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We test a new wireless soft capacitance sensor (CAP) based on applanation tonometry

at the radial and dorsalis pedis arteries against the gold standard, invasive arterial line

(A-Line), for continuous beat to beat blood pressure (BP) measurements in the Operating

Room during surgical procedures under anesthesia in 17 subjects with the mean age and

body mass index (BMI) of 57. 35 ± 18.72 years and 27.36 ± 4.20 kg/m2, respectively.

We have identified several parameters to monitor in order to compare how well the

CAP sensor tracks the entire hemodynamic waveform as compared to the A-Line. This

includes waveform similarity, heart rate (HR), absolute systolic BP (SBP), diastolic BP

(DBP), and temporal response to a vasopressor. Overall, the CAP sensor shows good

correlations with A-Line with respect to hemodynamic shape (r > 0.89), HR (mean bias

= 0.0006; SD = 0.17), absolute SBP, and DBP in a line of best fit (slope = 0.98 in

SBP; 1.08 in DBP) and the mean bias derived from Bland-Altman method to be 1.92

(SD = 12.55) in SBP and 2.38 (SD = 12.19) in DBP across body habitus and age in

OR patients under general anesthesia. While we do observe drifts in the system, we still

obtain decent correlations with respect to the A-Line as evidenced by excellent linear fit

and low mean bias across patients. When we post-process using a different calibration

method to account for the drift, the mean bias and SD improve dramatically to −1.85

and 7.19 DBP as well as 1.43 and 7.43 SBP, respectively, indicating a promising potential

for improvement when we integrate strategies to account for movement identified by our

integrated accelerometer data.

Keywords: continuous non-invasive blood pressure monitoring, capacitive sensors, applanation tonometry,

intraoperative, arterial pressure waveform

INTRODUCTION

Blood pressure (BP) is one of the core physiological measurements of interest in virtually all
healthcare contexts as it provides insight into a patient’s cardiac function, volume status, organ
perfusion, and overall hemodynamic stability. It is typically monitored using a non-invasive
sphygmomanometer, otherwise known as the BP cuff, and in higher-risk surgery may be monitored
using an invasive arterial line. The arterial line (A-Line) is considered the gold standard in
capturing beat-to-beat BP values to detect immediate fluctuations. This requires the insertion of
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a catheter into an artery, typically the radial or dorsalis pedis
arteries. Because A-Lines are invasive, they are associated with an
increased risk of complications including infection, thrombosis,
and embolization (1–3). Clinicians may also experience difficulty
cannulating the arteries so clinical expertise is required for proper
insertion (4). As a result, 30% or less of patients in the Operating
Room (OR) or Intensive Care Unit (ICU) receive A-Lines (3).

Instead, the overwhelming majority of patients even in
hospital settings are only monitored intermittently using the
BP cuff, which inherently lacks the temporal resolution to
detect real-time fluctuations in hemodynamically labile patients.
Moreover, such intermittent measurements have been observed
to under or overestimate BP readings when compared with
the A-Line (5, 6). In fact, a recent study has shown that BP
cuff measurements are inaccurate (within ISO guidelines) up to
almost 50% of the time (7).

Since blood pressure is a dynamic physiological
parameter that changes constantly over time, non-invasive
continuous blood pressure monitoring would reveal
important hemodynamic information in real-time that is
currently delayed by the intermittent BP cuff readings.
This is especially important when labile BP warrants
close monitoring–such as in the Emergency Room (ER),
OR, or ICU settings. Furthermore, as healthcare moves
towardz digital health, options for remote continuous BP
monitoring (e.g., in ambulatory settings) would be incredibly
useful in the management of hypertension, which affects
roughly half of all American adults, as well as other
medical conditions with vascular underpinnings (8). This
is particularly important for personalized medicine—for
example, to remotely monitor how patients respond to
vasoactive pharmaceuticals.

