16). Therefore, it is
desired to detect OSA patients with complex sleep architectures,
as they would receive less reliable sleep-wake predictions and can
be prioritized for a clinical PSG.

The primary aim of this actual work is to reliably estimate TST
for healthy subjects as well as the whole range of OSA patients,
based on PSG signals which could be acquired unobtrusively.
This means the TST is estimated based on single short-term
segments, as unobtrusive data likely includes artifacts and data
loss. Therefore, this study proposes a sleep-wake classifier based
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on (13), which can handle data acquired by unobtrusive sensors.
For this, the approach proposed here has a preprocessing phase
based on single 30 s segments, as opposed to the previous
algorithm, which makes it more usable for future application on
unobtrusive data. Furthermore, the robustness of the network
is verified by training the CNN model multiple times using a
variation in training and validation set and by comparing the
performance of each model on a test set. This is in contrast with
the application of a fixed training and validation set. In addition,
the network is tested on the whole range of OSA patients,
instead of only healthy and mild OSA patients. The secondary
aim is to assess the applicability of the classifier’s outcome for
detection of OSA patients, who would receive less reliable sleep-
wake predictions. The TST estimates of these patients would
be less accurate, but they can be directly prioritized for a
clinical diagnostic test. Thus, the relationships between a patient’s
classification outcome and its OSA severity is analyzed. As the
sleep-wake network is trained on healthy subjects and mild OSA
patients, a relatively small amount of apneic events is included in
the training set. Thus, a first hypothesis is that the CNN classifier
will exhibit uncertain sleep-wake predictions in the presence of
apneic events. The second hypothesis is that more transitions
from sleep to wake and vice versa occur in the predicted sleep
pattern of OSA patients, also caused by apneic events. Hence,
this study addresses the need for a sleep monitoring framework
that accommodates signals acquired by unobtrusive sensors, as it
takes into account data losses through the analysis of single short-
term segments. Furthermore, the framework investigates how the
predicted sleep architecture of OSA patients and the decrease in
reliability can be applied to detect these patients, and increase
overall sleep monitoring performance.

2. MATERIALS AND METHODS

This study is organized as illustrated in Figure 1. First,
the different datasets and their demographics and sleep
information are described in section 2.1. Section 2.2 presents the
preprocessing methodology of ECG and RIP data. The classifier’s
architecture, its training procedure and the derivation of the TST
are described in section 2.3. Furthermore, section 2.4 studies
the link between a patient’s sleep-wake prediction and its OSA
severity in order to detect OSA patients.

2.1. Datasets
The dataset comprised 183 patients who were referred to the
sleep laboratory of the University Hospitals Leuven (UZ Leuven,
Belgium) for a diagnostic PSG. The B3IP device from Medatec
(Haillot, Belgium) served as polysomnograph and provided data
from the built-in ECG (SPES electrodes) and built-in thoracic
RIP (SleepSense belts) (17). Medatec Brainnet Winacq 5.0 was
the acquisition software and Medatec Brainnet Winrel 5.0 the
analyzing software. A clinical sleep expert annotated the sleep
stages and apneic events according to the AASM 2012 scoring
rules (4). The collection of data was approved by the ethical
committee of UZ Leuven (S60319) and all patients signed
an informed consent. From the full dataset, 36 patients were
left out as an independent, unseen dataset for validation of

sleep-wake classification, TST estimation and detection of OSA
patients. These patients were part of an additional data collection
later in time, complying with the same ethical standards.
The remaining patients were split into subsets for different
purposes, as described in section 2.3.2. The overview of the
different subdatasets can be found in Table 1. Figure 1 indicates
which datasets were applied for parameter optimization or
model selection.

2.2. Data Preprocessing
The sleep-wake classification network was developed based
on full-night recordings of ECG and RIP, extracted from the
PSG. The preprocessing steps took into account the application
on unobtrusive, movement-sensitive sensor recordings, with
frequent episodes of insufficient quality. As such, the full signal
was first segmented into non-overlapping windows of 30 s and
preprocessing was performed on these individual segments.

2.2.1. ECG
First, R-peak detection was performed on 30 s segments, with the
method proposed by (18). Segments with less than 15 detected R-
peaks were discarded. From the remaining segments, the IHRwas
derived and expressed in beats perminute. The unevenly sampled
IHR data points were interpolated at 4 Hz by a piecewise cubic
hermite interpolating polynomial, resulting in segments of 120
samples. To avoid border problems during interpolation, the first
and last beat of the segment were shifted in time. The first beat
time was calculated by subtracting the mean value of the second
and third interbeat interval from the second beat time. Similarly,
the last beat time was calculated by adding the mean value of
the second and third last interbeat interval to the second last
beat time. Next, outliers were identified whenever the IHR value
was outside the range of 40–180 beats per minute, or outside the
segment’s median value ± 20 beats per minute, or outside the
segment’s median value ± [3 × the segment’s standard deviation
(SD)]. The first condition were physiological boundaries. The
second and third were defined empirically using visual inspection
and logical values. Next, the outliers were indicated with NaN.
The NaN interval was corrected as long as the duration of
subsequent NaNs was smaller or equal to 10 samples (i.e., 2.5
s). This NaN gap was filled by mirroring the values preceding
the gap (19). Outlier correction was important to not discard
epochs with minor artifacts and preserve a maximal number of
epochs. Finally, the interpolated values of remaining segments
were concatenated and the overall median for each subject
was subtracted from every segment. In this way, inter-subject
variability was removed but the inter-sleep stage variability
retained. As a neural network cannot process NaN values, every
segment with remaining NaN values was discarded.

2.2.2. RIP
The segments of the RIP signal were bandpass filtered at [0.04, 2]
Hz and downsampled to 4 Hz by spline interpolation, resulting in
segments of 120 samples. Then, the median and SD value of every
segment was considered. As such, every patient recording had a
distribution of median values and one of SD values. Next, every
segment was normalized by subtraction with the 50th percentile
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FIGURE 1 | Framework pipeline from polysomnography (PSG) data to Total Sleep Time (TST) estimation and detection of OSA patients. First, the electrocardiogram

(ECG) and respiratory inductance plethysmogram (RIP) data were preprocessed (section 2.2). The classifier’s architecture was based on a convolutional neural

network (CNN). Its training procedure and derived TST outcome is reported in section 2.3. The relation between uncertainties and sleep-wake transitions in a patient’s

prediction and the obstructive sleep apnea (OSA) severity were studied in section 2.4.1. These relations were subsequently applied for detection of OSA patients

(section 2.4.2). The gray boxes indicate the datasets used for parameter optimization or selection.

