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Identifying which patients are at higher risks of dying or being re-admitted often happens

to be resource- and life- saving, thus is a very important and challenging task for

healthcare text analytics. While many successful approaches exist to predict such clinical

events based on categorical and numerical variables, a large amount of health records

exists in the format of raw text such as clinical notes or discharge summaries. However,

the text-analytics models applied to free-form natural language found in those notes

are lagging behind the break-throughs happening in the other domains and remain

to be primarily based on older bag-of-words technologies. As a result, they rarely

reach the accuracy level acceptable for the clinicians. In spite of their success in other

domains, the superiority of deep neural approaches over classical bags of words for

this task has not yet been convincingly demonstrated. Also, while some successful

experiments have been reported, the most recent break-throughs due to the pre-trained

language models have not yet made their ways into the medical domain. Using a publicly

available healthcare dataset, we have explored several classification models to predict

patients’ re-admission or a fatality based on their discharge summaries and established

that 1) The performance of the neural models used in our experiments convincingly

exceeds those based on bag-of-words by several percentage points as measured by

the standard metrics. 2) This allows us to achieve the accuracy typically acceptable

by the clinicians as of practical use (area under the ROC curve above 0.70) for the

majority of our prediction targets. 3) While the pre-trained attention-based transformer

performed only on par with the model that averages word embeddings when applied

to full length discharge summaries, the transformer still handles shorter text segments

substantially better, at times with the margin of 0.04 in the area under the ROC curve.

Thus, our findings extend the success of pre-trained language models reported in other

domains to the task of clinical event prediction, and likely to other text-classification

tasks in the healthcare analytics domain. 4) We suggest several models to overcome the

transformers’ major drawback (their input size limitation), and confirm that this is crucial

to achieve their top performance. Our modifications are domain agnostic, and thus can

be applied in other applications where the text inputs exceed 200 words. 5) We have

successfully demonstrated how non-text attributes (such as patient age, demographics,
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type of admission etc.) can be combined with text to gain additional improvements for

several prediction targets. We include extensive ablation studies showing the impact

of the training size, and highlighting the tradeoffs between the performance and the

resources needed.

Keywords: discharge summaries, BERT, clinical event prediction, pre-trained language models, transformers,

deep learning

1. INTRODUCTION

Identification of patients who are likely to be readmitted or
at higher risk of future complications can provide significant
benefits for both patients and medical providers in terms
of reducing heath risks, maintaining patients’ quality of life
and avoiding the markers of substandard health-care. The
introduction of electronic health records (EHRs) and the move
away from paper-based to almost entirely digital systems has
led to the abundance of available electronic healthcare data and
extensive patient histories. EHRs contain a wealth of information
including patient demographics, laboratory test, prescriptions,
radiological images, and clinical notes written by attending
physicians. Compared to non-text (numerical, categorical etc.)
attributes. the notes provide a richer picture of the patient since
not only they list the symptoms and the treatment plans, but also
describe more subtle aspects such as daily activities, patient mood
and commitment to the regimens. At the same time, using the
raw text for predicting major clinical events, such as fatality or re-
admission, remains challenging due to the ambiguity and variety
of human language. While machine-learning models, especially
with deep (multi-layer) architectures, such as convolutional and
recurrent networks, have lead to significant advances in natural
language processing in the general domain (1), they have not
been yet fully extended to healthcare applications. As we further
elaborate in our review of related work, there is still no clear
evidence that the deep learning approaches are more accurate
than the classical “bags of words”, thus it is not surprising that the
older techniques are still predominantly used by the practitioners.

Attention-based transformers (2), pre-trained on a large
corpus to capture the language model (statistical distributions of
words, phrases, sentences etc.), have been recently shown to be
more effective than convolutional and recurrent neural models
and advanced the state-of-the-art as measured by standard
general benchmarks such as GLUE, MultiNLI, and SQuAD (3,
4). They have become de-facto standards for all modern text-
analytics models in the general domain. At the same time, their
use in healthcare remains limited, especially their application to
the classification involving texts longer than a single paragraph,
such as discharge summaries, since the transformers have an
inherent input size limitation around a few hundred words.

Using a publicly available dataset with discharge summaries,
we have adapted and compared several text classification models
to predict readmission or a fatality at various time intervals and
established that:

1) The performance of the deep neural models that we have
tested exceeds those based on older but still currently

dominant “bags of words” approaches by several percentage
points. We believe that this finding is a major testament to
the success of deep learning models, and particularly to the
use of longer texts for clinical event predictions, which the
prior work has not yet convincingly demonstrated.

2) The deep neural models allow us to achieve the accuracy
above the “acceptable discriminative ability” (5) normally
expected by the clinicians: for the standard metric of the area
under the ROC curve, our models score at least 0.70 on the
re-admission targets and 0.86 on the fatality-related targets.
There is only a handful of prior reports of reaching that level
of accuracy in the domain, and none of them is attributing the
success to the use of raw-text.

3) The pre-trained attention-based transformer performs only
on par with a simpler model that averages word embeddings
when applied to full-length discharge summaries. However,
the transformer still handles shorter text segments
substantially better, which is demonstrated by the larger
area under the ROC curve. Up to our knowledge, this is
the first study confirming that the success of pre-trained
language models in classifying text documents in the general
domain extends to the healthcare, and specifically to the task
of clinical event predictions based on discharge summaries
(or any other medical texts of similar style and length)1.

