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Transformer model architectures have revolutionized the natural language
processing (NLP) domain and continue to produce state-of-the-art results in text-
based applications. Prior to the emergence of transformers, traditional NLP
models such as recurrent and convolutional neural networks demonstrated
promising utility for patient-level predictions and health forecasting from
longitudinal datasets. However, to our knowledge only few studies have explored
transformers for predicting clinical outcomes from electronic health record (EHR)
data, and in our estimation, none have adequately derived a health-specific
tokenization scheme to fully capture the heterogeneity of EHR systems. In this
study, we propose a dynamic method for tokenizing both discrete and continuous
patient data, and present a transformer-based classifier utilizing a joint embedding
space for integrating disparate temporal patient measurements. We demonstrate
the feasibility of our clinical AI framework through multi-task ICU patient acuity
estimation, where we simultaneously predict six mortality and readmission
outcomes. Our longitudinal EHR tokenization and transformer modeling
approaches resulted in more accurate predictions compared with baseline
machine learning models, which suggest opportunities for future multimodal data
integrations and algorithmic support tools using clinical transformer networks.
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1. Introduction

Through the course of a typical intensive care unit (ICU) admission, a variety of

patient-level data is collected and recorded into electronic health records (EHR)

systems. Patient data is diverse, including measurements such as vital signs, laboratory

tests, medications, and clinician-judged assessment scores. While primarily used for ad-

hoc clinical decision-making and administrative tasks such as billing, patient-centric

data can also be used to build automated machine learning systems for assessing overall

patient health and predicting recovering or worsening patient trajectories.
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Patient mortality risk is often used as a proxy for overall ICU

patient acuity, both in traditional illness severity scores like SOFA

(1, 2) and more recent machine learning approaches such as

DeepSOFA (3). Whether manually calculated or algorithmically

computed, nearly all of these systems rely on measurements

from a set of handpicked clinical descriptors thought to be

most indicative of overall patient health. Given the breadth of

data available in modern EHR systems, there is untapped

potential for enhanced patient modeling contained in the large

amount of unused patient data.

Several recent studies have demonstrated the predictive

accuracy and patient modeling capacity of deep learning

implementations in healthcare, using models such as recurrent

neural networks (RNN) (3–8) and convolutional neural

networks (CNN) (9, 10).

Recently, Transformer models (11) have garnered increased

attention in the deep learning community due to their state-of-

the-art results on a variety of natural language processing (NLP)

tasks, particularly when using schemes such as Bidirectional

Encoder Representations from Transformers (BERT) (12).

There are also more recent advances in analyzing frequency of

data in Frequency Enhanced Decomposed Transformer Zhou

et al. (13) that exploits the sparseness of time series data.

From a temporal perspective, one advantage the Transformer

offers is its parallel processing characteristics. Rather than

processing data points sequentially, the Transformer views all

available data at once, modeling attention-based relationships

between all input time steps. In contrast, models such as RNNs

require distinct temporal separation within input sequences,

and usually demand a regular sample interval between adjacent

time steps. As clinical EHR data is recorded at highly irregular

frequency and is often missing measurements, a large amount

of data preprocessing is typically required in the form of

temporal resampling to a fixed frequency, and an imputation

scheme to replace missing values. Furthermore, given that

several EHR measurements are often recorded at the same

timestamp, typical machine learning workflows aggregate

temporally adjacent measurements into mean values contained

in resampled time step windows, or perform random shuffling

procedures before training models. Given its parallel and

fundamentally temporally agnostic attributes, the Transformer

is capable of distinctly processing all available measurements,

even those occurring at the same timestamp. Additionally, the

Transformer is able to process whichever data happens to be

available, reducing the need for potentially bias-prone

techniques to account for data missingness.

In this study, we showcase the feasibility of a highly flexible

Transformer-based patient acuity prediction framework in the

critical care setting. Our contributions can be summarized by

the following:

• Our flexible system design incorporates a diverse set of EHR

input data that does not require a priori identification of
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clinically relevant input variables, and can work with any

data contained in EHR platforms.

• In contrast to recent Transformer approaches that either use

discrete medical concepts (14–16) or continuous

measurements from a handpicked set of features (17), we

introduce a data embedding scheme that jointly captures

both concept and corresponding measurement values of a

wide variety of disjoint clinical descriptors.

• In our novel embedding module, we introduce a mechanism

for combining both absolute and relative temporality as an

improvement over traditional positional encoding.

• We present an input data scheme with minimal

preprocessing, obfuscating the need for potentially biased

temporal resampling or missing value imputation common

in many other sequential machine learning approaches.

• We expand BERT’s [CLS] token for classification into several

distinct tokens for predicting multiple-horizon patient

mortality and ICU readmission in a novel multi-task

learning environment.

• Rather than typical concatenation with sequential

representation, we incorporate static patient information in

a novel way using a global self-attention token so that

every sequential time step is compared with the static pre-

ICU representation.