TABLE 1 | Demographic and clinical information of the study datasets.

Dataset N AHI (1/h) Average Nr. of Epochs (% of Total Nr. Epochs)

(AHI<5) Mean (SD) N3 N2 N1 REM Wake

CNN_Train 39 (13) 5.9 (2.2) 230 (22) 412 (40) 38 (4) 172 (17) 175 (17)

CNN_Val 17 (9) 5.1 (2.6) 253 (24) 393 (36) 39 (4) 159 (15) 236 (22)

CNN_Test 26 (13) 4.8 (2.6) 221 (22) 416 (40) 44 (4) 182 (17) 168 (17)

No 13 2.2 (1.3) 233 (22) 444 (42) 46 (4) 196 (18) 147 (14)

Mild 24 8.7 (2.9) 186 (19) 388 (39) 50 (5) 148 (15) 235 (23)

Mod 19 20.4 (4.3) 189 (19) 391 (38) 55 (5) 139 (14) 239 (24)

Sev 35 61.9 (20.1) 120 (12) 383 (39) 139 (14) 111 (12) 236 (24)

Test 36 38.6 (29.6) 112 (11) 406 (39) 104 (11) 128 (12) 281 (27)

The whole dataset comprised 183 patients. Training of the sleep-wake classifier was performed on 39 patients (CNN_Train) and validated on 17 patients (CNN_Val), all with AHI < 10.

The trained classifier was tested with CNN_Test. In addition, dataset CNN_Test was merged with patients with higher AHI and split again according to OSA severity in the subsets No,

Mild, Mod, and Sev. Out of 183 patients, 36 patients were left out as an unseen dataset Test for independent validation of sleep-wake classification, total sleep time estimation and

detection of OSA patients.

N, Number of subjects in dataset, with number of No OSA indicated in brackets. AHI, Apnea-Hypopnea Index.

No: AHI < 5, Mild: 5 6 AHI < 15, Mod: 15 6 AHI < 30, Sev: AHI > 30.

of the median values and dividing by the 50th percentile of
the SD values, to reduce the influence of respiratory artifacts.
This was followed by the subtraction of the individual median
per segment. Segments discarded after ECG preprocessing as they
contained remaining NaN values, were also discarded from the
RIP data. Remaining epochs, i.e., without NaNs, were fed to the
neural network.

2.3. Sleep-Wake Classification
2.3.1. Neural Network Architecture
The neural network consisted of a convolutional part for feature
representation and a dense part for classification (see Figure 2).
Two separate unimodal networks were first optimized using the
cardiac or respiratory signal, based on (12). After training, the
convolutional layers of these networks were combined into a
multimodal network, retaining the weights of these layers. Only
the dense layers of the multimodal network were optimized
using training. All networks consisted of four types of layers.
The convolutional layers were defined as (f , k, s)− Conv, with
a depth f , a kernel size k, a stride s and an activation of type

ReLu. After the convolutional block, dense layers, (n)− Dense,
with n neurons were included. A third type were dropout layers,
(d%)− Dropout, where d% = 50% of the nodes were set to
zero in every training step to avoid overfitting (20). The output
layer is a softmax layer, Softmax(1, c), delivering posterior class
probabilities for every one of the c = 2 classes, where class 0
represented Sleep and class 1 Wake. As an optimization scheme,
Adam was chosen, which uses an adaptive learning rate for
weight updates instead of a fixed rate (21). The network trained
with balanced and shuffled batches of sixteen non-sequential
epochs. Balancing was achieved by over-sampling classes, such
that every batch contained on average an equal number of
samples of every class. The threshold of posterior class probability
for classification was set at 0.5, thus assigning a segment to class
Wake if pclass > 0.5.

2.3.2. Neural Network Training and Selection
Training of the network was performed on 56 patients from UZ
Leuven with a low AHI (i.e., AHI < 10), so that the network
purely learned patterns of sleep or wake and not to recognize
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A B

FIGURE 2 | (A) Illustration of the network architecture used for the cardiac and the respiratory signals separately. This CNN extracted characteristics from the input

epoch with length 120 samples. The layer (f , k, s)− Conv indicates a layer with f filters, kernel size l and stride s, and an activation of type ReLu. After the convolutional

block, dense layers, (n)− Dense, with n neurons were included. A third type were dropout layers, (d%)− Dropout, where d% = 50% of the weights were equal to

zero in every training step to avoid overfitting. The output layer is a softmax layer, Softmax(1,c), delivering posterior class probabilities for every one of the c = 2

classes, where class 0 represented Sleep and class 1 Wake. (B) Architecture of the combined deep learning network, consisting of a cardiac CNN (red), a respiratory

CNN (blue) and a combined dense network (green). During training, the weights of convolutional branches were frozen, while the dense layers were optimized.

apneic events for classification. Moreover, patients with higher
OSA severity have stronger physiological dynamics, which may
block the learning process of typical sleep patterns. The training
dataset was randomly split into a subset using 70% (N = 39) of the
patients for weight training of the neural network (CNN_Train)
and 30% (N = 17) for validation during training (CNN_Val), with
N the number of subjects. The subdivision changed ten times,
using a different seed for randomization, to train and validate
ten models. The same ten seeds were used for both the unimodal
ECG and RIP networks as well as for the multimodal network.
The final multimodal model was selected based on the highest
Cohen’s Kappa score (κ) obtained using the fixed (i.e., non-
randomized) set CNN_Test. The κ score is a measure of inter-
rater agreement, while compensating for the degree of agreement
expected by chance. It ranges from –1 (total disagreement)
through 0 (random classification) to 1 (total agreement). The
interpretation of κ , however, varies among different studies (22).

In addition, the patients of dataset CNN_Test were merged
with patients with higher AHI and split again according to
clinical OSA categories in the subsets No, Mild, Mod, and Sev. As
such, the selected sleep-wake classifier tested these populations
with varying AHI. Finally, a Wilcoxon signed rank test verified
the performance differences between the unimodal networks, and
between the unimodal vs. multimodal network on the patients in
No, Mild, Mod, and Sev.

2.3.3. Assessment of Total Sleep Time
The TST was estimated as the total time spent asleep in minutes,
for datasets No, Mild, Mod, Sev, and Test. The comparison was
performed by subtracting the reference TST from the estimated
TST and calculating the mean and SD of this difference. In
addition, the Pearson’s correlation coefficient ρ between the
reference TST and estimated TST was calculated.