4) In order to overcome the input size limit of the attention-
based transformers, we have designed and tested several
original modifications and show that without them, they
would not reach the top performance. Those modifications
are domain agnostic and thus can be used in other text
classification applications as well.

5) Although non-text (numerical, categorical etc.) attributes are
not the primary focus of our experiments presented here,
we have also demonstrated how they can be successfully
combined with our transformer-based model to provide
additional performance gains.

1Our preliminary results were presented at HealTac 2020 and 2021 conferences.

Also, somewhat parallel to our study, Gao et al. (6) reported text-classification

experiments with a different pre-trained language model and different prediction

targets from ours. Although they did not report any evidence of the superiority

of the language model based approach, our works still complement each other.

Another complementary worth mentioning work is Huang et al. (7), which tried

to overcome transformer input size limit for 30-day re-admission task on the same

dataset, but unlike us, pursued simple hueristic rather than deep-learning solutions

and reported smaller improvements. Unfortunately, we were not able to use their

pre-trained language model and are not aware of any follow up study that did.

Thus, early in our experiments, we settled on using (8), which indeed later was

used in numerous studies and became part of popular HuggingFace library.
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6) We include ablation studies showing the impact of the
training size, and demonstrating the tradeoffs between the
performance and the computational resources needed.

The data that we used for our experiments can be obtained
from a public source through a simple certification process2. We
make our code publicly available3. The next section overviews the
related works, followed by the description of the models used,
empirical testing and conclusions.

2. RELATED WORK AND MODELS

2.1. Clinical Event Prediction
Automated classification of clinical texts such as cancer
pathology reports and patient notes from hospital stays can
potentially contribute toward health-related outcomes. For
example, flagging specific cases can prevent patients from
being discharged prematurely from Intensive Care Units (ICU).
Additionally, preventable readmissions are associated with an
increased risk of future complications and viewed as markers of
substandard care (9).

While many domains have been revolutionized by an
abundance of data, healthcare has been relatively slow in both
the pace of research and the adoption of machine learning
models to automatically analyse patients’ records. Clinical text
analytics approaches lag behind other domains, partly due to its
risk-averse nature and to the legal challenges of releasing open
research datasets (10, 11). Also, human annotation of EHRs can
be extremely time-consuming and requires expensive expertise.

Another reason for text-analytics in healthcare falling behind
other domains is that in many practical applications using non-
text (numerical, categorical etc.) attributes works better than
handling naturally ambiguous and diverse human language.
While the models using non-text attributes have been enjoying
some success they are also still progressing slowly: when (5)
did a review of the approaches used at the time, they found
out that predicting remained to be a challenging task and that
the performance had not improved since a decade prior to
that. While a single best performing model examined by the
study scored 0.83 on the standard metric of the area under the
ROC curve, very few models were able to achieve 0.70 which
they designated as minimum “acceptable discriminative ability”.
The approaches predominantly used categorical and numerical
attributes such as various symptoms, diagnoses and patient test
results, but not the raw text.

More recent works successfully applied deep neural models
to make predictions based on other (non-text) variables as well:
for example, Lin et al. (12) has built time-series models of EHR
data for readmission prediction combining demographic data
and ICD-9 disease codes. They used a pre-trained 300-dimension
embedding vectors with recurrent (RNN) and convolutional
(CNN) networks to achieve the area under ROC curve (AUC)
of 0.791. Rajkomar et al. (13) offered a deep learning framework
that combines text and non-text attributes. While reporting their

2https://mimic.physionet.org
3The URL will be provided in the camera-ready version.

model as successful, they still did not separately investigate the
role of free-form text data in the overall performance, thus it
remained unclear if using the text was actually helping.

2.2. Bag-of-Words vs. Deep Learning
The bag-of-words (BOW) models use only word counts to
represent a text document. Thus, the word positions are ignored.
Inspite of its simplicity, the approach often works well, and
more sophisticated techniques don’t always win by a substantial
margin, especially in the challenging health-care domain. Walsh
and Hripcsak (14) successfully applied BOW to the clinical
notes for re-admission prediction. They pre-processed the text
by using stemming and stopword removal and created vectors
for each admission, combined with manually selecting the terms
perceived to be of clinical significance. Using both the clinical
text and selected features, they achieved the AUC of 0.68. Similar
performance ranges were achieved in Curto et al. (9). Rumshisky
et al. (15) applied topic analysis (Latent Dirichlet Allocation) on
psychiatric notes to predict re-admission, which still also relied
on bag-of-words.

Inspired by the success of deep learning in other domains,
and using the same patient cohort as Walsh and Hripcsak
(14), Jain et al. (16) used LSTM based networks with attention
layers to build a prediction model for the 30-day readmission
target. While their work showed that the application of attention
layers can significantly boost the performance of LSTM-based
recurrent networks over clinical text, their best performingmodel
(AUC=0.71) was not significantly better than their bag-of-words
baseline Logistic Regression model. Thus, their work still did not
provide convincing evidence of the superiority of deep learning
approaches over older techniques for this challenging task. We
believe our current work provides much stronger evidence.

