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Pure-tone audiometry—the process of estimating a person’s hearing threshold from

“audible” and “inaudible” responses to tones of varying frequency and intensity—is the

basis for diagnosing and quantifying hearing loss. By taking a probabilistic modeling

approach, both optimal tone selection (in terms of expected information gain) and

hearing threshold estimation can be derived through Bayesian inference methods. The

performance of probabilistic model-based audiometry methods is directly linked to the

quality of the underlying model. In recent years, Gaussian process (GP) models have

been shown to provide good results in this context. We present methods to improve

the efficiency of GP-based audiometry procedures by improving the underlying model.

Instead of a single GP, we propose to use a GP mixture model that can be conditioned

on side-information about the subject. The underlying idea is that one can typically

distinguish between different types of hearing thresholds, enabling a mixture model

to better capture the statistical properties of hearing thresholds among a population.

Instead of modeling all hearing thresholds by a single GP, a mixture model allows specific

types of hearing thresholds to be modeled by independent GP models. Moreover, the

mixing coefficients can be conditioned on side-information such as age and gender,

capturing the correlations between age, gender, and hearing threshold. We show how

a GP mixture model can be optimized for a specific target population by learning the

parameters from a data set containing annotated audiograms. We also derive an optimal

tone selection method based on greedy information gain maximization, as well as hearing

threshold estimation through Bayesian inference. The proposed models are fitted to a

data set containing roughly 176 thousand annotated audiograms collected in the Nordic

countries. We compare the predictive accuracies of optimized mixture models of varying

sizes with that of an optimized single-GP model. The usefulness of the optimized models

is tested in audiometry simulations. Simulation results indicate that an optimized GP

mixture model can significantly outperform an optimized single-GP model in terms of

predictive accuracy, and leads to significant increases the efficiency of the resulting

Bayesian audiometry procedure.
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1. INTRODUCTION

Hearing loss is typically represented by an audiogram, which
depicts the hearing threshold (HT) (i.e., the lowest sound intensity
level that can still be perceived) at a set of standard frequencies
ranging from 125 Hz to 8 kHz. The hearing threshold levels are
usually measured through a process called pure-tone audiometry
(PTA) (1). In PTA, the subject provides a series of “audible”
and “inaudible” responses to pure-tones of various frequencies
and intensities, and those responses are used to estimate the
HT at the required frequencies. Multiple protocols for selecting
tone frequencies and intensities have been developed, the most
common of which is a staircase “up 5 dB–down 10 dB” approach
known as the Hughson-Westlake protocol (2).

We present a method for performing hearing threshold
estimation with optimal efficiency in terms of number of
interactions required to achieve a given accuracy level. The
method is based on a full probabilistic treatment of the estimation
problem. At its core is a probabilistic model which captures a
range of statistical properties of the hearing threshold. In short,
this probabilistic model encodes a probability distribution over
hearing thresholds, and describes in a probabilistic way how
the subject’s response to a stimulus (“audible” or “inaudible”) is
generated. Specifically, we propose a model based on a weighted
mixture of Gaussian processes (3). Based on this model, our
method works in the following way:

1. Optimize the model parameters with respect to a data set
of annotated audiometric records from a large number of
people. The goal of this step is to train the model to match the
statistical distribution of hearing thresholds in the data set as
well as possible. This optimization procedure is independent
of the subject, and yields a non-personalized prior model.

2. Optionally condition the prior model on side-information
from the subject, such as age an gender, to improve the
accuracy of the predictive distribution.

3. Determine which stimulus to present such that the “audible”
or “inaudible” response to it provides the maximum amount
of information about the hearing threshold. Given the model,
this stimulus can be derived theoretically using information-
theoretic criteria.

4. Present the optimal stimulus to the subject and collect
the response.

5. Update the probabilistic model based on the response. This
step involves Bayesian inference, and combines the non-
personalized model with the data (i.e., the subject’s responses
to stimuli) to obtain the posterior distribution of the model.
The result includes a revised estimate of the hearing threshold
including uncertainty bands.

6. Go to step 3 and repeat until the hearing threshold estimate is
sufficiently accurate.

The process of repeatedly selecting the most informative next
stimulus and updating the probabilistic model based on the
response is called an active learning loop (4), and it has been
shown to significantly reduce the total number of required test
tones to reach a certain accuracy level (5). However, the success
of the active learning approach hinges on the quality of the

probabilistic model at hand. If the model is flexible and accurate
enough, it should theoretically outperform any empirical method
based on heuristics. If on the other hand themodel fails to capture
important aspects of the underlying dynamics, the quality of
the method will suffer. It is important to note that once the
model has been developed and fitted to a data set, the remaining
steps 2–6 basically have unique optimal solutions that can be
derived theoretically and just have to be translated correctly into
an algorithm.