2.4. Detection of OSA Patients Based on
Sleep-Wake Classifier Outcome
The secondary aim of this study was to assess the applicability of
the classifier’s outcome for detection of OSA patients. Therefore,
the relationships between a patient’s outcome of the sleep-wake
classifier and its OSA severity was analyzed in section 2.4.1. These
relations were used as metrics for which appropriate thresholds
were required to detect OSA patients. Threshold selection was
performed in section 2.4.2.

2.4.1. Relations Between Sleep-Wake Classifier

Outcome and OSA Severity
The sleep-wake classifier network was trained on a rather healthy
population (CNN_Train with AHI < 10), in which a relatively
small amount of apneic events was present. It was hypothesized
that the network output would exhibit uncertain sleep-wake
predictions in the presence of apneic events, as mentioned in the
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FIGURE 3 | Definition of uncertain epochs. The top row represents the outcome of the CNN of each epoch as p(Wake) (green) and p(Sleep) = 1− p(Wake) (red) (see

section 2.3.1). A distinction was made between confident and uncertain predicted epochs by defining confidence thresholds. The second row shows the predicted

sleep-wake classification with the default threshold at 50%. The last row shows the ground truth (GT) sleep stages which were clinically annotated.

introduction. Therefore, the probabilistic outcome of CNN_Test
was further inspected to increase insight into the predictions,
as explained further on and illustrated in Figure 3. The top
row represented the outcome of the CNN, which was the wake
probability of each epoch, i.e., p(Wake). The second row shows
the predicted sleep-wake classification with the threshold for
posterior class probability at 50% (see section 2.3.1). The last row
showed the ground truth sleep stages, which clinicians annotated.
However, as can be seen from the top row, some epochs had a
p(Wake) just above 50%. Thus, the prediction of these epochs
was rather uncertain. On the other hand, an epoch with a very
low p(Wake), e.g., 10%, indicated an epoch which was predicted
as Sleep with a high confidence. Based on these observations, a
distinction was made between confident and uncertain predicted
epochs by defining confidence thresholds (Table 3). The wake
confidence threshold Tw served as the threshold for epochs
predicted as Wake. It was the median p(Wake) of epochs
predicted as Wake minus its SD, calculated over all subjects of
CNN_Test. For epochs predicted as Sleep, the p(Sleep) = 1 −

p(Wake) was considered. Thus, the sleep confidence threshold
Ts was the median p(Sleep) of epochs predicted as Sleep minus

its SD, calculated over all subjects of CNN_Test. Epochs with
a p(Wake) between these margins had an uncertain prediction.
These margins were applied on sets No, Mild, Mod, Sev and Test.
Thus, the amount of uncertain sleep or wake predictions over the
total number of predicted epochs was investigated as an indicator
of apneic severity, referred to as % Uncertain Sleep Epochs and
% Uncertain Wake Epochs.

In addition, the predicted sleep architecture was expected
to exhibit more frequent sleep-wake transitions with increasing
AHI. Reasons for this included the expected increase of sleep
fragmentation with the amount of apneic events (23), the
presence of micro-awakenings due to apneas and the sympathetic
activation related to apneas that resemble cardiorespiratory
behavior during wakefulness (15, 24). Due to the latter,
the network might predict a wake epoch shortly after the
occurrence of an apneic event although the patient continued
sleeping. Therefore, the percentage of wake-sleep plus sleep-
wake transitions in the prediction was examined as a second
identification metric for high risk OSA patients, referred to
as % Sleep Wake Transitions. More precisely, every change in
the prediction from wake to sleep or vice versa was counted
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and divided over the total number of predicted epochs. Only
remaining (i.e., without NaNs) epochs were counted.

2.4.2. Detection of OSA Patients
The goal was to apply the sleep-wake classifier outcome, namely
the metrics % Uncertain Sleep Epochs and % Sleep Wake
Transitions, for detection of OSA patients. Firstly, to gain insight
into the suitability of these metrics for patient detection, the
distributions of both metrics were visualized with boxplots per
OSA severity class. This was performed using the four datasets
No, Mild, Mod and Sev. An upward trend of each metric with
OSA severity was expected. Thus, a Kruskal–Wallis test with
Bonferroni correction tested significant differences (p < 0.05)
between OSA classes. As a patient is regarded as suffering from
OSA if the AHI > 15, regardless of having symptoms, the
presented method should be able to select moderate (15 6 AHI
< 30) and severe patients (AHI > 30). For simplicity, it was
chosen that if at least one of both metrics exceeded a selected
threshold, the patient was identified as being at high risk of OSA,
i.e., detected positive. Therefore, ROC analysis was carried out
to select a suitable OSA detection threshold for each metric.
A large specificity was preferred when setting the thresholds,
as this meant the identified OSA group would contain few
false positives, i.e., few non-OSA patients falsely detected to
have OSA. Hence, this implied the detection of patients with
rather high AHI values, as opposed to AHI values close to 15
events/h. Hence, when detecting OSA patients at home using
only unobtrusive cardiac and respiratory sensors, moderate and
severe OSA patients could be detected with a high confidence
and given prioritization for a diagnostic PSG. This procedure for
detecting OSA patients was assessed on the Test data set.

3. RESULTS

3.1. Sleep-Wake Classifier Selection and
Performance
The multimodal network was trained ten times on different
distributions of CNN_Train and CNN_Val. Application of these
10 networks onto CNN_Test resulted in moderate κ scores
ranging between 0.46 and 0.51. The multimodal model with the
highest κ was chosen.1 The weights of the convolutional layers of
this chosen multimodal network were the same as the final ECG
and RIP unimodal networks. Application of CNN_Test on the
selected ECG, RIP and multimodal networks resulted in κ = 0.31,
0.46, and 0.51, respectively. In addition, the multimodal CNN
tested all other datasets. Table 2 shows the resulting κ scores.
Using all patients with varying AHI, the Wilcoxon signed rank
test indicated significant different κ scores (p < 0.05) for the RIP
and ECG+RIP networks compared to the ECG network, and the
RIP compared to the ECG+RIP network. Next, the TST estimates
were compared with the reference value for all datasets (Table 2).