2.3. Pre-trained Transformers
Attention-based transformers (2) have proved to be very effective
and become nowadays de-facto standards when implementing
a language model (probability distribution over words, phrases,
sentences, etc.). Once pre-trained on a very large corpus
(e.g., Wikipedia or even larger-sized web crawls) the model
is included as the main processing block within a classifier
which is further “fine-tuned” (additionally trained) on a much
smaller set of examples for a particular downstream application
task [e.g., (3, 4)]. Instead of recurrent units with “memory
gates" comprising the RNNs and process an input sequence
in a certain direction, attention-based transformers use word
positional embeddings and are more flexible and parallelizable
than recurrent mechanisms.

To provide top performance, a transformer-based language
model must be pre-trained on a text corpus that is from the same
domain as the downstream application task. Therefore, clinical
practitioners, who wish to apply those models, need to further
pre-train publicly available general domain versions. Alsentzer
et al. (8) additionally pre-trained a popular transformer-based
language model [Bert, (3)] on Mimic-III text (17). They
demonstrated success on several text-analytics tasks including
inferencing, named entity recognition, de-identification, concept
extraction and entity extraction, but not including classification
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of longer text such as clinical event detection based on discharge
summaries that we consider here. We further fine-tune their
publicly available model for those tasks in our experiments.

While doing this, we have to address a very serious limitation
that the transformers have: since their algorithm includes
iterating through all the pairs of its input, its input size
has to be limited to 500–1,000 tokens, otherwise becoming
computationally prohibitive. Since some words may be
represented by several tokens, the limit approximately
corresponds to a single paragraph. Our average discharge
summary (from the same MIMIC-III) dataset is approximately
2,000 tokens, which is several times larger than the
transformers’ limit.

While several prior works [e.g., (18, 19)] modified
transformer’s architecture to be able to handle longer inputs,
there are still no known pre-trained models of them for
biomedical or clinical domains, most likely since pre-training
transformer language models is a major computational burden
(several weeks on current top GPUs or TPUs), and even more so
for the models with the expanded input size limit.

There is also research on adapting publicly available pre-
trained transformers for long document classification in the
general domain by segmenting the input texts into shorter
chunks. For example (20) explored applying this idea to IMDb
reviews, Yelp reviews, Sogou News, and other similar datasets.
The reported that the best overall classification accuracy is
achieved by using only the first 128 and the last 382 tokens in each
document. While we pursue somewhat similar segmentation
strategy here, we do not confirm their observation for our
discharge summaries: on the contrary, all the segments of the
summaries turn out to be almost equally important.

3. THE MODELS EXPLORED

Here, we describe the models that we used for comparison,
specifically: our implementation of bag-of-words model, our
word embedding mean-pooling model and the attention-based
transformer model. Our “Empirical Evaluation” section provides
additional details on the implementations of convolutional and
recurrent networks that we have used.

3.1. Bag-of-Words
The bag-of-words is a simple method that uses word counts to
represent a text document. To implement it, we were guided by
classical prior Information Retrieval approaches [e.g., (21)]. We
only used words that occur in 10 documents or more. We did not
apply any stopword removal, stemming or weighting. We simply
treated those words as features in a linear classifier, trained as a
logistic regression to minimize L2 loss between the predicted and
actual labels. In our preliminary experiments we also tried other
classification models including support vector machines, naive
bayes, nearest neighbor, decision trees and random forests but
obtained slightly worse results, thus our empirical section below
reports only logistic regression. Preserving all the words, applying
classical stemming and stopword removal did not result in any
additional gains either, which is consistent with the observations
in prior work, e.g., in Walsh and Hripcsa (14).

3.2. Mean-Pooling N-Gram Embeddings
We use one of the simplest deep neural models for text
classification, which is inspired by Joulin et al. (22) (also known
as “Fast-text” or “FastText”), but the model used here does not
break words into sub-parts and does not use any additional text
corpus to train the word embeddings. We made those decisions
earlier in our experiments when we did not observe any impact
of doing it. Thus, we use the implementation available in Gluon
library library (see text footnote 2) without any modifications.
Themodel assigns a trainable embeddings vector−→vw to each word
and n-gram (sequence of n words) w in the heuristically created
vocabulary (preserving only the n-grams occurring enoughmany
times). To classify a document, the mean-pooling is applied first
to all the words and n-grams preserved in the document d:−→vd =

mean[{(−→vw}], and then−→vd is fed to a fully-connected layer.

3.3. Attention-Based Transformer
We only briefly overview the attention-based transformer model.
For the details we refer to Vaswani et al. (2). An attention-
based transformer is an encoder that can map a sequence of
symbols (e.g., words) to a sequence of vectors. The diagram
on Figure 1 illustrates how it operates. Instead of processing
the input sequence in a certain direction as a recurrent
network does, a transformer adds positional information
(embedding) to the representation of each element in the
sequence and then treats the elements uniformly regardless
of their positions. The output sequence of vectors can be
used in some downstream task, e.g., generating output words
for machine translation (where attention-based transformers
currently dominate) or a sentence classification such as
sentiment analysis.