For these reasons, non-invasive methods for continuous BP
monitoring, or non-invasive blood pressure (NIBP), is an area of
continued interest. ExistingNIBPmethods to capture continuous
BP include optical techniques; derivations based on other vital
signmeasurements [such as pulse transit time (PTT)]; ultrasound
technology; and tonometry. Concerning optical techniques,
ClearSight (Edwards Lifesciences Corp., Irvine, CA) and CNAP
(CNSystems, Graz, Australia) are both FDA-approved infrared
photoplethysmography (PPG) devices that use the finger cuff
volume clamp method. These devices are used preliminarily
in the ICU or post-operative patients in the hospital because
patients must remain stationary, the method is uncomfortable
(a finger cuff repeatedly inflates), and they do not work well on
patients with peripheral vascular disease or administration of
high dose vasopressors (9–11). More recently, cuffless PPGs have
been used to indirectly estimate BP using PTT, which is the time
it takes for a BP waveform to propagate from one location to
another. As such, estimates depend on physiological conditions
and have been shown to be inaccurate in certain populations (12,
13). More recently, conformal ultrasound patches can monitor
BP waveforms. However, they are yet to be wireless and require
connection to a power source and a benchtop machine to display
the data (14, 15). Finally, the last technology category, tonometry
involves applying force over the artery to measure the pulsatile
displacement of the vessel wall under applanation. Typically, the

pressure transducers in this class have been rigid, bulky, and
shown to be inaccurate in obese and cardiac patients (16, 17).

We have previously demonstrated the accuracy of a soft
wearable capacitance sensor (CAP sensor) based on applanation
tonometry for continuous non-invasive measurement of BP
compared to the FDA-approved NIBP monitor Clearsight in
a small cohort of healthy, young individuals (18). For clinical
validation, however, it is important to compare against the gold
standard in a clinical setting across body habitus and age. In
this paper, we demonstrate calibration and comparison of pulse
waveforms from the CAP sensor to A-Line measurements taken
simultaneously in the intraoperative setting across 17 patients
ranging in age from 24 to 79 years and importantly, with BMI
from 24 (normal) to 34 (obese) kg/m2. Importantly, to do our
comparison, we needed to develop an objective signal processing
framework to analyze large data sets of different length scales
with real-world noise and motion artifacts. Moreover, to make
sense of the data, we needed to determine strategies to compare
key parameters.

METHODS

BP data were acquired invasively and non-invasively using an
A-Line and a CAP sensor, respectively. Surgical patients aged
18 to 99 years under general anesthesia in the OR setting who
needed an A-Line placed as a standard of care were recruited at
University of California Irvine Health between June 2020 and
March 2021. Exclusion criteria were patients aged <18 years,
refusal, or inability to give informed consent. All subjects gave
informed consent for the study which was approved by the
Institutional Review Board of the University of California (IRB
no. 2019-5251).

Measuring Devices and Systems
This study simultaneously employed two continuous BP
measurement systems (Figure 1A). The A-Line was inserted
into the radial artery and connected to a pressure transducer

[ICU Medical Transpace© IV Monitoring Kit (60
′′
), REF no.

42584-05] and displayed on a monitoring system (GE Patient
Data Module & Monitoring system, General Electric, Boston,
MA). The A-Line signal was then captured at an average sampling
rate of 100Hz using a DAQ board (National Instruments
cDAQ-9171 with NI 9234) with a custom application written
in C#.

The non-invasive system comprises a soft capacitive pressure
sensor (CAP) (18) and an EcoBP (19), an eco-friendly
dual-channel custom data acquisition board that includes an
inertial measurement unit (IMU). The CAP sensor was placed
at the radial artery (or in two cases, the dorsalis pedis artery) for
continuous arterial pressure measurement. The CAP signal was
captured at a sampling rate of 90Hz in single-channel mode and
45Hz in dual-channel mode.