• We show that the Longformer (18) can be applied to long

EHR patient data sequences to minimize required

computation while retaining superior performance.

2. Methods

2.1. Cohort

The University of Florida Integrated Data Repository was

used as an honest broker to build a single-center longitudinal

dataset from a cohort of adult patients admitted to intensive

care units at University of Florida Health between January 1st,

2012 and September 22nd, 2019. Our project was approved by

the Institutional Review Board of the University of Florida

and the University of Florida Privacy Office (IRB201901123).

Full cohort statistics is described in Table 1.

We excluded ICU stays lasting less than 1 h (to reduce EHR

data artifacts and provide predictive models with adequate

patient data) or more than 10 days, to limit outliers based on

tokenized sequence length and following several existing

studies using ICU encounters for predictive modeling (19).

Excluding patients based on length of stay resulted in roughly

95% of the original ICU cohort. Our final cohort consisted of

73,190 distinct ICU stays from 69,295 hospital admissions and

52,196 unique patients. The median length of stay in the ICU

was 2.7 days.

We divided our total cohort of ICU stays into a

development cohort of 60,516 ICU stays (80%) for training

our models, and a validation cohort of 12,674 ICU stays
frontiersin.org
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TABLE 1 Summary statistics for experimental ICU cohorts.

Development
cohort

(n = 60, 516)

Validation
cohort

(n = 12, 674)

Patients, n 41,881 10,315

Hospital encounters, n 57,168 12,127

Age, years, median (25th, 75th) 61.0 (49.0, 71.0) 62.0 (49.0, 73.0)

Female, n (%) 27,380 (45.2) 5,616 (44.3)

Body mass index, median (25th,
75th)

26.9 (23.0, 32.0) 27.3 (23.3, 32.2)

Hospital length of stay, days,
median (25th, 75th)

6.7 (3.6, 12.1) 6.4 (3.3, 11.5)

ICU length of stay, days, median
(25th, 75th)

2.8 (1.5, 5.1) 2.9 (1.6, 5.5)

Time to hospital discharge, days,
median (25th, 75th)

1.9 (0.0, 4.8) 1.1 (0.0, 4.1)

Hispanic, n (%) 2,130 (3.5) 539 (4.3)

Non-English speaking, n (%) 1,092 (1.8) 233 (1.8)

Marital status, n (%)

Married 26,084 (43.1) 5,457 (43.1)

Single 21,844 (36.1) 4,931 (38.9)

Divorced 11,905 (19.7) 2,142 (16.9)

Smoking status, n (%)

Never 20,180 (33.3) 4,653 (36.7)

Former 19,378 (32.0) 4,167 (32.9)

Current 12,094 (20.0) 2,326 (18.4)

Insurance status, n (%)

Medicare 31,447 (52.0) 6,543 (51.6)

Private 13,115 (21.7) 2,912 (23.0)

Medicaid 10,208 (16.9) 1,999 (15.8)

Uninsured 5,746 (9.5) 1,220 (9.6)

Comorbidities, n (%)

Charlson comorbidity index,
median (25th, 75th)

2.0 (0.0, 4.0) 2.0 (0.0, 4.0)

Myocardial infarction 7,537 (12.5) 1,985 (15.7)

Congestive heart failure 14,897 (24.6) 3,380 (26.7)

Peripheral vascular disease 10,005 (16.5) 2,185 (17.2)

Cerebrovascular disease 8,981 (14.8) 1,720 (13.6)

Chronic pulmonary disease 17,938 (29.6) 3,473 (27.4)

Metastatic carcinoma 3,377 (5.6) 812 (6.4)

Cancer 8202 (13.6) 1,808 (14.3)

Mild liver disease 4,745 (7.8) 960 (7.6)

Moderate/severe liver disease 1,856 (3.1) 374 (3.0)

Diabetes without
complications

14,137 (23.4) 2,395 (18.9)

Diabetes with complications 5,052 (8.3) 1,736 (13.7)

AIDS 442 (0.7) 53 (0.4)

Dementia 1,692 (2.8) 559 (4.4)

Paraplegia/hemiplegia 3,465 (5.7) 769 (6.1)

Peptic ulcer disease 1,110 (1.8) 187 (1.5)

Renal disease 11,878 (19.6) 2,493 (19.7)

(continued)

TABLE 1 Continued

Development
cohort

(n = 60, 516)

Validation
cohort

(n = 12, 674)

Rheumatologic disease 1,794 (3.0) 342 (2.7)

Neighborhood characteristics,
median (25th, 75th)

Total population, n� 103 17.0 (10.6, 26.4) 17.6 (10.6, 26.7)

Distance to hospital, km 39.3 (17.9, 69.1) 42.4 (20.2, 76.5)

Median income, dollars �103 40.1 (33.8, 46.7) 40.1 (35.1, 47.4)

Poverty rate, % 19.6 (14.0, 27.7) 19.3 (13.7, 26.7)