The conversion from inputs to the outputs is performed
by several layers. Each layer applies the same transformations,
varying only in their trained parameters. In order to obtain the
vectors on a certain layer, the vectors from the layer immediately
below are simply weighted and added together. After that, they
are scaled and transformed by a linear and non-linear functions.
For the latter, tanh is normally used:

−→vi
′ = tanh(W ·

k∑

t=1

αt
−→vt ) (1)

here,−→vi
′ is the vector in the i-th position on the upper layer,−→vt is

the vector in the t-th position on the lower layer,W is a trainable
matrix (same regardless of i but different at different layers), and
αt is a trainable function of vectors −→vi and −→vt , such that the
weights for all −→vt add up to 1. Normally, a scaled dot product
of the vectors−→vi and

−→vt is used:

αt =
−→vi ·W

′ ·
−→vt (2)

where W′ is a trainable matrix (also same regardless
of i and t at the same layer but different at different
layers). The normalization to 1 is accomplished by using a
softmax function.

This mechanism allows rich and contextual vector
representations to be formed at the highest layers that can
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FIGURE 1 | An attention-based transformer used in our experiments.

capture the entire content of a word sequence (e.g., a sentence)
so it can be effectively used for any downstream application.
Since here we are using it for text classification, as it is commonly
done with attention-based transformers, we make our output
classification decision based on the very first vector on the top
level (sometimes informally called a “classification token”)−→v0

top,
which is fed to a single layer fully connected neural network:

c = argmax (W1 ·
−→v0

top) (3)

where c is the output label (true or false in our case here) andW1

is a trainable matrix.

3.4. Resolving Transformer Input Size Limit
In spite of their great success, attention-based transformers have
a serious limitation that needs to be considered. Their input
sequence is normally limited in size. For example, the pre-trained
model by Alsentzer et al. (8) that we use here (Clinical BERT)
limits the input to 512 tokens. Since our application demands
handling much larger inputs (our average discharge summary
has approximately 2000 tokens), we segmented our text inputs
by using non-overlapping sliding windows. As our empirical
section illustrates, the choice of a proper model to connect
those segments is crucial for the overall model to reach the top
performance. Specifically, we have designed and tested several
architectural additions to the model to combine the segments,
thus overcoming the imposed size limit. Each of those models
represents a certain trade-off between the flexibility of the model
and computational demands:

1) LSTMCLS: The document classification token vector (−→v0
top)s

fromVaswani et al. (2) of each segment s is fed in a sequence to

a recurrent neural network (we used LSTM), which produces
a vector of fixed size for the entire document:

−→vd = LSTM({(−→v0
top)s}) (4)

which in turn is used for making a classification decision
by using a fully-connected network. The overall model
(transformer + LSTM) is trained by back propagation.

2) LSTM on TOP LAYER: Instead of considering CLS token
vectors only, this model feeds ALL the output vectors
into LSTM:

−→vd = LSTM({(−→vi
top)s}) (5)

Since back-propagating that model is computationally
prohibitive, the transformer is frozen, thus all its weights
remain to be the same after initialization from the pre-trained
values (as explained in the next section).

3) CONCATENATING TOP LAYER: same as (2),
but instead of LSTM, all the top layer vectors are
concatenated:−→vd = concat[(−→vi

top)s].
4) CONCAT CLS: All the CLS vectors are

concatenated:−→vd = concat[(−→v0
top)s].

The transformer is trainable, as in (1).
5) AVERAGE POOL CLS: Same as (4) but the vectors are

averaged rather than concatenated:−→vd = mean[(−→v0
top)s].

6) MIN POOL CLS: Same as (5), but minimum pooling applied
instead:−→vd = min[(−→v0

top)s].
7) MAX POOL CLS: Same as (5), but maximum pooling applied

instead:−→vd = max[(−→v0
top)s].

4. EMPIRICAL EVALUATION

4.1. The Datasets
The MIMIC-III (17) consists of unstructured clinical notes as
well as non-text attributes (such as patient age, demographics,
type of admission etc.) from approximately sixty-thousand
Intensive Care Unit (ICU) admissions into the intensive care
unit at Beth Israel Deaconess Medical Center between 2001 and
2012. At the time of the study it was (and still is) the largest
publicly available database comprising of de-identified health-
related data.

Each admission is annotated by human experts with a set of
ICD-9 codes that describe the diagnoses and the procedures. Each
admission is also associated with a discharge summary which
summarizes the information from the stay in a single document.
An example of such is shown in Table 1. It can be seen that they
often contain typos, specialized abbreviations and numbers, and
can convey similar information in many different ways.

Patients can have more than one discharge summary for each
admission, which is caused by a variety of reasons, including
the fact that newer discharge summaries are merely addendums
to older discharge summaries. To remove this multiplicity we
concatenate multiple discharge summaries into a single text
document while preserving the original sequence in the dataset.
The average combined discharge summary in the MIMIC-
III dataset is approximately 2,000 tokens when applying the
tokeniser from the Clinical transformer that we used (8).
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TABLE 1 | A fragment of a discharge summary (an artificial example).