In prior work, the Gaussian process (GP) model has been
used to model the hearing threshold as a continuous function of
frequency (5–7). The parameters of the GP were typically chosen
empirically. In this work we propose the use of a more flexible
class of models, namely weighted mixtures of GPs. The rationale
behind this is that a lot of hearing thresholds have one of several
typical shapes (8). By capturing the statistics of these distinct
shapes by separate GP models, the quality of model might be
improved significantly. Additionally, the proposed model can be
conditioned on side-information such as age and gender of the
subject, further increasing the predictive accuracy. The trained
and possibly conditioned model can be viewed as an informed
prior since it is based on information about the target population
(through the training set) and the available side-information
about the subject (age and/or gender). We show that it is possible
to derive theoretical solutions for optimal tone selection and
Bayesian model inference under the more flexible model.

The application of Bayesian methods and information-
theoretic criteria to obtain information-efficient audiometry
procedures has a long history (9–12). Most of the early
methods relied on probabilistic models of the HT at individual
frequencies, or captured dependencies among a discrete set of
frequencies. More recently, GP-basedmethods with a continuous
frequency scale have been introduced (5–7, 13) and validated
experimentally (14, 15). The aim of this work is to improve upon
those methods by increasing the quality of the underlying model,
both by increasing the complexity of the model and by fitting the
model to data.

In the remainder, we mathematically specify the proposed
model and derive an algorithm to fit its parameters to a set
of annotated audiograms. Next, we outline the (approximate)
Bayesian inference algorithm required to update the model, as
well as the algorithm for selecting the optimal next stimulus.
The proposed model is trained on a large data set containing
∼176 thousand audiograms annotated with age en gender. The
resulting Bayesian PTA method based on an informed prior is
tested through various simulations.

2. MATERIALS AND EQUIPMENT

All methods and models have been implemented in the Julia
programming language (16). TensorFlow (16) is used as the
computational back-end for fitting the hearing threshold models.

2.1. Data Source
The results reported in this paper related to model learning and
simulations are based on a proprietary data set. This anonymized
data set contains the ages, genders, and audiograms of both
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ears of 88,237 people from the Nordic countries who visited an
audiologist. In total, the data set contains 176,474 audiograms
annotated with age and gender. The audiograms specify the
hearing thresholds with a resolution of 5 dB on (subsets of)
the following frequencies: 125, 250, 500, 750, 1,000, 1,500,
2,000, 3,000, 4,000, 6,000, 8,000 Hz. The presented methods
are independent of the specific data set that is used for model
learning and simulations.

3. METHODS

We first introduce the probabilistic model on which our method
is based. Next, we describe how the model parameters can be
“learned” from a data set of annotated audiograms. Subsequently,
we show how the model is used to estimate the HT from a set of
responses to stimuli by performing Bayesian inference. Finally,
we illustrate how the model enables the identification the most
informative next stimulus given the responses so far.

3.1. Probabilistic Hearing Loss Model
The complete probabilistic model consists of two parts: a user
response model and a hearing threshold model. We introduce
these components separately, and then combine them to obtain
the complete model.

3.1.1. User Response Model
A PTA procedure is assumed to involve a sequence of trials.
A trial consists of a single pure-tone stimulus of a certain
frequency f in Hertz and intensity level h, together with a binary
response label y indicating whether the stimulus was audible
or inaudible to the subject. The intensity level h is expressed
in dB hearing level (dB-HL), which is a relative sound pressure
level in which 0 dB-HL corresponds to the hearing threshold of
the average person with no hearing impairment. The subject’s
response depends on the presented stimulus, and is encoded in
the following way:

y(f , h) =

{

+1, if (f , h) is audible,

−1, otherwise.
(1)

A trial is represented by a tuple containing all relevant
quantities: (f , h, y).