Experimental Procedure
The A-Line was inserted into the radial artery on either arm
and calibrated per hospital protocol. A BP cuff [CRITIKON(TM)
SOFT-CUF(TM) REF SFT-A2-2A, GE Healthcare, Chicago, IL]
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FIGURE 1 | (A) Measurement setup in the OR. An intra-arterial line (A-Line) was inserted in the radial artery. The non-invasive system (CAP) was placed either on the

radial artery or the dorsalis pedis artery depending on the procedure. (B) An example of a 30-s segment raw signal acquired from A-Line, the CAP sensor, and the

accelerometer data that was used to compare waveform similarity, heart rate, and BP.

was also placed on either arm for periodic measurements.
The CAP sensor was placed over the radial artery, on the
arm without the A-Line, and stabilized with slight pressure
via mechanical fixation using velcro strap, sea-band (Sea-Band
Ltd., Hinckley, Leicestershire, England), or Prelude Sync Radial
Compression Device (Merit Medical Systems, Inc.). In cases
where the radial artery was not readily available for placement,
the dorsalis pedis artery was used (Figure 1). The EcoBP board
was taped down onto the skin using Transpore tape (3M,
Minnesota, USA).

After anesthesia induction, measurements were continuously
collected from both CAP (non-invasive) and A-Line (invasive)
systems by the anesthesiologist for a minimum of 15min during
the operation. The timing of administration of all intraoperative
vasoactive medications was recorded in the electronic medical
records (EMR).

Data Extraction and Quality Assessment
The collected data was post-processed usingMatlab (R2019b, The
MathWorks, Natick, Massachusetts, USA). The raw signals were
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FIGURE 2 | The artifact removal procedure using accelerometer data (A) Illustration of MAD filter and moving window. The horizontal solid line is the median value of

the accelerometer dataset. The dotted lines are the 2.5-scaled MAD. Black circles represent the data within 2.5-scaled MAD. Red circles are considered outliers. The

gray crossed area represents the invalid segment after a 50 percent threshold moving window with a window size of 8. (B) A representative segment showing how the

data was filtered with a MAD filter and the moving window. The top three rows are the 3-axis of the accelerometer data. The horizontal solid line represents the median

in each axis. The dotted lines are the 2.5-scaled MAD of each axis. The bottom two rows represent the corresponding A-Line and the CAP sensor data. The signal

section colored gray and defined by the vertical lines was categorized as having excessive artifacts from the accelerometer data and thus removed.

first spline interpolated to 500Hz. To synchronize the signals
recorded on different systems, cross-correlation was applied to
the signal obtained by differentiating the discrete sequence of
systolic peaks. After signal synchronization, clearly identified
artifacts from invasive and non-invasive measurements were
cleaned out. The A-Line data was visually screened by the authors
for errors; excessively noisy sections defined by a sudden change
of pressure >30mm of mercury (mmHg) within two beats were
removed. On the other hand, artifacts in the CAP signals were
removed based on the movement data captured by the IMU. A
2.5-scaled median absolute deviation (MAD) filter was applied
to accelerometer data on each of the 3 axes to detect outliers
due to sudden and immoderate movement (Figure 2A). A 100-
points (0.2 s) moving window was then applied and windows
with at least 10% of data categorized as outliers were sliced out
(Figure 2B). In addition to specific artifact removal techniques
separately applied to A-Line and CAP signals, the intermittent
BP cuff occlusions affected either A-Line or CAP measurements.
Consequently, the affected data sections were cleaned out. It
is worth noting that for consistency, any artifact-ridden data
section in A-Line was also sliced out of CAP signal and vice-
versa. After the removal of segments with excessive artifacts,
the remaining signals were then considered as valid data for
further analysis.

Waveform Similarity Analysis
The diastolic and systolic pressure values and timestamps of each
valid segment of data were identified for waveform analysis. A
complete waveform was defined as the signal data bounded by
two consecutive diastolic pressure values.

To analyze waveform shape similarity, corresponding A-
Line and CAP sensor waveforms were normalized between 0
and 1. For each waveform, 0 was set as the average of the
starting and ending diastolic pressure values, and 1 as the
waveform maximum (systolic pressure value). A 0.1 threshold
value was then applied to avoid false detection of minima
(diastolic pressure).