...Mrs Smith’s overall left ventricular systolic function is normal. Her lungs are

clear to auscultation bilaterally, coronary examination is regular rate and rhythm,

abdomen is soft, nontender, nondistended. The patient’s most recent laboratory

values are from yesterday, which reveal a white blood cell count of 9. 1,

hematocrit 29. 4, platelet count. She was placed under warming lights. On the

evening of admission her temperature was again found to be low at 96.5, and

she was again placed under lights. Given the recurrent nature for hypothermia

she was brought to the nicu for evaluation. We have discharged Mrs Smith on

regular oral Furosemide (40 mg OD) and we have requested an outpatient

ultrasound of her renal tract which will be performed in the next few weeks. We

will review Mrs Smith in the Cardiology Outpatient Clinic in 6 weeks time. After

review from our social worker and occupational therapist, we have arranged a

once-daily care package to assist Mrs Smith with her activities of daily living...

TABLE 2 | The statistics of the datasets for each prediction targets.

Task #negatives #positives

Re-admission within 7 days 44,961 1,109

Re-admission within 30 days 43,074 2,996

Re-admission within 90 days 41,183 4,887

Re-admission within 180 days 39,965 6,105

Re-admission within 365 days 38,692 7,378

Re-admission at any time in future 35,505 10,565

Fatality within 30 days 43,943 2,127

Fatality within 90 days 41,868 4,202

Fatality within 180 days 40,107 5,963

Fatality within 365 days 37,992 8,078

4.2. Prediction Targets
While there is no single standard benchmarking subset of
MIMIC-III for clinical event predictions, so guided by prior
works, we chose several targets related to a patient fatality or re-
admission with the time intervals ranging from 7 to 365 days.
Table 2 presents the overall statistics of each of the datasets.
We balanced the training sets by randomly oversampling the
minority class (the target) without replacement. The validation
and test sets remained unbalanced.

4.3. Metrics
As in most prior works, we use the area under the receiver
ROC curve (AUC). It ranges from 0 (worst) to 1 (best) while
random guessing resulting in 0.5. In clinical settings, only the
values above 0.70 are considered useful, and those above 0.80
are considered good (5), with the exception of psychiatry where
even lower performance is considered acceptable. We applied
cross validation, each time using 75% of data for training, 10%
as validation (development) set to choose our hyper-parameters
and the remaining 15% to obtain the metrics to report.

4.4. Hyperparameters
For our Word Embedding Mean-Pooling model, we tested the
embedding sizes in {50–1,000} range and the dropout rates in
{0.1–0.5} range. For our RNN andCNN, we tested the embedding
and context sizes in the same {50–1,000} range. Those ranges
were typically used in similar applications. We used the same

hyper-parameters for the transformer as in Devlin et al. (3),
which allowed us to initialize our weights to those pre-trained
in Alsentzer et al. (8) using medical texts4.

This configuration is reported below as “Transformer
clinical.” We also tried initializing to the weights trained on
general text from Devlin et al. (3). This configuration is reported
as “Transformer general.” As traditional in machine learning, the
result tables below present the best configuration as measured by
the performance on the test set with the hyperparameters and
stopping criteria maximizing the performance on the validation
(development) set.

4.5. Implementation
Most training tasks have been accomplished on Tesla V100 GPU
server with 16GB memory, where the most time-consuming
complete configuration was taking approximately 15 min to train
and 1 min to test. We trained each model for 5 epochs and chose
the best model using validation (development) set. We report the
metrics measured using the test set. Training, validation and test
sets do not overlap.

Faster models were trained on GT2080 GPU processor with
8GB memory with the approximate speed of 10 min per epoch.
The memory demand was dictated by the aggregate size of
all the weights, which in the largest configuration was 0.5GB.
The training algorithm makes additional memory allocations for
caching/efficiency reasons (e.g., while holding all the 200Mb of
training data in GPU memory speeds up the training, it is not
essential for the model to operate). Our convolutional network is
based on Zhang and Wallace (23). For our RNN, we used a GRU
variation (24), which is known to work as well as LSTM while
being slightly faster to train.

4.6. Results
Tables 3, 4 present the performance of the models that we have
evaluated across multiple readmission and fatality prediction
related tasks. The following can be observed:

1) Almost all our deep neural models achieve above 0.70 AUC,
which is typically interpreted by clinicians as practically useful
level of performance (5). Our most successful models reach
0.87 AUC. As we wrote in our Section 2, only a few prior
works were achieving such levels, and none for the task of
clinical event prediction based on discharge summaries. The
deep learning scores are statistically different from the bag-
of-words approach at the 0.01 level of significance. Thus, this
work provides crucial evidence of superiority of deep learning
over bag-of-words for this task and long text classification in
healthcare domain in general, which the prior work is lacking.

2) While, mean-pooling of word embeddings is the winner
among all our models, the differences between all the deep
neural approaches are not statistically significant at the level
of 0.01. Thus, using recently emerging pre-trained language

4During the later stages of our project, more language models pre-trained on

medical/clinical corpora became available through https://huggingface.co/. We

experimented and informally obtained very similar results with BioBERT and

BlueBERT but chose not run full set of experiments reported here due to the time

and resource constraints.
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TABLE 3 | The overall performance of the models on the entire discharge summaries for the re-admission prediction targets.