By definition, stimuli near the subject’s hearing threshold will
not yield consistent responses. To capture the uncertainty in
the response generating process, a probabilistic user response
model is required. This model describes how a user determines
their response to a stimulus if their “true” HT were known.
In our model, the “true” HT is assumed to be evaluated under
white Gaussian noise N (0, σ 2

p ). In other words, the model
assumes that a stimulus is audible if and only if its intensity
exceeds the subject’s “true” HT at the corresponding frequency
by some random margin. This leads to the following formal

response model:

P(y | f , h) = Pr{y · (h−HT (f )) > N (0, σ 2
p )}

=

∫ y·(h−HT (f ))

−∞

N (h′ | 0, σ 2
p )dh

′

= 8

(

y · (h−HT (f ))

σp

)

,

(2)

where HT denotes the unknown “true” hearing threshold as a
function of frequency. 8 is the cumulative density function of
the standard normal distribution. Since y ∈ {−1,+1}, probability
distribution P(y | f , h) is a Bernoulli distribution. For simplicity,
the perceptual noise variance parameter σ 2

p is independent of

frequency, but this can easily be relaxed. The value of σ 2
p can

either be learned from a data set of actual pure-tone responses,
or it can be tuned empirically.

3.1.2. Hearing Threshold Model
The hearing threshold model specifies a probability distribution
over hearing thresholds. Instead of treating hearing thresholds at
distinct frequencies as independent quantities, we assume the HT
to be a smooth function of frequency. Since the human auditory
perception of frequency shifts is non-linear, it makes sense to
model the HT in a psycho-acoustical space that resembles the
human perception better than the linear frequency domain.
Technically, the psycho-acoustical space is a warped frequency
space in which the distance between frequencies better resembles
the human perception of frequency shifts. This is useful since
our model aims to exploit properties of the HT that are more
natural to interpret on a psycho-acoustical scale. Various psycho-
acoustical scales are being used in the field of audiology, such as
the “Mel” scale, the “semitone” scale, and the “Bark” scale (1). All
of these scales roughlymatch the semi-logarithmic frequency axis
in typical audiogram plots.

For the HT model it is not very important which specific
frequency transformation is used, as long as the transformation
is invertible. For the Bark scale, multiple transformations with
varying degrees of complexity and accuracy have been proposed
(17, 18). In our model we adopt the simple Bark transformation
described in (18):

bark(f ) , 6 ∗ sinh−1
(

f

600

)

, (3)

with f in Hz. For notational convenience, we will use x to
denote a transformed frequency and in the remainder of this
paper we use HT (x) to denote the HT as a function of the
transformed frequency.

We obtain a probabilistic model for hearing thresholds by
assuming that a HT is a smooth function of transformed
frequency, drawn from a Gaussian process (GP). A GP is a
probability distribution over continuous functions, and it is fully
characterized by a covariance function and a mean function (3).
The approach of modeling the HT by a GP has already been
proposed before, for example in (6) and (7). However, instead
of assuming the HT to be generated by a single GP, we assume
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the HT to be generated by one of C independently parameterized
GPs. The main idea behind this choice is that HTs tend to be
of one of several distinct types in terms of location, slope, and
smoothness. Mixing multiple GPs has two important benefits.
Firstly, it should enable the model to capture the statistical
properties of distinct typical HT types with a higher resolution
than a single GP, leading to a more accurate model. Secondly,
it allows the selection of the individual GP to be dependent on
side-information such as age and gender. Intuitively, this means
that the individual GP components in the model could capture
different HT types corresponding (for example) to mild hearing
loss, typical old-age HTs, and “cookie-bite hearing loss.” For
example, if the subject’s age is available, the model could exploit
it by adjusting the a-priori probabilities of the different HT types.
For age 80 we would expect the GP corresponding to “typical old-
age HTs” to get a higher relative probability compared to age 40.
By having a more complex model, we hope to leverage large data
sets of annotated audiometric records to be able to learn accurate
models that capture as many statistical properties as possible.

3.1.3. Complete Probabilistic Model
Our model assumes responses to stimuli to be generated in the
following way:

1. Randomly select a GP component c ∈ [1, . . . ,C] from
a categorical distribution whose parameters depend on
any available side-information I about the subject: c ∼

Categorical(α(I)).
2. Randomly generate an HT curve from the selected GP:

t ∼ GP(mc, kc). Parameters mc and kc respectively denote
the mean function and covariance function or kernel of
the GP. The mean function is assumed to be a third-
order polynomial, and the covariance function is a squared
exponential kernel (3). Note that t is a continuous, real-valued
function of transformed frequency. The choice for the squared
exponential kernel follows prior work (6, 7), and is based on
the idea of modeling the HT as a smooth, continuous function
of frequency.

3. For each stimulus in the procedure, randomly generate the
response based on t according to the response model from
Equation (2).

I is a set of discrete features, in this case corresponding to
the subject’s age and gender. The age can be unspecified or an
integer between 0 and 120, and gender can be unspecified, female
or male.