3.2. Uncertainty in Sleep-Wake Classifier
Outcome
The probability of an epoch predicted as sleep, p(Sleep), or
wake, p(Wake), are shown in Table 3. The median and SD

1The network is publicly available at: https://github.com/dorienhsmns/TSTnet.

values of p(Sleep) and p(Wake) of dataset CNN_Test defined
the confidence thresholds for the multimodal network (see
section 2.4.1). This resulted in Ts = 0.87− 0.06 = 0.81 and
Tw = 0.69− 0.06 = 0.63. Taking these thresholds into account,
the percentages of uncertain predicted sleep and wake epochs
were derived and displayed in Table 3. ECG based predictions
appear more difficult as the % Uncertain Sleep Epochs was
highest compared to RIP and ECG+RIP. Instead, for RIP and
ECG+RIP outcomes, this number increased with AHI.

To further investigate the origin of uncertain epochs, a
distinction wasmade between uncertain epochs with and without
apneas. For No, Mild, Mod, and Sev, the % Uncertain Sleep
Epochs with the presence of an apneic event were, respectively,
1, 4, 13, and 39%. Thus, it was found that apneic events caused
the increase in % Uncertain Sleep Epochs with AHI. The %
Uncertain Sleep Epochs without the presence of an apneic event
were, respectively, 32, 34, 31, and 21%. These values stayed
rather stable over the datasets with increasing AHI, however,
a clear decrease was seen for Sev. To investigate the cause
of uncertainty for non-apneic epochs, the ground truth sleep
stages of these uncertain epochs were extracted for CNN_Test.
The largest portion of uncertain sleep predicted, non-apneic
epochs were present during N2 and REM sleep as seen in
Supplementary Table 1. On the other hand, N2was also themost
frequent sleep stage, as seen in Table 1. Therefore, the portion
of uncertain non-apneic epochs per sleep stage was investigated.
For this, the classes N1 and REM had the largest ratio, being
55.1 and 53.2%, respectively. However, uncertain predictions
did not necessarily imply incorrect predictions. Nevertheless,
classes N1 and REM also had the largest ratio of uncertain
non-apneic epochs which were wrongly predicted, respectively
9.1 and 4.3%. These results can be found in more detail in
Supplementary Table 2.

3.3. Detection of OSA Patients
The values of No, Mild, Mod, and Sev for % Uncertain Sleep
Epochs and % Uncertain Wake Epochs increased with OSA
severity class, as shown in Table 3. However, the trend was more
pronounced for % Uncertain Sleep Epochs and was therefore
chosen as the preferred metric. The distributions for No, Mild,
Mod, and Sev with corresponding ROC curve for detection
of AHI > 15 are displayed in Figure 4. The significance tests
confirmed the increasing trend of % Uncertain Sleep Epochs
with OSA severity. The area under the ROC curve was 0.77.
Furthermore, an operating point on the ROC curve was chosen
where the specificity was > 95%, since a larger specificity for
detection of OSA patients was preferred. As such, a threshold
of 64% was selected, at which specificity reached 97% and
sensitivity 37%. A similar study was carried out for % SleepWake
Transitions, for which the area under the ROC curve was 0.75.
Also the upward trend with OSA severity was confirmed by a
Kruskal–Wallis test (Figure 4). A threshold of 24% was selected,
at which a specificity of 95% and sensitivity of 33% was obtained.
The detection capabilities of these metrics and corresponding
thresholds on Test are shown in Figure 5. Detection of OSA
patients in set Test resulted in a κ of 32%, accuracy of 64%,
sensitivity of 56%, and specificity of 89%. The specificity was
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TABLE 2 | Sleep-wake classification of the unimodal and multimodal networks and TST estimates.

Data κ TST ρ

Median SD Mean(1) (min) SD(1) (min)

ECG CNN_Test 0.31 0.15 47 88 0.21

RIP CNN_Test 0.46 0.17 52 60 0.72

ECG + RIP

CNN_Train 0.53 0.16 2 48 0.83

CNN_Val 0.48 0.21 10 71 0.44

CNN_Test 0.51 0.13 0 50 0.78

No 0.51 0.14 −9 34 0.90

Mild 0.49 0.16 −9 65 0.60

Mod 0.48 0.17 −10 75 0.42

Sev 0.36 0.20 26 86 0.56

Test 0.32 0.18 −9.7 101 0.46

Left: Performance score κ is calculated with decision threshold 50%. The indicated outcomes show a similar performance for No, Mild, and Mod. Right: The estimated TST was

compared to the TST derived from the expert annotations of the tested epochs by the mean and SD of the difference, and ρ. The outcomes indicated in bold and gray show an increase

in SD(1) for increasing AHI. It demonstrates a decrease in reliability of the outcome.

TST, Total Sleep Time. 1, (Estimated TST - Reference TST).

ρ, Pearson’s correlation coefficient.

TABLE 3 | Uncertainty in the sleep-wake classifier outcome, averaged over individual patient outcomes.

Data p(Sleep) p(Wake) % USE % UWE

Med SD Med SD Med (SD) NA A Med (SD) NA A

ECG CNN_Test 0.65 0.01 0.59 0.03 42 (10) 40 2 41 (8) 39 2

RIP CNN_Test 0.89 0.02 0.67 0.05 37 (13) 34 2 34 (12) 32 2

ECG + RIP

CNN_Train 0.87 0.09 0.69 0.06 37 (19) 33 3 40 (11) 35 3

CNN_Val 0.80 0.10 0.67 0.05 51 (21) 47 3 40 (11) 37 1

CNN_Test 0.87 0.06 0.69 0.06 33 (12) 31 3 40 (9) 37 2

No 0.87 0.02 0.69 0.07 33 (11) 32 1 40 (9) 38 2

Mild 0.87 0.08 0.69 0.04 39 (13) 34 4 40 (9) 35 5

Mod 0.86 0.09 0.68 0.07 45 (17) 31 13 41 (8) 31 7

Sev 0.66 0.11 0.65 0.04 62 (21) 21 39 47 (9) 20 27

Left: Prediction probability of sleep predicted epochs [p(Sleep) = 1− p(Wake) with p(Wake) < 50%], and wake predicted epochs [p(Wake) > 50%]. The values indicated in green were

used to calculate Ts and red for Tw. Right: Percentage of uncertain epochs predicted as sleep or wake, derived using Ts and Tw. From the indicated values it can be seen that %

Uncertain Sleep Epochs increased with OSA severity, supporting the usage of this metric as an indicator of apneic severity. Furthermore, a distinction was made between uncertain

epochs during which an apneic event occurred (A) and those without (NA), indicated with the mean value over all subjects.