Heart Rate Monitoring
HR is the reciprocal of the beat-to-beat time interval of the
continuous blood pressure signal (Equation 1). The systolic
intervals were obtained as the time interval from one systolic
pressure value to the subsequent one as shown in Figure 3.
The heart rates were calculated as the reciprocal of these
systolic intervals.

The accuracy of HR estimation from capacitive pressure signal
was evaluated by computing average HR values in each 30-
s data window from valid segments of CAP sensor and then
comparing against A-Line’s. Each valid signal was sliced into 30-
s non-overlapping windows starting from the beginning of the
signal and any remaining data that was <30-s was excluded from
HR computation.

Heart rate [bpm] =
1

beat − to− beat interval [min]
(1)

Blood Pressure Comparison
Using valid data segments from A-Line and CAP sensor
measurements, the CAP sensor’s ability to accurately infer
absolute BP is assessed.

Frontiers in Digital Health | www.frontiersin.org 4 July 2021 | Volume 3 | Article 696606

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Chou et al. Wireless Blood Pressure Sensor Validation

FIGURE 3 | An example of the interval of two consecutive systolic pressures

used to calculate HR.

Given that the CAP sensor’s raw measurements are captured
as capacitance values in picofarad (pF) and the A-Line’s as
absolute pressure in mmHg, a conversion from the CAP sensor’s
capacitance to absolute pressure inmmHg is needed to accurately
assess the CAP sensor against A-Line. In this regard, we propose
a calibration algorithm.

The initial step in the calibration process is the extraction of
systolic and diastolic pressure signals from the raw A-Line and
CAP sensor measurements. A 5-points median filter was applied
to the extracted signals to smooth out detected false values. The
filtered systolic and diastolic pressure signals were then split into
individual 60-s segments for use in subsequent calibration steps.
In a normal resting condition, a 60-s segment should contain
60–100 beats. The choice of 60-s as segment length is based on
ClearSight’s use of 70 beats between re-calibration (20).

The calibration algorithm took the average values of the
first three beats in systolic and diastolic pressure every 60-s
epoch. Sixty seconds was chosen for re-calibration periodicity as
this is standard practice in ClearSight, a commercially available
continuous NIBP device. A linear regression model was then
created as the relationship between pressure measured in pF and
mmHg. The remaining systolic and diastolic capacitance pressure
values in the 60-s segment were then converted to the units of BP
(mmHg). An example of the calibration algorithm can be found
in Figure 4.

Statistics
To assess the CAP sensor’s ability in comparison to A-Line in an
OR setting, several statistical methods were performed. Pearson
correlation coefficient gives the linear correlation between
features acquired from A-Line and the CAP sensor. Here,
Pearson’s r was computed to quantify the similarity between
corresponding A-Line and CAP sensor normalized waveforms
after aligning the two by their maxima (normalized systolic

pressures) and how well the CAP sensor tracked BP compared
to A-Line in vasoactive-drug-administered incidents. Moreover,
the mean bias, SD, and 95% limits of agreement (estimated as
the SD of the differences × 1.96) were calculated to understand
the agreement between two methods by Bland-Altman method
of paired measurements (21, 22). Mean HR in 30-s epochs and
SBP and DBP in 60-s epochs derived from A-Line and CAP
measurements were evaluated by this method. Lastly, the slope
and R2-value of a simple linear fit were presented to evaluate
the accuracy of beat-to-beat DBP and SBP using the proposed
calibration algorithm.

RESULTS

We have identified several parameters to monitor in order to
compare how well the CAP sensor tracks continuous BP as
compared to the A-Line. This includes waveform similarity, HR,
absolute SBP and DBP, and temporal response to a vasopressor.

Participants
A total of 32 patients undergoing surgery requiring an A-Line
placed were recruited during the study period, seven of whom
were excluded due to the failure of data collection (data not
recorded or data acquisition issues), five were excluded with
obvious distortion in the measurements (artifacts or inaccurate
sensor placement), and three others were excluded when the
pulse signal from dorsalis pedis was affected by the intermittent
pneumatic compression (IPC) device placed on the legs during
the entire measurement. Thereafter, 17 patients (six male) with
the mean age of 57.35 ± 18.72 years and mean body mass index
(BMI) of 27.36± 4.20 kg/m2 were reported in the paper. Patients’
demographics, the placement of CAP sensor, and procedure are
shown in Table 1.