Formally, this leads to the following generative process for a
PTA procedure involving N trials on the same subject:

c ∼ Categorical(α(I)), (4a)

t | c ∼ GP(mc, kc), (4b)

∀i ∈ [1, . . . ,N] : yi | xi, hi, t ∼ Bernoulli

[

8

(

hi − t(xi)

σp

)]

.

(4c)

3.2. Model Learning
The model from Equation (4) includes a significant number of
parameters, specifically:

• C: the number of individual GPs in the mixture model.
• α(I): the probabilities of individual GPs as a function on side-

information I . Note that α(I) is a vector whose elements sum
to 1, and can be interpreted as the conditional mixing weights
of the individual GPs.

• m1, . . . ,mC: the mean functions of the GPs. The mean
functions are constrained to be third-order polynomials in
transformed frequency space.

• k1, . . . , kC: the covariance functions of the GPs, constrained to
be squared exponential kernels. A squared exponential kernel
is parameterized by a variance parameter and a length-scale
parameter. The variance parameter regulates the width of the
GP’s uncertainty bands around the mean function, and the
length-scale parameter regulates the smoothness of the GP.
For notational convenience, we use θ1, . . . , θC to denote the
parameters of the covariance functions.

• σp: the standard deviation of the perceptual noise under which
the HT is evaluated.

In general, using a complex model only makes sense if its
parameters can be “learned” from a data set. In this context,
“learning” means optimizing the parameters such that the model
captures the statistics of the data in the data set as well as possible.
In other words: “learning” the model implicitly means extracting
as much relevant information as possible from the data set, and
storing it in the model parameters. We provide an outline for
how the model parameters can be “learned” through maximum
likelihood estimation.

Since increasing the number of mixture components is
guaranteed to lead to a more accurate model (at the cost of more
complexity), we propose to optimize C empirically. Additionally,
σp will also be chosen empirically since it is not possible to
learn σp from a data set that consists of (annotated) audiograms
without actual responses to individual stimuli. The remaining
parameters can be optimized to a data set containing audiograms
annotated with optional side-information, for example by using
maximum likelihood estimation (MLE). In MLE, the parameters
are tuned by maximizing the likelihood that the model assigns to
the data.

Assume we have a data set containing audiograms that are
optionally annotated with side information. Each audiogram
defines the hearing thresholds of a subject’s ear at a fixed
set of standard audiometric frequencies F , for example F =

{250, 500, 750, 1, 000, 1, 500, 2, 000, 3, 000, 4, 000, 6, 000, 8, 000}Hz.
Since the audiograms are only defined at a discrete set
of frequencies, the “GP mixture” distribution of infinite
dimensionality reduces to a “Gaussian mixture” distribution of
finite dimensionality ‖F‖. By exploiting this property, MLE can
be performed in three steps:

1. Perform MLE of a Gaussian mixture model (GMM), for
example using the well-known expectation-maximization
(EM) algorithm (19).

2. Optimize m1, . . . ,mC and θ1, . . . , θC by minimizing
the Kullback-Leibler divergence between the predictive
distributions of the GP mixture and the GMM from step 1.
In this step, the parameters of the GP mixture are tuned such
that its predictive distribution matches that of the GMM at
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the discrete set of frequencies F . The optimization can be
implemented by writing the Kullback-Leibler divergence in
a framework that supports automatic differentiation, and
then using the automatically calculated gradients to perform
a gradient-based optimization. We implemented this step
in TensorFlow (20), and used standard gradient descent to
perform the optimization.

3. Implement α(I) by nearest-neighbor regression. For every
audiogram that contains side-information, the posterior
mixing coefficients are calculated using Bayesian inference,
and stored in a lookup table indexed by I , averaging over
any duplicate entries. The value of α(I) is then obtained by
performing a nearest-neighbor lookup. This approach works
well if the data set is large relative to the cardinality of I .

By optimizing the model parameters to a certain data set, the
model will assign higher relative probabilities to HT curves that
appearmore frequently in the data set. This bias has a direct effect
on the performance of the HT estimation and optimal stimulus
selection methods based on the model. The more representative
the data set used for learning is for the population on which the
methods are applied, the better the performance will be.