Patient re-admission within: Any time 7 days 30 days 90 days 180 days a year

Bag-of-words model: 0.761 0.673 0.713 0.751 0.757 0.763

Deep Neural models:

Mean-Pooling Word Embeddings 0.787 0.698 0.743 0.779 0.785 0.791

Convolutional Neural Network 0.785 0.694 0.739 0.775 0.781 0.788

Recurrent Neural Network 0.786 0.696 0.738 0.777 0.783 0.790

Transformer General 0.778 0.688 0.731 0.768 0.774 0.780

Transformer Clinical 0.788 0.697 0.741 0.778 0.784 0.793

The best values are in bold.

TABLE 4 | The overall performance of the models on the entire discharge

summaries for the patient fatality prediction targets.

Patient’s fatality within: 30 days 90 days 180 days a year

Bag-of-words model: 0.845 0.832 0.838 0.844

Deep Neural models:

Mean-Pooling Word Embeddings 0.875 0.862 0.867 0.871

Convolutional Neural Network 0.872 0.858 0.865 0.867

Recurrent Neural Network 0.875 0.861 0.867 0.873

Transformer General 0.864 0.851 0.857 0.861

Transformer Clinical 0.876 0.863 0.868 0.871

The best values are in bold.

TABLE 5 | Ablation: Average performance loss across all the targets relatively to

the best combination model.

Model Relative AUC loss(%)

LSTM CLS 0

LSTM on top layer –9

Concat top layer –12

Concat CLS –2

Mean-pool CLS –2

Min pool CLS –21

Max pool CLS –15

model approach (Clinical BERT) did not result in detectable
improvements in this experiment, so further experimentation
was necessary, as described below.

3) Our attention-based transformer has achieved close to the
best performance only when its underlying language model
was trained on the medical domain, but not on the general
domain and only after we introduced special architectural
modifications to address its input size limit as we further
elaborate below.

Table 5 presents the comparison results of various attention-
based transformer models to deal with its input size limitation
to be able to process the entire discharge summaries, which
are around 6 times longer in average than their 512 token
limit. We present the percentage loss of the performance from
the top model averaged across our targets. The following
can be observed:

1. Applying proper segment combination mechanism such as
considered by us here is crucial. Otherwise, the transformer-
based approach would lag behind the mean-pooling
model in performance.

2. The best performing segment combination model is LSTM
CLS. Its difference from all the other models is statistically
significant at the level of 0.01, except from Concat CLS and
Mean-pool CLS models, which provide similar performance.

3. The models that frieze the transformer during training
perform significantly worse, which shows that the word
embeddings need to be changed from their initial values in
order to reach the optimum. The fully-connected layer itself is
not sufficiently powerful to learn how to transform the initial
embeddings instead.

4. The models based on max or min pooling of CLS vectors
perform significantly worse, which can be explained by the
fact that pooling discards valuable information.

4.7. Discussion
We also experimented with shorter text segments, where the
input size limitation of transformer-based models does not affect
the results. We randomly chose 512-token sub-sequences from
discharge summaries for the training, testing and validation
sets accordingly. We used sliding non-overlapping windows and
treated each portion as an independent data point, while still
enforcing the train and test datasets not to share the segments
from the same summaries.Tables 6, 7 present the performance of
our deep neural models on those shorter portions. Those results
support that on shorter segments, the transformer-based model
always works at least as good as the mean-pooling model. It also
works statistically significantly better in 3 out of 10 targets that
we tried, and is never statistically significantly worse. The overall
average relative AUC difference is around 0.005.

We also compared our deep neural models on the first 512-
tokens (head) of the discharge summaries, according to the
tokenizer from the Clinical transformer that we used, and also
on the last 512-tokens (tail). The results in the Tables 8, 9

demonstrate a strong superiority of the transformer-based model
over mean-pooling. On 7 out of 10 tasks, those differences are
statistically significant, with the overall average AUC difference of
0.019. Considering that AUC ranges from 0.5 (random guessing)
and 1.0 (perfect prediction, not currently achievable even by
humans), the difference around 0.02 is practically important,
especially if related to the lives and costs possibly saved. Similar
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TABLE 6 | Comparison of the deep neural models on a randomly chosen

512-token sub-sequence of discharge summaries for the re-admission prediction

targets.

Patient’s re-

admission

within:

Any time 7 days 30 days 90 days 180 days a year

Models:

Mean-Pooling

Word

Embeddings

0.713 0.630 0.678 0.703 0.709 0.714

CNN 0.707 0.627 0.673 0.697 0.711 0.712

RNN 0.708 0.625 0.675 0.695 0.703 0.711

Transformer

Clinical

0.709 0.646∗ 0.684 0.697 0.712 0.716

*Shows statistically significant difference from the second best result at the level of 0.01.

The best values are in bold.

TABLE 7 | Comparison of the deep neural models on on a randomly chosen

512-token sub-sequence of discharge summaries for patient fatality prediction

targets.

Patient fatality within: 30 days 90 days 180 days a year

Models:

Mean-Pooling Word Embeddings 0.791 0.779 0.785 0.780

CNN 0.787 0.773 0.781 0.778

RNN 0.789 0.774 0.786 0.776

Transformer Clinical 0.808 0.795∗ 0.791 0.788∗

*Shows statistically significant difference from the second best result at the level of 0.01.