The post-processing method was used to remove obvious
incorrect measurements and potential distortion affected by
apparent artifacts. After removing for artifacts as heretofore
described, the mean and standard deviation of the total amount
of data included across the 17 studies was 46± 21%.

Waveform Similarity
All the full-beat waveforms were included to understand the
similarity of hemodynamic waveforms from two sites of the
subject’s body. A total of 20,090 full-beat waveforms were
analyzed, which included non-invasive pulse waveforms from
the radial artery and dorsalis pedis artery, to compare against
BP derived from A-Line. Pearson’s r is applied to indicate the
strength of similarity between the two curves. Due to the length
difference of valid segments in each dataset, the results are
presented as averaged r-values with the quantity of full-beat
waveforms as listed in Table 2. It is shown that the hemodynamic
waveforms acquired from two different locations, regardless of
the invasiveness of the acquisition technique, of the same patient
have a very strong linear relationship (23). Besides, the two
studies with averaged r lower than 0.9 (Subject 2 and Subject 14)
were the only two studies having the pressure sensor placed on
dorsalis pedis artery rather than the radial artery.
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FIGURE 4 | The presented calibration algorithm. (A) An example of a 60-s epoch raw signal acquired from A-Line and the CAP sensor. The red and blue circles are

first three systolic and diastolic pressure values extracted for calibration from each signal, respectively. (B) Linear regression that models the relationship between the

averaged systolic (red) and diastolic (blue) pressure values of A-Line and the CAP sensor from the first three beats. The dashed line is a linear regression line that forms

the equation with m the slope and b the intercept. (C) The raw 60-s signal of A-Line, first three beats of SBP and DBP (red/blue circles), and the SBP and DBP values

(red/blue triangles) calibrated from the CAP signal using the presented calibration algorithm.

Heart Rate Monitoring
To assess the accuracy of heart rate detection across all the
patients in the study, a total of 562 30-s valid segments for both
A-Line and CAP were extracted and compared in the mean
and standard deviation of heart rate. The mean bias and SD
of mean HR in two measurements are 0.0006 and 0.1666 bpm,
respectively. The 95% limits of agreement lie in the range of
−0.3259 and 0.3272 bpm (Figure 5).

Blood Pressure Comparison
A total of 29,319 BP values (14,645 diastolic and 14,674
systolic) were obtained and compared from 209 60-s segments.
The mean bias of overall DBP and SBP are 2.3842 (SD =

12.1908) and 1.9153 (SD = 12.5525), respectively. The limits
of agreement in DBP are from −21.5098 to 26.2782 mmHg
and for SBP from −22.6876 to 26.5182 mmHg (Figures 6A,B).
To understand the correlation of BP measurements within

two systems, a best-fit line with a slope of 1.0047 was
derived (Figure 6C). The separated plots of SBP and DBP
measured by A-Line and the CAP sensor can be seen in
Supplementary Figure 2.

Lastly, we observed the BP change after the vasoactive drugs
were administered. A total of 20 events were identified according
to physician observation and the EMR across nine patients (no
vasoactive drug administration was observed while the other
eight patients were recorded). Three events were excluded due to
movement artifacts caused by either the surgeon or the periodic
BP cuff measurement. The mean duration of the 17 events was
55.4 (SD = 29.8) seconds. The Pearson’s r of SBP between
A-Line and CAP was 0.82 ± 0.28 (mean±SD). Figure 7 shows a
representative event in which both BPmeasured fromA-Line and
the CAP sensor increased 30 s after Ephedrine and Vasopressin
were administered. This is unlike sensors based on PPG which
have difficulty tracking fast changes in BP (24).
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TABLE 1 | Patients’ demographic, CAP placement, and procedure.