3.3. Hearing Threshold Estimation Through
Bayesian Inference
Given the (optimized) model and a collection of trials, the HT
can be estimated by performing Bayesian inference. In Bayesian
inference, the distributions of all random variables in the model
are updated to reflect the information in the data, in this
case a collection of trials. The result is a posterior probability
distribution over the subject’s HT curve, including uncertainty
bands. Let D = [(x1, h1, y1), . . . , (xN , hN , yN)] denote a data set
containing N trials of the same subject. Applying Bayes’ rule
to the model from Equation (4) yields the following posterior
distribution for HT t:

p(t | D) ∝ p(t) · p(D | t) (5a)

=

C
∑

c=1

αc(I) · GP(t | mc, kc) · p(D | t) (5b)

=

C
∑

c=1

αc(I) ·
1

Ac
· pc(t | D), (5c)

where pc(t | D) denotes the posterior distribution of t under
mixture component c, and Ac are scaling factors to satisfy the
second equality. This means that the posterior distribution of
t is a weighted mixture of the posterior distributions of the
individual GPs. Thanks to this property, Bayesian inference can
be implemented in two steps:

1. Perform Bayesian inference for all C mixture components
separately, yielding pc(t | D) and Ac.

2. Combine the individual posterior GPs according to
Equation (5c).

Under ourmodel, exact Bayesian inference in step 1 is intractable.
However, various techniques are available to achieve approximate

Bayesian inference, including variational Bayesian inference,
Laplace inference and expectation propagation (3). Since a single
component from our mixture model resembles a standard GP
probit classifier, various GP software libraries can perform the
approximate Bayesian inference from step 1 out-of-the-box.
A complete derivation of an approximate Bayesian inference
algorithm for a single-component using the Laplace method is
available in (6).

Using Equation (5c), the posterior distribution of t can be
written as a weighed sum of the individual posterior GPs:

p(t | D) ∝
C
∑

c=1

αc(I) ·
1

Ac
· pc(t | D) (6a)

=

C
∑

c=1

πc · pc(t | D), (6b)

where πc is the (unnormalized) posterior mixing weight for
component c. Once the individual (approximate) posteriors have
been obtained, πc can be calculated according to:

πc =
αc(I)

Ac
, (7a)

Ac =

(∫

p(D | f )pc(f )df

)−1

. (7b)

Ac is known as the marginal likelihood of the data under
component c, and it is usually returned by the software that
implements the approximate inference.

3.4. Optimal Stimulus Selection
A central aspect of our Bayesian PTA method is to leverage an
optimized probabilistic model of the procedure to repeatedly
present the stimulus that will yield the most informative
response. Information theory provides a fundamental
mathematical framework to enable this. Given a (posterior)
probabilistic model, the expected information content of
a response about a variable in the model—in our case the
HT—can be expressed analytically, allowing the input leading
to the response to be optimized with respect to the expected
information gain. The approach of actively selecting inputs to
trigger responses to learn from is known in the literature as
“active learning.” This section provides the derivation of an
optimal stimulus selection procedure based on the “Bayesian
Active Learning by Disagreement” (BALD) framework from (21).

Given a set of trials D and posterior distribution p(t | D), the
goal is to find the stimulus (x∗, h∗) that “maximizes the decrease
in expected posterior entropy” of t (21):

(x∗, h∗) = argmax
(x,h)

(

H[t | x, h,D]− Ey∼P(y|x,h,D)H[t | y, x, h,D]
)

.

(8a)

In this expression, H[A | B] represents the Shannon entropy1

of A given B. In the remainder of this section we work out

1Shannon entropy is ameasure of uncertainty about the value of a random variable:
H[A] , E[− log p(A)]. A conditional entropy corresponds to the entropy of a
conditional probability distribution: H[A | B] , E[− log p(A | B)].
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the objective function under our model. The end result of the
derivation can be found in Equation (15).

Inspection of the expression to be maximized reveals that is
equal to the mutual information2 of the hearing threshold t and
the binary response y to a stimulus (x, h) under the posterior
distribution: I[t; y | x, h,D]. Because mutual information is
symmetric, t and y can be exchanged to get an equivalent
expression that is easier to evaluate:

(x∗, h∗) = argmax
(x,h)

(

H[t | x, h,D]− Ey∼P(y|x,h,D)H[t | y, x, h]
)

(9a)

= argmax
(x,h)

I[t; y | x, h,D] (9b)

= argmax
(x,h)

I[y; t | x, h,D] (9c)

= argmax
(x,h)

(

H[y | x, h,D]− Et∼p(t|D)H[y | t, x, h]
)

.

(9d)

Since y is a binary random variable, the entropy terms in
Equation (9d) reduce to binary entropy terms3.