The best values are in bold.

results are shown inTables 10, 11when themodels are compared
on the head (first) segments only.

We find the results on the shorter portions of discharge
summaries extremely encouraging! Combined with the previous
paragraph reporting the results on the full summaries, they
support our conclusion that when pre-trained on an appropriate
corpora, transformer-based language models can be a powerful
source of improvement against such competitive baseline
as the word embedding mean-pooling model (Fast-Text),
convolutional and recurrent networks. While some prior or
works appearing in parallel to ours also reported similar
observations, we believe this current work is the most convincing
evidence at the moment. We have also used the strongest
baselines for comparison, those rooted in deep-learning and
known to work well for long document classification (Fast-Text,
Convolutional and Recurrent Networks).

Our experiments have limitations as well. We have not
considered interpretability of our results, leaving it for future
work. One possibility is to evaluate the strength of all the
word n-grams in the documents by removing them one-by-one
during inference stage and looking for those that impact the
classification the most way. Preserving only the most impactful
n-grams and applying rule-based models to themmay be another
line of exploration that may result in an interpretable model.

TABLE 8 | Comparison of the deep neural models on the tail portions (last 512

tokens) of discharge summaries for the re-admission prediction targets.

Patient’s re-

admission

within:

Any time 7 days 30 days 90 days 180 days a year

Models:

Mean-Pooling

Word

Embeddings

0.710 0.633 0.670 0.698 0.711 0.704

CNN 0.711 0.631 0.668 0.695 0.709 0.706

RNN 0.708 0.629 0.672 0.696 0.707 0.701

Transformer

Clinical

0.745∗ 0.639 0.680∗ 0.725∗ 0.727 0.739

*Shows statistically significant difference from the second best result at the level of 0.01.

The best values are in bold.

TABLE 9 | Comparison of the deep neural models on the tail portions (last 512

tokens) of discharge summaries for patient fatality prediction targets.

Patient’s fatality within: 30 days 90 days 180 days a year

Models:

Mean-Pooling Word Embeddings 0.782 0.780 0.782 0.805

CNN 0.778 0.778 0.780 0.806

RNN 0.781 0.777 0.779 0.801

Transformer Clinical 0.849∗ 0.829∗ 0.815∗ 0.822∗

*Shows statistically significant difference from the second best result at the level of 0.01.

The best values are in bold.

TABLE 10 | Comparison of the deep neural models on the head (first 512 tokens)

portions of discharge summaries for the re-admission prediction targets.

Patient’s re-

admission

within:

Any time 7 days 30 days 90 days 180 days a year

Models:

Mean-Pooling

Word

Embeddings

0.746 0.646 0.694 0.707 0.726 0.737

CNN 0.747 0.642 0.692 0.703 0.727 0.735

RNN 0.744 0.644 0.692 0.704 0.722 0.734

Transformer

Clinical

0.761∗ 0.654∗ 0.697∗ 0.737∗ 0.751∗ 0.759∗

*Shows statistically significant difference from the second best result at the level of 0.01.

The best values are in bold.

We have only looked at a single database with one type of text
entries (discharge summaries).We are leaving for future applying
this to other EHR repositories and other types of text records
(e.g., clinical notes). Our model can be also applied to other
tasks such as diagnosis prediction, mortality risk estimation, or
length-of-stay assessment.

We have only considered the simplest combination with non-
text attributes such as patient demographics and admission types,
leaving for future exploring the opportunities along this line
including the use of ICD-9 disease codes. Numerical data can
be also successfully integrated. Integration may be performed
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TABLE 11 | Comparison of the deep neural models on the head (first 512 tokens)

portions of discharge summaries for patient fatality prediction targets.

Patient fatality within: 30 days 90 days 180 days a year

Models:

Mean-Pooling Word Embeddings 0.783 0.788 0.768 0.802

CNN 0.781 0.784 0.762 0.799

RNN 0.780 0.785 0.764 0.798

Transformer Clinical 0.827∗ 0.826∗ 0.788∗ 0.841∗

*Shows statistically significant difference from the second best result at the level of 0.01.

The best values are in bold.

0 20 40 60 80 100

0.6

0.7

0.8
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U
C

Portion of the full dataset (%)

FIGURE 2 | Average performance across the targets of the two best models

when only a portion of the training data used.

TABLE 12 | Average performance loss across all the targets and the decrease in

the resources required for various maximum n-gram lengths.

Maximum

n-gram

length

Relative

AUC loss

(%)

Processing

time

reduction (%)

Allocated

memory

reduction (%)

n = 3 0 0 0

n = 2 –1.1 –23 –33

n = 1 –3.2 –84 –61

FIGURE 3 | Ablating: Average performance loss across all the targets when

the embeddings size is reduced.

at deeper layer, e.g., using non-text attributes as input to
the transformer’s attention computation. Long term contextual
information along the lines of scalable transformers [e.g., (18,

TABLE 13 | Combining the transformer-model with non-text attributes for the

re-admission prediction targets.