Subj.

no

Age Gender BMI Sensor placement Procedure

1 24 F 24.0 Radial Open abdominal

2 49 M 26.6 Dorsalis pedis Neck dissection

3 74 M 34.0 Radial Microvascular decompression

4 78 F 33.5 Radial Laparoscopic abdominal

5 23 F 20.0 Radial Right calf sarcoma resection

6 55 F 32.0 Radial Open abdominal

7 62 M 30.7 Radial Radical, cystoprostatectomy

8 79 F 25.0 Radial Open abdominal

9 61 F 27.0 Radial Whipple

10 64 F 29.0 Radial Whipple

11 22 F 30.2 Radial Hip

12 72 M 26.6 Radial Open abdominal

13 52 F 23.0 Radial Ankle

14 59 F 28.0 Dorsalis pedis Mandible tumor removal

15 61 F 21.6 Radial Whipple

16 61 M 23.0 Radial Open abdominal

17 79 M 31.0 Radial Open abdominal

TABLE 2 | Mean and standard deviation of Pearson correlation coefficient r

across 17 subjects.

Subj. no N Mean STD

1 343 0.9920 0.0041

2 281 0.8888 0.0339

3 593 0.9410 0.0238

4 861 0.9046 0.0198

5 537 0.9459 0.0315

6 533 0.9332 0.0948

7 1097 0.9739 0.0262

8 664 0.9362 0.0296

9 466 0.9310 0.0196

10 834 0.9818 0.0113

11 442 0.9732 0.0087

12 513 0.9854 0.0261

13 3,063 0.9807 0.0126

14 1,470 0.8983 0.0308

15 3,742 0.9473 0.0192

16 2,699 0.9277 0.0571

17 1,952 0.9839 0.0041

Values of each subject were calculated according to the number of valid waveforms (N).

STD, standard deviation.

DISCUSSION

The major finding of the study is that the CAP sensor can non-
invasively track BP across different body types and ages in an OR
setting under general anesthesia. In particular, the study showed
the sensor’s capability of capturing hemodynamic waveforms
from different arterial sites with high fidelity compared to
the A-Line. Additionally, we found a good correlation in HR

FIGURE 5 | A Bland-Altman plot of 562 averaged heart rates calculated from

30-s valid segments across 17 patients. Each blue circle is one averaged HR

data. The black horizontal solid and dotted lines represent the mean bias and

the upper and lower 95% limits of agreement, respectively. The mean bias in

differences is 0.0006, upper 95% limit is 0.3272, and lower 95% limit is

−0.3259.

monitoring. Concerning beat-to-beat BP monitoring, we showed
a low mean bias of both SBP and DBP.

Clinical Application
At present, we have demonstrated an ability to accurately
track blood pressure with high confidence. While the present
performance may be improved over time and is not a
replacement for continuous arterial monitoring, there would
nevertheless be clinical utility even with the present sensor as an
adjunct to non-invasive monitoring (which is used universally
during surgery). The NIBP monitoring could be used as it
currently is, and the CAP sensor recalibrated with each cycling
of the non-invasive cuff. Meanwhile, the CAP sensor would
provide continuous monitoring in the periods between cuff
cycles, catching hypotension faster and allowing for more rapid
treatment, as well as allowing for more rapid assessment of other
interventions like narcotics or anti-hypertensives.

Subject Inclusion
Fifteen out of 32 datasets had been excluded from the study
for the following reasons: failure of data collection, obvious
distortion (in the A-line data or from obvious misplacement of
the CAP), and the simultaneous use of the IPC device. Improved
instructions on applying the CAP sensor and/or improved
applanation (strap) design should improve the ability to capture
more datasets in the future.