The first term in Equation (9d) is obtained by writing out
the binary entropy of the posterior predictive distribution of y,
given by:

P(y | x, h;D) =

∫

P(y | tx, h)p(tx | D)dt (10a)

=

∫

P(y | tx, h)
C
∑

c=1

πc · pc(tx | D)dt (10b)

=

C
∑

c=1

πc

∫

P(y | tx, h)pc(tx | D)dt, (10c)

where tx denotes function value t(x). Since pc(t | D) is a posterior
GP, pc(tx | D) is approximated by a Gaussian. Let the Gaussian
approximate posterior distribution of t(x) under component c be
defined as:

pc(tx | D) ≈ N
(

tx | µc, σ
2
c

)

, (11)

where µc and σc are returned by the GP approximate inference
engine. Substituting Equation (11) and (4c) in Equation (10) and
evaluating the integral yields4:

P(y | x, h;D) ≈
C
∑

c=1

πc

∫

8

(

y · (h− tx)

σp

)

·N (tx | µc, σ
2
c )dtx

(12a)

=

C
∑

c=1

πc8





y · (h− µc)
√

σ 2
p + σ 2

c



 . (12b)

2Mutual information is a symmetrical measure of dependence between two
random variables, which can be expressed in terms of (conditional) entropies:
I[A;B] = I[B;A] = H[A]−H[A | B].
3Binary entropy function h(·) relates the odds parameter of a binary random
variable to its Shannon entropy: x ∼ Bernoulli(α) ⇒ H[x] = h(x) , −α log(α)−
(1− α) log(1− α).
4A derivation of the solution to the integral can be found in section 3.9 of (3).

With this, the first term in the objective function from Equation
(9d) resolves to:

H[y | x, h,D] ≈ h





C
∑

c=1

πc8





h− µc
√

σ 2
p + σ 2

c







 . (13)

The second term in Equation (9d) is intractable but can be
approximated very well by replacing the binary entropy function
by a squared exponential function as proposed in (21):

Et∼p(t|D)h[y | t, x, h] ≈

∫

h

(

8

(

h− tx

σp

)) C
∑
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2
c )dtx

=

C
∑
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πc
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h

(

8
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))
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2
c )dtx

≈

C
∑
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πc

∫
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−
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σ 2
p π ln 2

)
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2
c )dtx

=
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πcK
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σ 2
c + K2

exp

(

−(h− µc)2

2(σ 2
x + K2)

)

,

(14)

with K = σp

√

π ln 2
2 . With this, the expression for the most

informative stimulus from Equation (9d) evaluates to:

(x∗, h∗) = argmax
(x,h)

h





C
∑

c=1

πc8





h− µc
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σ 2
p + σ 2

c









−

C
∑

c=1

πcK
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σ 2
c + K2

exp

(

−(h− µc)2

2(σ 2
x + K2)

)

. (15)

The most straightforward way to find (x∗, h∗) is to perform
an (adaptive) grid search in the desired feasible set, or to

FIGURE 1 | Predictive accuracy of the optimized models as measured by the

average log-likelihood of audiograms in the test set. The dashed and dotted

lines denote the effect of conditioning the model on age (a) and/or gender (g).
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use another global optimization method. Since the objective
in Equation (15) is relatively cheap to evaluate in terms of
computations, this is no problem in practice. However, it is
also possible to perform the optimization in a cheaper way
by adding an additional approximation. Instead of using the
Gaussian mixture posterior directly to obtain the objective
function, one could first approximate the mixture posterior by a
single Gaussian posterior through moment matching. Plugging
this single Gaussian approximate posterior into the objective
function eliminates the sums in Equation (15). In that case, x∗
turns out to correspond to the transformed frequency on which
the approximate posterior has the largest variance, which can be
found using a one-dimensional grid search. Once x∗ is known, h∗
is equal to the posterior mean of the HT at x∗ under the single
Gaussian approximation (6). It is also possible to only use of the
single Gaussian approximation to find x∗, and then solve for h∗
under the full model using a simple line search.

4. RESULTS

4.1. Model Learning
To evaluate the predictive performance of the probabilistic
model, we learned multiple models with the numbers of mixture
components ranging from 1 to 10. All models are learned from
the same training set. Training and test sets are obtained by
randomly splitting the data set described in section 2.1 subject-
wise, such that the training set contains the data of 80% of the
subjects (70,590 subjects, 141,180 audiograms) while the test set
covers the remaining 20% of subjects.

The quality of a probabilistic model is determined by the
extent to which it can predict data in the test set. The better the
model has captured the properties and statistics of the data set,
the higher the (average) probabilities it assigns to records in the
test set. The predictive accuracy of a model is typically measured
by the average posterior log-likelihood of records in the test set.