M, Median value; USE, Uncertain Sleep Epochs; UWE, Uncertain Wake Epochs; NA, No apneic events; A, With apneic events.

relatively high, as expected, as there was only one false positive
out of 36 patients.

4. DISCUSSION

4.1. Sleep-Wake Classification
For sleep diagnostics of OSA patients in a home setting, sleep
staging algorithms based on cardiac and respiratory signals are
required, as these signals can be acquired by unobtrusive sensor
technologies. However, many state-of-the-art sleep staging
algorithms require long temporal dependencies in the data,

which cannot be guaranteed in data acquired by unobtrusive
sensors. Therefore, this study explicitly focussed on single short-
term signal inputs for sleep staging. More specifically, this study
proposed a deep learning network for sleep-wake classification
based on single 30 s epochs from cardiac and respiratory
signals in suspected OSA patients. Furthermore, the network was
validated on an unseen test set.

The Wilcoxon signed rank tests showed that the RIP based
network was more informative compared to the ECG based
equivalent, as higher κ values were reached (see section 3.1).
Nevertheless, application of the cardiac tachogram did have
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FIGURE 4 | Left and Middle: The distribution of % Uncertain Sleep Epochs and % Sleep Wake Transitions for No, Mild, Mod and Sev. The increasing trends

supported the application of the metrics for detection of OSA patient (i.e., with an AHI> 15). The thick lines represent the chosen thresholds. The level of statistical

significance is marked with one asterisk (*) if p < 0.05, two (**) if p < 0.01, and three (***) if p < 0.001. Right: Separate ROC curves for both metrics. Indicated dots

were the chosen operating points and the corresponding thresholds are indicated on the left plots. For % Uncertain Sleep Epochs, an operating point on the ROC

curve was chosen where the specificity was > 95%, since a larger specificity for OSA patient detection was preferred. As such, a threshold of 64% was selected, at

which specificity reached 97% and sensitivity 37%. For % Sleep Wake Transitions a threshold of 24% was selected, at which a specificity of 95% and sensitivity of

33% was obtained. AUROC, Area Under the ROC curve.

a benefit as combining the ECG and RIP signals into the
multimodal network outperformed the RIP unimodal network.
An additional advantage of including the cardiac tachogram is
the usage of beat-to-beat variability, allowing the use of other
cardiac sensors. Examples are pulse photoplethysmography and
ballistocardiography, which enable heart beat extraction.

Furthermore, a distinction was made between epochs that
reached prediction confidence thresholds and those which
were uncertain. As reported in section 3.2, the % Uncertain
Sleep Epochs without the presence of an apneic event was
on average 30% of sleep predicted epochs. For these type of
epochs, the prediction of N1 and REM epochs showed the
lowest confidence. Both N1 and REM are more active stages
of sleep, where the heart rate is elevated and the respiration
more irregular (25, 26). This ressembles the cardiorespiratory
behavior during wake and partially explains the larger confusion

in prediction of these epochs. Furthermore, the ratio of N1
and REM epochs in the training data was low, as seen in
Table 1. Hence, the network had less diverse examples to learn
from, adding to the lower testing performances for N1 and
REM epochs.

Comparison of the sleep-wake classification to literature was
difficult as studies generally do not focus on using single short
term epochs. Most studies include contextual information, by
applying epoch sequences, which improves performance, at
the cost of requiring long segments of good quality. This is
extremely difficult to guarantee when using real and unobtrusive
technology. Only the study of (12) fed single 30 s epochs from
ECG to a CNN, but achieved a low κ of 0.25 for sleep-wake
classification on healthy subjects. In contrast, the current study
achieved a superior κ of 0.49 and 0.48 for mild and moderate
OSA patients, respectively, which is in addition more challenging

Frontiers in Digital Health | www.frontiersin.org 9 June 2021 | Volume 3 | Article 685766

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Huysmans et al. Sleep Diagnostics for Home Monitoring

FIGURE 5 | Application of two detection metrics on dataset Test where circles

represent patients with AHI < 15 and squares AHI > 15. Gray lines represent

the corresponding metric thresholds. Severe OSA patients (AHI > 30) were

detected correctly by the metrics, as expected.

than classification in healthy subjects. On the other hand, (11)
obtained a κ of 0.65 for wake-NREM-REM classification with
pulse photoplethysmography in OSA patients with amedian AHI
of 16.8. Their performance was superior, but the used CNN was
fed with a sequence of 100 epochs of 30 s. Similarly, (9) reached
a κ of 0.62 for wake-NREM-REM using actigraphy and RIP in
patients with an average AHI of 19.0. Their algorithm required
a manual feature extraction on 25 epochs of 30 s. Although the
current network reached lower κ scores compared to the latter
studies, it offers a realistic approach for sleep-wake classification
with unobtrusive sensors, as it is based on single 30 s epochs.

4.2. Total Sleep Time Estimation
The comparison of TST estimates with the reference value in
Table 2 shows an increase in SD with an increase in AHI. It
demonstrates a decrease in reliability of the outcome. Next,
the estimation of TST on dataset Test was performed twice,
once including all subjects (pre-detection) and once on subjects
detection as non-OSA (post-detection). The reason for this
was twofold. First, estimation of the TST becomes irrelevant
when severe OSA patients can be detected, as they are directly
prioritized for a clinical diagnostic test. Thus, an AHI estimation
at home becomes redundant, as well as the corresponding TST
estimation. Second, TST estimates becomes more reliable for
milder OSA patients, due to more stable physiological dynamics,
as further discussed in 4.3. For dataset Test, the ρ increased
for post-detection (ρ = 0.74) compared to pre-detection (ρ =

0.46). Although the mean difference between the estimated TST

and reference TST increased from −9.7 min to −21.9 min,
the SD decreased from 101.0 to 55.7 min. Korkalainen et al.
(11) reported a mean difference of −12.2 min (±52.9 min)
and (9) an overestimation of 14 min and ρ = 0.81. These
studies performed slightly better on a population with a similar
AHI range as expected, since their sleep staging performances
were higher as well. Nevertheless, these studies required longer
input intervals for the algorithm, making them less suited for
usage on unobtrusive technologies. Moreover, this study slightly
underestimated the TST, which would result in an overestimated
AHI. In general, slight overestimation has minor consequences
compared to underestimation, as these patients would receive a
diagnostic PSG as a follow-up procedure.