Single-Channel CAP Sensor
As previously mentioned, the 17 studies had been done either
using a single or dual-channel CAP sensor. For the dual-
channel CAP sensor, the second channel may be useful as
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FIGURE 6 | Beat to beat BP comparison using Bland-Altman method and linear regression. (A) With 14,645 paired data points of DBP (blue circles), a mean bias of

2.3842 (solid black line) and an SD of 12.1908 were calculated. The dotted black lines are the upper (26.2782) and lower (−21.5098) 95% limits of agreement. On the

other hand, (B) 14,674 paired measurements of SBP (red circles) were compared. The mean bias of 1.9153 (horizontal black solid line) and an SD of 12.5525 were

calculated. The 95% limits of agreement ranged from −22.6876 to 26.582. (C) The CAP sensor was compared against the A-Line using a linear regression model

over 29,319 data points from valid 60-s segments. A linear fit slope of 1.0047 shows the two measurements in good correlation.

FIGURE 7 | A representative section of the temporal response to vasoactive drug administration in both A-Line and CAP signals. Without motion artifacts, BP

increased about 30 s simultaneously after Ephedrine and Vasopressin were administered. Systolic peak values of both A-Line and CAP signals were detected as the

red circles. The Pearson correlation is 0.9973.

a neighbor reference of the main arterial pressure signal.
However, we have not yet investigated the benefits of dual-
channel acquisitions and as a result, only one capacitance
reading is included for all the data analysis in the study.
We believe a multi-channel CAP sensor will greatly improve
blood pressure monitoring by eliminating the need for
frequent recalibrations.

Artifact Detection and Quality Assessment
There are a number of confounding factors inherent in any
continuous physiological monitoring. This study was done in
an OR setting to investigate the validity of the CAP sensor for
a specific reason: we can account for and eliminate many of
these variables. For instance, we have the BMI of every patient
and whether they have hypertension via EMR. We found no
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FIGURE 8 | Comparison of A-Line and CAP waveform similarity. Both of the waveforms were derived from radial arteries. Representative figures with (A) high and (B)

low Pearson correlation coefficient.

correlation between BMI or hypertension and signal accuracy.
The other major confounding factor is movement artifact.

From the development of the CAP sensor, it was found to have
a low tolerance to movements. Compared to the previous study
published using the CAP sensor in a relatively controlled subject
group, this study was done in a real clinical setting where the
measurement could be affected by multiple challenges.

One obvious difference of BP measurement with non-invasive
technology is that the data is obtained outside the subject’s body.
With different body sizes and ages of a patient, the tissue layer
between the CAP sensor and the artery may create artifacts that
directly influence the pressure measurement. For instance, the
mechanical fixation on an elder patient with loose skin can be
more challenging. Besides, the tightness and positioning of the
wristband affected the signal quality. This also explains the reason
why the study included multiple mechanical fixation ways.

Furthermore, human-caused artifacts such as the surgeon’s
need to interact with the patient’s body or the interference
from electronic noises were inevitable in the OR. We chose to
remove the artifacts of the A-Line signal by eye considering
limited information. A similar data exclusion method has
been previously used by several other groups (16, 25, 26). In
this case, it can be improved by including video recordings
to have a better understanding of the artifact sources. On
the other hand, the accelerometer data from the EcoBP was
used to filter significant motion artifacts. The MAD filter
is a robust measure of statistical dispersion. Although a 2-
scaled MAD or 3-scaled MAD may serve a similar purpose
of artifact removal, a 2.5-scaled MAD was chosen as an
adequate threshold to separate the significant motion artifacts
in the study while conserving a reasonable percentage of
valid data.

We also observed baseline drift in some datasets from the
CAP signal. In most cases, a downward drift occurred linearly
or exponentially. The cause might be due to the movement
or unknown factors. We expect a future study to resolve the
issue. Despite the aforementioned challenges, it is clear that

after the objective signal processing strategy outlined above,
the CAP sensor showed a good correlation with A-Line during
surgery and can provide a wealth of information about the
hemodynamic waveform. In addition to the excellent slope value,
the average mean bias and standard deviation across 15 patients
were low.

Waveform Similarity
Pearson correlation was used to evaluate the degree of the linear
relationship between A-Line and CAP waveforms. Similar work
had been previously done (27).