FIGURE 2 | Audiogram plots visualizing the learned model containing six mixture components with various conditionings. Solid black lines denote the initial HT

estimate. Dotted blue lines and shaded areas depict the individual GP mixture components ±1 standard deviation (the transparency is proportional to the mixing

weight). Solid black boxes indicate the optimal first stimulus. (A) Not conditioned on age or gender. (B) Age 40, gender unspecified. (C) Age 80, gender unspecified.

(D) Age 80, female.
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FIGURE 3 | A-priori mixing weights of the learned six-component model

under various conditionings.

The posterior log-likelihood of a hearing threshold t specified at
a set of transformed frequencies X is defined as:

log p(t | D) =
∑

x∈X

log p(tx | D), (16)

where p(tx | D) is the value of the posterior distribution of the
hearing threshold evaluated at transformed frequency x.

Figure 1 shows the average log-likelihood of records in the test
set as a function of the number of mixture components. Separate
lines are used to show the effect of conditioning the models on
age and/or gender. As is to be expected, increasing the number
of mixture components monotonically increases the predictive
accuracy, although the incremental benefit of extra components
diminishes after about seven components. Conditioning on age
or gender has a positive effect on performance if the number of
mixture components is sufficiently large. Conditioning on age has
a stronger impact than conditioning on gender.

Figure 2 provides a visualization of the learned model with
six mixture components under various conditionings. Without
conditioning on age and gender, the distribution of the HT
should be representative for the complete population represented
by the training set. The effect of conditioning on age is clearly
visible: for age 40 the mixture components corresponding
to mild hearing loss get assigned a higher weight compared
to age 80. The effect of conditioning on gender is smaller.

FIGURE 4 | Probability distributions of the HT at 8 kHz for different numbers of

mixture components.

The plots also show that the first proposed stimulus can be
different based on age and gender. Figure 3 shows the a-
priori component mixing weights of the six-component model
under various conditionings, providing a visual overview of the
relative importance of the different components per age and
gender group.

To inspect the effect of using a mixture of GPs instead of a
single GP, we evaluated the posterior probability distributions
of the hearing threshold at fixed frequencies under the various
models. Figure 4 shows these probability distributions at 8 kHz
for a selected number of models. The figure clearly illustrates
the increased ability of the model to capture the non-Gaussian
distribution of the hearing threshold as the number of mixture
components is increased.

4.2. Bayesian PTA Simulations
To test the usefulness of our method, we performed PTA
simulations on a random subset of 200 audiograms from the test
set. Identical simulations are performed using both the learned
single-component model and the learned 8-component model,
which seems to provide a good trade-off between predictive
accuracy and computational complexity judging from Figure 1.
For each of the 200 randomly selected audiograms, a PTA
simulation is performed in the following way.

1. Interpolate the HT in the audiogram (which is only defined
on a subset of the standard audiometric frequencies) linearly,
yielding a piecewise linear function of frequency.

2. Optionally condition the model on the age and gender
corresponding to the audiogram.

3. Determine the optimal next stimulus according to
Equation (9d).

4. Simulate the response based on the (interpolated) HT and the
response model from Equation (2). Update the model with the
response by performing Bayesian inference.

5. Go to step 3 and repeat until 25 responses have
been collected.
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FIGURE 5 | Audiogram plots visualizing the progression of a single Bayesian PTA simulation under the eight-component model. Solid black lines denote the HT

estimate. Dotted blue lines and shaded areas depict the individual GP mixture components ±1 standard deviation (the transparency is proportional to the mixing

weight). Green and red crosses, respectively, depict audible and non-audible responses. Solid black boxes indicate the optimal next stimulus. (A) Audiogram based

on zero responses. (B) Audiogram based on one response. (C) Audiogram based on two responses. (D) Audiogram based on three responses. (E) Audiogram based

on four responses. (F) Audiogram based on eight responses.

Figure 5 provides a visualization of the progression of a single
Bayesian PTA simulation under the 8-component model. A
couple of observations can be made from this figure:

• The posterior mixing weights tend to converge toward either
0 or 1 as more responses are incorporated. Intuitively, this

can be interpreted as the model first detecting which mixture
component best matches the responses, and then refining the
estimate based on the most dominant mixture component. It
is this ability that enables the mixture model to attain a faster
convergence rate than a single GP model.
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FIGURE 6 | Average absolute HT estimation error on the standard audiometric

frequencies (125, 250, 500, 750, 1,000, 1,500, 2,000, 3,000, 4,000, 6,000,

8,000 Hz) as a function of the number of responses under the

single-component and 8-component models. The results are averaged over

200 simulations on a random subset of the test set. Shaded areas span from

the first quartile to the third quartile. Note that the single-component model

cannot be conditioned on age or gender.