Patient’s re-

admission

within:

Any time 7 days 30 days 90 days 180 days a year

Models:

Non-text

attributes

0.694 0.645 0.650 0.671 0.675 0.679

Transformer

Clinical

0.788 0.697 0.741 0.778 0.784 0.793

Combination 0.808∗ 0.704 0.742 0.783 0.786 0.809∗

*Shows statistically significant difference from the second best result at the level of 0.01.

The best values are in bold.

TABLE 14 | Combining the transformer-model with non-text attributes on the

patient fatality prediction targets.

Patient’s fatality within: 30 days 90 days 180 days a year

Models:

Non-text attributes 0.786 0.760 0.735 0.725

Transformer Clinical 0.876 0.863 0.868 0.871

Combination 0.876 0.860 0.883∗ 0.875

*Shows statistically significant difference from the second best result at the level of 0.01.

The best values are in bold.

19)], can be also added that way. However, we have to keep in
mind that any transformer-based model is computationally more
expensive that simpler alternatives such as those considered here,
so full adoption of then in health-care text analytics may still wait
until standard laboratory capabilities sufficiently increase.

4.8. Ablation Studies
We have also tested the impact of the training size on the model
performance. Figure 2 presents the two best models, averaged
across the targets, when only a certain portion of the training
data used. The results suggest the importance of the dataset size
and the possibility of further improvements when more training
data is available. This is consistent with the observed positive
correlation between the number of positive examples and the
performance across the datasets. The transformer is the onemore
sensitive to the amount of training data, which is not surprising
since it has a larger number of parameters to train.

Table 12 presents the average across the targets loss of
the mean-pooling model performance for different values of
maximum length of the n-grams used. Since large n results in
larger vocabulary and embedding matrix, a trade off between the
performance and the resources needed can be observed.

Figure 3 presents the impact of the word embedding size on
the average performance of the mean-pooling model.

4.9. Combining With Non-text Attributes
Although they were not the primary focus of our experiments
presented here, as we noted in our related work section, various
non-text attributes have been successfully used to predict clinical
events. Here, we investigated a model that combines non-text
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and text attributes. Driven by the existing work, while still trying
to preserve simplicity and replicability, we converted various
available non-text attributes from the same Mimic III dataset
into boolean representation and obtained 255 variables capturing
such properties as patient age, gender, demographics, religion,
type of admission (e. g. emergency), discharge location (home,
hospital), type of insurance, but not including those describing
medical treatments.

Tables 13, 14 present the performance of the fully-connected
single-layer network that uses non-text attributes only. It also lists
the performance of the combination of this model and our pre-
trained transformer model. We simply concatenate the boolean
vector representing the non-text attributes with transformer’s
CLS token. The following can be observed: 1) Non-text
attributes provide practically useful classification performance
(AUC greater than 0.70) on several targets, while still are below
our free-text data models. This comparison may change if more
elaborate non-text models are developed or additional attributed
involved, but since non-text models were not the primary focus
of our study, we left that for future research. 2) On 3 out
of 10 targets, the combination adds at least 0.02 AUC to the
performance of the transformermodel, with the differences being
statistically significant at the level of 0.01. Thus, these results
support the conclusion that combining text and non-text data
is promising.

5. CONCLUSIONS

Using a publicly available database with Electronic Healthcare
Records, we have explored several classificationmodels to predict
various clinical events (patient death or re-admission within
certain time intervals) and established that 1) The performance
of our models rooted in deep neural learning exceed those based
on classical bag-of-words by several percentage points. To our
knowledge, this is the first study that convincingly demonstrates
superiority of deep learning over bag-of-words approaches for
predicting clinical events based on raw text. 2) The deep neural
models studied here achieve the accuracy typically acceptable by
the clinicians as of practical use (area under the ROC curve 0.75
and above) thus their predictions can results in saving valuable
resources and patients’ lives. Prior work rarely achieved that level.
3) While for the full length discharge summaries, the model
that averages the word embedding vectors worked on par with
a pre-trained attention-based transformer, the latter performed
significantly better on shorter portions of the summaries. This
is consistent with the observations made in other domains and
suggests that pre-trained language models will eventually win

over healthcare text analytics as they have done so over other
domains. While being complementary to the existing works,
we believe our work is presenting the strongest so far evidence
of this in terms of variety of targets, models compared and
numerical improvements obtained. 4) Our original architectural
additions to the attention-based transformer suggested in this
study to overcome its input size limit are crucial to achieve
top performance. Those modifications are domain agnostic and
thus can be used in other text classification applications as
well, which we are going to explore in future research, for
example for document understanding tasks, question answering
and information retrieval, which also often has to handle larger
documents. 5) We have also successfully demonstrated how non-
text attributes can be combined with text to gain additional
improvements for some tasks.We are not aware of any past works
combining transformers and non-text inputs for clinical event
prediction. 6) We have performed extensive ablation studies
showing the impact of the training size and evaluated our
models implemented in simplified configurations which are less
resource-intensive.

Thus, the results of our work can be directly applied by
medical practitioners, e.g., by flagging specific cases as of being
of higher risks for future complications, so deserving additional
consideration before a discharge. While the physicians may
not have time to review all the patient history when making
important decisions, a trained algorithm can do that in a fraction
of a second.
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