In this study, the focus for waveform similarity analysis was
to compare full-beat wave shape. Consequently, the waveforms
were normalized and aligned by the systolic pressure to avoid
the time delay due to measuring from different sites of the
body. A very strong correlation between A-Line and CAP sensor
measurements was reported. Although not all waveforms from
both signals perfectly match visually (Figure 8), it is in fact
a characteristic of the peripheral arterial pressure waveform
measured across different arterial sites. This waveform distortion
effect is due to the individual physical characteristics of the
arterial tree (28, 29). Additionally, the applanation tonometry
waveformswere detected indirectly as the pulse signal propagated
through the artery wall and the tissues. The CAP sensor
not only can capture the components of the arterial pressure
waveform (diastolic pressure, systolic pressure, upstroke of
systole, dicrotic notch, etc.) but also potentially shows differences
in the pulse pressure profile in the radial artery (upper
extremity) and the dorsalis pedis (lower extremity) as shown
in Supplementary Figure 1. This implies that the CAP sensor
could acquire similar hemodynamic waveforms to the A-Line but
non-invasively in an OR setting.

Limitations
The current study is subject to several limitations. Because this
is a retrospective study, we went back to calibrate to the A-Line,
after completion of data collection. Going forward, a sensor that

Frontiers in Digital Health | www.frontiersin.org 9 July 2021 | Volume 3 | Article 696606

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Chou et al. Wireless Blood Pressure Sensor Validation

calibrates to the BP cuff in real-time would be advantageous. The
greatest challenge that we hadwas accounting formotion artifacts
and drifts in the signal after motion. We, therefore, had to splice
out many sections of the data to account for active movement
as captured by the accelerometer. However, outside the window
that we spliced out (during active movement), we observed the
movement caused a longer-term drift over time. We did not
account for such drifts in our analysis but had we done so, the
results would be even better. This is evidenced by the fact that if
we instead calibrated to the first, middle, and last point of each
60-s epoch (instead of just the average of the first three beats), the
averaged mean bias and average SD go down considerably, from
2.3842 ± 12.1908 to −1.8477 ± 7.1906 in DBP and from 1.9153
± 12.5525 to 1.4324± 7.4321 in SBP (Supplementary Figure 3).
This indicates that the CAP signal drifts over the 60-s epoch. In
future iterations, we would like to not toss away all the sections
with movement, but use machine learning along with the parallel
sensor channels to correct for the motion (30). We would also
like to model out the drifts caused by this motion so we can
objectively account for and subtract it from the signal. This would
undoubtedly improve our agreements with the A-Line.

Overall, in summary, we show that the CAP sensor is a
promising technology that has good agreement with the A-
Line regarding the hemodynamic shape, heart rate, SBP, and
DBP across body habitus and age in OR patients under general
anesthesia. While we do observe drifts in the system, we still
obtain good correlations with respect to the A-Line as evidenced
by excellent linear fit and averaged mean bias and standard
deviation across all patients. Moreover, CAP seems to be able
to track fast changes in blood pressure well, which is critical to
monitoring hemodynamically unstable patients.
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Supplementary Figure 1 | Hemodynamic waveform captured from (A) radial

artery and (B) dorsalis pedis. The black dotted line represents the mean arterial

pressure of each wave.

Supplementary Figure 2 | BP measured by A-Line and the CAP sensor from

valid 60-s segments using the proposed calibration method. (A) A linear fit slope

of 1.0785 and R2 of 0.329 were derived from 14,645 DBP in blue circles. The

black solid line across the blue circle is the best linear fit line. (B) A linear fit slope

of 0.9774 and R2 of 0.685 were derived from 14,674 SBP in red circles. The black

solid line across the red circle is the best linear fit line.

Supplementary Figure 3 | Bland-Altman plot using (A) 14,645 diastolic and (B)

14,674 systolic BP showing level of agreement from valid 60-s segments obtained

by A-Line and the CAP sensor. The horizontal black solid, dashed, and dotted

lines represent the mean bias, limits of agreement, and the zero line, respectively.

The red error bars on the black dashed limits of agreement lines are the 95%

confidence intervals of the upper and lower limits.
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