• The overall uncertainty about the HT as measured by the
variance of the HT estimate tends to decrease as more
responses are incorporated.

• The optimal stimuli proposed by the method seem
to approximate a randomized grid search in the
frequency dimension.

To quantify the performance of our methods in the simulations,
we calculate the average absolute error of the HT estimates after
every simulated response. The average absolute estimation error
is obtained by averaging the absolute differences between the
assumed HT and the posterior HT estimate at the following
frequencies: 125, 250, 500, 750, 1,000, 1,500, 2,000, 3,000,
4,000, 6,000, 8,000 Hz. Figure 6 shows the evolution of the
estimation error as responses are added. Both the single-
component model and the 8-component model result in a
monotonic decrease in estimation error, although the decrease
is significantly faster under the 8-component model. Using age
and gender information consistently decreases the estimation
error, with the effect being largest before any responses have been
processed. As more responses are processed, the relative benefit
of age and gender information diminishes.

5. DISCUSSION

We have demonstrated how a practical and data-efficient PTA
method can be obtained by taking a probabilistic modeling
approach. Any PTA method involves at least two parts: a
method to select stimuli and a prescription for estimating the
HT based on responses to said stimuli. Instead of defining
these parts in a direct way, we have shown that if one
starts with a probabilistic model of the response-generating
process, both parts can be derived in a natural way based on

formally defined objectives. In the case of stimulus selection,
the concept of expected information gain can be used to derive
a method that sequentially selects optimal stimuli (in terms of
information retrieval rate about the HT) under a given model.
The task of estimating the HT based on responses reduces
to one of Bayesian posterior inference under the probabilistic
modeling approach. Since both parts arise naturally given the
underlying model, the model specification indirectly specifies the
complete PTA method. As a result, improvements in the quality
of the underlying model directly translate into an improved
PTA method, either in terms of estimate convergence rate or
robustness. Combining a probabilistic modeling approach with
information gain maximization in the context of audiometry
already has a long history (9, 10, 12). More recently, such
approaches have been extended based on GP models (5–7, 13).
Various studies have been conducted to experimentally validate
these methods (14, 15).

The focus of this work was to increase the efficiency and
accuracy of GP-based PTA methods by improving the quality
of the underlying model. Toward this end, we proposed a
more complex model, i.e., a finite mixture of GPs with mixing
weights that depend on additional information about the subject.
Moreover, we leverage data to optimize the parameters of the
more complex model for a specific target population. The
combination of a more complex model and a data-driven
optimization leads to a model of higher quality, while preserving
the ability to derive optimal stimulus selection andHT estimation
based on Bayesian inference. Our simulations indicate that
the improved model indeed yields a PTA method with a
significantly faster convergence rate than that of an optimized
single-GP model. The ability of the proposed model to be
conditioned on age and gender also increases performance.
The increased performance comes at the price of increased
computational complexity. The computational complexity of the
Bayesian inference algorithm is linear in terms of the number of
mixture components. The same holds for the complexity of the
optimal trial selection algorithm if the described approximation
is applied. As a result, the computational complexity of our
method with a mixture of K components requires roughly K
times the amount of computations required under a single-
GP model.

We identify multiple possible directions to improve upon the
described methods. Firstly, making the user response model (i.e.,
the part of the model that specifies how a response to a stimulus is
generated given the HT) dependent on frequency should increase
the quality of the model, given the likeliness that such a relation
indeed exists. Ideally, the parameters of a more complex user
response model should be learned from data as well, which
would require a data set containing raw audiometric test data.
Secondly, the method could be made more robust to corrupted
responses. In practice, it is to be expected that responses are
sometimes inverted by accident, for example due to external
disturbances, mistakes, or hardware malfunction. If corrupted
responses occur, an optimal active learning method will have
a hard time recovering unless the underlying model explicitly
incorporates a data corruption aspect. Extending the model with
a data corruption part will increase the robustness at the expense
of slower convergence, since the assumed signal-to-noise ratio of
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the responses will decrease. Another option would be to try to
detect corrupted responses post hoc, and then excluding them
from the data. A third possible improvement is to exploit the
correlation between the HTs at both ears of the same subject.
Preliminary analysis of our data set indicates that there is a
statistically significant correlation to be exploited. One could
extend themodel such that the result of the PTA procedure on the
one ear could be used to improve the predictive accuracy about
the HT at the other, leading to a speedup of the PTA procedure at
the second ear.
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