4.3. Detection of OSA Patients
Despite the fact that the CNN was trained for sleep-wake
classification, its outcome contained information relevant for
detection of OSA patients. As discussed in section 2.4, more
uncertain sleep-wake predictions were expected in the presence
of apneic events, similar to the fact that the uncertainty of
clinical sleep staging labels increases as well with the AHI of
a patient. Additionally, there was an expected increase of sleep
fragmentation, sympathetic activation and micro-awakenings
related to apneas. As such, two metrics for detection of OSA
patients were derived from the CNN outcome, namely the %
Uncertain Sleep Epochs and % Sleep Wake Transitions. This
improved interpretability of the network is beneficial when
proposing the framework as a sleep diagnostics tool for OSA
patients to clinicians. Another advantage was that OSA patient
detection only relied on ECG and RIP signals, instead of
including oxygen saturation sensors. A specificity of 89% was
reached on the dataset Test, for detection of patients with AHI
> 15. However, the corresponding sensitivity was only 56% and
κ = 0.32. In addition, mainly severe OSA patients were detected,
as illustrated in Figure 5. Indeed, when identifying an AHI >
30, the specificity remained stable at 89%, but the sensitivity
increased to 78% and κ to 0.67. This result is beneficial, as severe
OSA patient indeed require prioritization for diagnostic PSG
at the hospital. Additionally, detection of patients with many
events as a first step is advantageous for future refined OSA
severity categorization. The reason is that severe OSA patients
can have much stronger physiological dynamics compared to
milder patients. This enables an OSA patient detection algorithm
to focus training on patients with lower AHIs. It should be noted
that one patient fromTest with an AHI< 5 was falsely detected as
being an OSA patient. For this, a follow-up over multiple nights
could increase the OSA detection capabilities, as a single night
recording might not be fully representative, due to accidental
decreased data quality or the first night effect (27). If patients
would consistently have values around the decision boundaries,
it could indicate a pathological risk factor.

4.4. Future Work
To complete the proposed framework for OSA patient detection,
apneic event detection from a minimal set of sensors is desired.
This could be achieved by analyzing the SpO2 signal (28, 29) or
the cardiac and respiratory signals, which are already included in
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the current sensor set (30, 31). Wearable trackers from several
commercial companies already provide these signals, such as
(32), (33), and (34). The number of apneic events could then be
combined with the sleep-wake staging to calculate the patient’s
AHI and provide feedback on the OSA severity.

In addition, the algorithmic pipeline for sleep-wake
classification and OSA patient detection requires further
validation on unobtrusive data, as the presented study used
PSG signals. This was partially performed by (13). However,
this unobtrusive dataset was limited in number of subjects.
Additionally, it only applied unobtrusively acquired ECG in
combination with RIP from PSG. Thus, when accomodating the
CNN to recordings from a different respiratory sensor, transfer
learning of the new CNN is proposed. For this, the unimodal
RIP network with the pretrained weights (see section 2.3.1) is
updated with the new data using a very low learning rate. A
small learning rate allows the model to learn an optimal set
of weights. This retrained RIP network is then recombined
into the multimodal network, after which the dense layers are
retrained. A smaller number of subjects is required as the model
was pretrained.

The presented framework could also benefit from training
with a larger dataset to improve sleep-wake classification
performance. Moreover, extending the problem to classes wake-
NREM-REM could increase the relevance of the network and
deliver insight into REM-related apneic events. These events
are still being researched for their adverse effects on cardiac
comorbidities (35, 36).

Furthermore, the application domain of confident epochs
could be further extended. For example, the percentage of
confident predicted epochs in a patient’s recording could serve as
a data quality indicator. In a sleep study recording patients over
multiple nights, it is expected that this percentage would remain
relatively stable for a subject. An outlier value could indicate a
recording from different quality and instability of the percentage
or a constant low percentage could even indicate sleep problems.

5. CONCLUSION

Standard clinical procedures for sleep monitoring rely on
uncomfortable and burdensome EEG analysis. On the other
hand, cardiac and respiratory signals have a great potential for
comfortable sleep monitoring at home as unobtrusive sensors
can record these. However, most unobtrusive sensors suffer from
data loss and sensitivity to movement artifacts, especially in OSA
patients. In addition, state-of-the-art sleep staging algorithms
require long temporal dependencies, which cannot be garantueed
in unobtrusive data. Therefore, this study developed a sleep-
wake classifier to estimate the TST of suspected OSA patients
based on single short-term (30 s) segments of their cardiac and
respiratory signals. Application of the network on healthy, mild
and moderate sleep apnea patients resulted in moderate κ scores
of 0.51, 0.49, and 0.48. Furthermore, two metrics derived from
the sleep-wake classifier’s outcome were applied for detecting
OSA patients in an unseen test set with patients of varying
AHI. As such, severe OSA patients (AHI > 30) were detected

in the unseen dataset with a sensitivity of 78% and specificity
of 89%. Additional TST estimation was irrelevant for these
detected patients, as they are directly prioritized for a clinical
diagnostic test. Thus, their AHI estimation at home becomes
redundant. Moreover, after excluding these severe patients, the
overall accuracy of TST estimates increased to a mean bias error
of 21.9 (± 55.7) min and Pearson correlation of 0.74 to the
reference. As this patient detection was only based on cardiac
and respiratory inputs, it might enable comfortable and fast
prioritization of OSA patients for a diagnostic PSG. Overall,
the presented framework offered a realistic tool for unobtrusive
monitoring of sleep apnea patients.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because it contains information that could compromise the
privacy of research participants and is subject to the European
data-privacy policy regulations. The authors will try to provide an
anonymized version of the dataset in compliance with the privacy
policy of the University Hospitals of Leuven, which is the owner
of the data. Requests to access the datasets should be directed to
Carolina Varon, carolina.varon@esat.kuleuven.be.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by ethical committee of UZ Leuven (S60319). The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

DH and CV: conceptualization and methodology. DH: software,
validation, formal analysis, investigation, visualization, and
writing—original draft preparation. PB, DT, BB: resources and
data curation. DH, PB, DT, BB, SV, and CV: writing—review
and editing. SV and CV: supervision, project administration, and
funding acquisition. All authors contributed to the article and
approved the submitted version.

FUNDING

Bijzonder Onderzoeksfonds KU Leuven (BOF) Prevalentie van
epilepsie en slaapstoornissen in de ziekte van Alzheimer:
C24/18/097; Fonds voor Wetenschappelijk Onderzoek-
Vlaanderen (FWO) Ph.D/Postdoc grants; Agentschap Innoveren
en Ondernemen (VLAIO)150466: OSA+; KU Leuven Stadius
acknowledges the financial support of imec; EU: EU H2020
FETOPEN AMPHORA #766456, EU H2020 MSCA-ITN-2018:
INtegrating Magnetic Resonance SPectroscopy and Multimodal
Imaging for Research and Education in MEDicine (INSPiRE-
MED), funded by the European Commission under Grant
Agreement #813120, EU H2020 MSCA-ITN-2018: INtegrating
Functional Assessment measures for Neonatal Safeguard
(INFANS), funded by the European Commission under Grant

Frontiers in Digital Health | www.frontiersin.org 11 June 2021 | Volume 3 | Article 685766

mailto:carolina.varon@esat.kuleuven.be
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Huysmans et al. Sleep Diagnostics for Home Monitoring

Agreement #813483; EIT 19263—SeizeIT2: Discreet Personalized
Epileptic Seizure Detection Device; Flemish Government: This
research received funding from the Flemish Government (AI
Research Program). SV, CV, and DH are affiliated to Leuven. AI -
KU Leuven institute for AI, B-3000, Leuven, Belgium.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdgth.
2021.685766/full#supplementary-material

REFERENCES

1. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep
apnea: a population health perspective. Am J Respir Crit Care Med. (2002)
165:1217–39. doi: 10.1164/rccm.2109080

2. Senaratna CV, Perret JL, Lodge CL, Lowe AJ, Campbell BE, Matheson
MC, et al. Prevalence of obstructive sleep apnea in the general
population: a systematic review. Sleep Med Rev. (2017) 34:70–81.
doi: 10.1016/j.smrv.2016.07.002

3. Flemons WW, Douglas NJ, Kuna ST, Rodenstein DO, Wheatley J. Access
to diagnosis and treatment of patients with suspected sleep apnea. Am

J Respir Crit Care Med. (2004) 169:668–72. doi: 10.1164/rccm.200308-1
124PP

4. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules
for scoring respiratory events in sleep: update of the 2007. AASM manual for
the scoring of sleep and associated events. J Clin Sleep Med. (2012) 8:597–619.
doi: 10.5664/jcsm.2172

5. Sateia MJ. International classification of sleep disorders. Chest. (2014)
146:1387–94. doi: 10.1378/chest.14-0970

6. Rechtschaffen A, Kales A.AManual of Standardized Terminology, Techniques,

and Scoring System for Sleep Stages for Human Subjects. National Institute of
Health (1968).

7. Willemen T, Varon C, Caicedo Dorado A, Haex B, Vander Sloten J, Van
Huffel S. Probabilistic cardiac and respiratory based classification of sleep
and apneic events in subjects with sleep apnea. Physiol Meas. (2015) 36:2103.
doi: 10.1088/0967-3334/36/10/2103

8. Radha M, Fonseca P, Moreau A, Ross M, Cerny A, Anderer P, et al. Sleep stage
classification from heart-rate variability using long short-termmemory neural
networks. Sci Rep. (2019) 9:14149. doi: 10.1038/s41598-019-49703-y

9. Dietz-Terjung S, Martin AR, Finnsson E, Ágústsson JS, Helgason S,
Helgadóttir H, et al. Proof of principle study: diagnostic accuracy
of a novel algorithm for the estimation of sleep stages and disease
severity in patients with sleep-disordered breathing based on actigraphy
and respiratory inductance plethysmography. Sleep Breath. (2021) 1–8.
doi: 10.1007/s11325-021-02316-0

10. Bakker JP, Ross M, Vasko R, Cerny A, Fonseca P, Jasko J, et al. Estimating sleep
stages using cardiorespiratory signals: validation of a novel algorithm across
a wide range of sleep-disordered breathing severity. J Clin Sleep Med. (2021).
doi: 10.5664/jcsm.9192. [Epub ahead of print].

11. Korkalainen H, Aakko J, Duce B, Kainulainen S, Leino A, Nikkonen
S, et al. Deep learning enables sleep staging from photoplethysmogram
for patients with suspected sleep apnea. Sleep. (2020) 43:zsaa098.
doi: 10.1093/sleep/zsaa098

12. Malik J, Lo YL, Wu H. Sleep-wake classification via quantifying heart rate
variability by convolutional neural network. Physiol Meas. (2018) 39:085004.
doi: 10.1088/1361-6579/aad5a9

13. Huysmans D, Heffinck E, Castro I, Deviaene M, Borzee P, Buyse B, et al.
Sleep-wake classification for home monitoring of sleep apnea patients. In:
Proceedings of the 47th Annual Computing in Cardiology Conference. Rimini:
IEEE (2020). doi: 10.22489/CinC.2020.147

14. Norman RG, Pal I, Stewart C, Walsleben JA, Rapoport DM. Interobserver
agreement among sleep scorers from different centers in a large dataset. Sleep.
(2000) 23:901–8. doi: 10.1093/sleep/23.7.1e

15. Varon C, Van Huffel S. Complexity and nonlinearities in cardiorespiratory
signals in sleep and sleep apnea. In: Barbieri R, Scilingo EP, Valenza G, editors.
Complexity and Nonlinearity in Cardiovascular Signals. Cham: Springer
(2017). p. 503–37. doi: 10.1007/978-3-319-58709-7_19

16. Fonseca P, van Gilst MM, Radha M, Ross M, Moreau A, Cerny A, et al.
Automatic sleep staging using heart rate variability, body movements, and
recurrent neural networks in a sleep disordered population. Sleep. (2020)
43:zsaa048. doi: 10.1093/sleep/zsaa048

17. Medatec. Medatec. (2021). Available online at: https://www.medatec.eu/en/
sleep

18. Moeyersons J, Amoni M, Van Huffel S, Willems R, Varon C. R-
DECO: An open-source Matlab based graphical user interface for the
detection and correction of R-peaks. PeerJ Comput Sci. (2019) 5:e226.
doi: 10.7717/peerj-cs.226

19. Pichot V, Roche F, Celle S, Barthélémy JC, Chouchou F. HRVanalysis: a free
software for analyzing cardiac autonomic activity. Front Physiol. (2016) 7:557.
doi: 10.3389/fphys.2016.00557

20. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout:
a simple way to prevent neural networks from overfitting. J Mach Learn Res.
(2014) 15:1929–58.

21. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint
arXiv:14126980. (2014).

22. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med. (2012)
22:276–82. doi: 10.11613/BM.2012.031

23. Kimoff RJ. Sleep fragmentation in obstructive sleep apnea. Sleep. (1996)
19:S61–6. doi: 10.1093/sleep/19.suppl_9.S61

24. Guilleminault C,Winkle R, Connolly S,Melvin K, Tilkian A. Cyclical variation
of the heart rate in sleep apnoea syndrome: mechanisms, and usefulness of 24
h electrocardiography as a screening technique. Lancet. (1984) 323:126–31.
doi: 10.1016/S0140-6736(84)90062-X

25. Douglas NJ, White DP, Pickett CK, Weil JV, Zwillich C. Respiration during
sleep in normal man. Thorax. (1982) 37:840–4. doi: 10.1136/thx.37.11.840

26. Bassetti C, Dogas Z, Peigneux P. Sleep Medicine Textbook. Regensburg:
European Sleep Research Society (2014).

27. Agnew H Jr., Webb WB, Williams RL. The first night effect:
an EEG studyof sleep. Psychophysiology. (1966) 2:263–6.
doi: 10.1111/j.1469-8986.1966.tb02650.x

28. Deviaene M, Testelmans D, Buyse B, Borzée P, Van Huffel S, Varon C.
Automatic screening of sleep apnea patients based on the spo 2 signal.
IEEE J Biomed Health Inform. (2018) 23:607–17. doi: 10.1109/JBHI.2018.28
17368

29. Mendonça F, Mostafa SS, Morgado-Dias F, Ravelo-Garcia AG. An oximetry
based wireless device for sleep apnea detection. Sensors. (2020) 20:888.
doi: 10.3390/s20030888

30. Feng K, Qin H, Wu S, Pan W, Liu G. A Sleep apnea detection method
based on unsupervised feature learning and single-lead electrocardiogram.
IEEE Trans Instrument Meas. (2020) 70:1–12. doi: 10.1109/TIM.2020.30
17246

31. Deviaene M, Castro I, Borzée P, Patel A, Torfs T, Buyse B, et al.
Capacitively-coupled ECG and respiration for the unobtrusive detection
of sleep apnea. Physiol Meas. (2021) 42:024001. doi: 10.1088/1361-6579/a
bdf3d

32. Fitbit. Fitbit SpO2. (2021). Available online at: https://www.fitbit.com/global/
us/technology/health-metrics

33. Garmin. Garmin SpO2. (2021). Available online at: https://www.garmin.com/
en-US/

34. Apple.Apple SpO2. (2021). Available online at: https://www.apple.com/watch/
35. Aurora RN, Crainiceanu C, Gottlieb DJ, Kim JS, Punjabi NM. Obstructive

sleep apnea during REM sleep and cardiovascular disease. Am J

Respir Crit Care Med. (2018) 197:653–60. doi: 10.1164/rccm.201706-1
112OC

Frontiers in Digital Health | www.frontiersin.org 12 June 2021 | Volume 3 | Article 685766

https://www.frontiersin.org/articles/10.3389/fdgth.2021.685766/full#supplementary-material
https://doi.org/10.1164/rccm.2109080
https://doi.org/10.1016/j.smrv.2016.07.002
https://doi.org/10.1164/rccm.200308-1124PP
https://doi.org/10.5664/jcsm.2172
https://doi.org/10.1378/chest.14-0970
https://doi.org/10.1088/0967-3334/36/10/2103
https://doi.org/10.1038/s41598-019-49703-y
https://doi.org/10.1007/s11325-021-02316-0
https://doi.org/10.5664/jcsm.9192
https://doi.org/10.1093/sleep/zsaa098
https://doi.org/10.1088/1361-6579/aad5a9
https://doi.org/10.22489/CinC.2020.147
https://doi.org/10.1093/sleep/23.7.1e
https://doi.org/10.1007/978-3-319-58709-7_19
https://doi.org/10.1093/sleep/zsaa048
https://www.medatec.eu/en/sleep
https://www.medatec.eu/en/sleep
https://doi.org/10.7717/peerj-cs.226
https://doi.org/10.3389/fphys.2016.00557
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.1093/sleep/19.suppl_9.S61
https://doi.org/10.1016/S0140-6736(84)90062-X
https://doi.org/10.1136/thx.37.11.840
https://doi.org/10.1111/j.1469-8986.1966.tb02650.x
https://doi.org/10.1109/JBHI.2018.2817368
https://doi.org/10.3390/s20030888
https://doi.org/10.1109/TIM.2020.3017246
https://doi.org/10.1088/1361-6579/abdf3d
https://www.fitbit.com/global/us/technology/health-metrics
https://www.fitbit.com/global/us/technology/health-metrics
https://www.garmin.com/en-US/
https://www.garmin.com/en-US/
https://www.apple.com/watch/
https://doi.org/10.1164/rccm.201706-1112OC
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Huysmans et al. Sleep Diagnostics for Home Monitoring

36. Varga AW, Mokhlesi B. REM obstructive sleep apnea: risk for adverse
health outcomes and novel treatments. Sleep Breath. (2019) 23:413–23.
doi: 10.1007/s11325-018-1727-2

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Huysmans, Borzée, Buyse, Testelmans, Van Huffel and Varon.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Digital Health | www.frontiersin.org 13 June 2021 | Volume 3 | Article 685766

https://doi.org/10.1007/s11325-018-1727-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

	Sleep Diagnostics for Home Monitoring of Sleep Apnea Patients
	1. Introduction
	2. Materials and Methods
	2.1. Datasets
	2.2. Data Preprocessing
	2.2.1. ECG
	2.2.2. RIP

	2.3. Sleep-Wake Classification
	2.3.1. Neural Network Architecture
	2.3.2. Neural Network Training and Selection
	2.3.3. Assessment of Total Sleep Time

	2.4. Detection of OSA Patients Based on Sleep-Wake Classifier Outcome
	2.4.1. Relations Between Sleep-Wake Classifier Outcome and OSA Severity
	2.4.2. Detection of OSA Patients


	3. Results
	3.1. Sleep-Wake Classifier Selection and Performance
	3.2. Uncertainty in Sleep-Wake Classifier Outcome
	3.3. Detection of OSA Patients

	4. Discussion
	4.1. Sleep-Wake Classification
	4.2. Total Sleep Time Estimation
	4.3. Detection of OSA Patients
	4.4. Future Work

	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