Rural area, n 22543 (37.3) 4691 (37.0)

Clinical outcomes, n (%)

ICU readmission before
hospital discharge

3,583 (5.9) 613 (4.8)

Inpatient mortality 5,813 (9.6) 1,131 (8.9)

7-day mortality 5,237 (8.7) 1,022 (8.1)

30-day mortality 7,056 (11.7) 1,380 (10.9)

90-day mortality 9,197 (15.2) 1,785 (14.1)

1-year mortality 12,991 (21.5) 2,288 (18.1)
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(20%) for evaluating their predictive performance. 10% of the

development set was used for within-training validation and

early stopping. The cohort was split chronologically, where

the earliest 80% of ICU stays was used for training, and the

most recent 20% used for evaluation. To ensure the same

patient did not appear in both development and validation

sets, all ICU stays of patients with multiple admissions

spanning the cohort threshold were grouped into the

development cohort.
2.2. Data

We extracted patient data from several EHR data sources:

sociodemographics and information available upon hospital

admission, summarized patient history, vital signs, laboratory

tests, medication administrations, and numerical assessments

from a variety of bedside scoring systems. We did not target

or manually select any specific ICU variables, instead using all

such data contained in our EHR system. A full list of

variables used in our experiments is shown in Table 2.

Static data: For each ICU stay, we extracted a set of non-

sequential clinical descriptors pertaining to patient

characteristics, admission information, and a summarized

patient history from the previous year. Patient-level features

included several demographic indicators, comorbidities,

admission type, and neighborhood characteristics derived

from the patient’s zip code. Patient history consisted of a

variety of medications and laboratory test results up to one

year prior to hospital admission (Table 2). Historical patient
frontiersin.org
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TABLE 2 Summary of variables used in Transformer experiments.

Variable Type

Patient demographics

Age Static

Sex Static

Ethnicity Static

Race Static

Language Static

Marital status Static

Smoking status Static

Insurance provider Static

Patient residential information

Total population Static

Distance from hospital Static

Rural/Urban Static

Median income Static

Proportion black Static

Proportion hispanic Static

Percent below poverty line Static

Patient admission information

Height Static

Weight Static

Body mass index Static

17 comorbidities present at Admission Static

Charlson comorbidity index Static

Presence of chronic kidney disease Static

Admission type Static

Patient history: medicationsa

ACE inhibitors Static

Aminoglycosides Static

Antiemetics Static

Aspirin Static

Beta blockers Static

Bicarbonates Static

Corticosteroids Static

Diuretics Static

NSAIDS Static

Vasopressors/Inotropes Static

Statins Static

Vancomycin Static

Nephrotoxic drugs Static

Patient history: laboratory test resultsb

Serum hemoglobin Static

Urine hemoglobin Static

Serum glucose Static

Urine glucose Static

Urine red blood cells Static

Urine protein Static

Serum urea nitrogen Static

(continued)

TABLE 2 Continued

Variable Type

Serum creatinine Static

Serum calcium Static

Serum sodium Static

Serum potassium Static

Serum chloride Static

Serum carbon dioxide Static

White blood cells Static

Mean corpuscular volume Static

Mean corpuscular hemoglobin Static

Hemoglobin concentration Static

Red blood cell distribution Static

Platelets Static

Mean platelet volume Static

Serum anion gap Static

Blood pH Static

Serum oxygen Static

Bicarbonate Static

Base deficit Static

Oxygen saturation Static

Band count Static

Bilirubin Static

C-reactive protein Static

Erythrocyte sedimentation rate Static

Lactate Static

Troponin T/I Static

Albumin Static

Alaninen Static

Asparaten Static

ICU vital signs

Systolic blood pressurec Temporal

Diastolic blood pressurec Temporal

Mean arterial pressurec Temporal

Heart rate Temporal

Respiratory rate Temporal

Oxygen flow rate Temporal

Fraction of inspired oxygen (FIO2) Temporal

Oxygen saturation (SPO2) Temporal

End-tidal carbon dioxide (ETCO2) Temporal

Minimum alveolar concentration (MAC) Temporal

Positive end-expiratory pressure (PEEP) Temporal

Peak inspiratory pressure (PIP) Temporal

Tidal volume Temporal

Temperature Temporal

ICU Assessment Scoresd

ASA physical status classification Temporal

Braden scale Temporal

(continued)
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TABLE 2 Continued

Variable Type

Confusion assessment method (CAM) Temporal

Modified early warning score (MEWS) Temporal

Morse fall scale (MFS) Temporal

Pain score Temporal

Richmond agitation-sedation scale (RASS) Temporal

Sequential organ failure assessment (SOFA) Temporal

ICU laboratory testse

106 distinct lab tests present in EHR system Temporal

ICU medicationse

345 distinct medications present in EHR system Temporal

aExtracted features included total counts of administered medications up to

one year prior to hospital admission.
bExtracted features included total counts of recorded laboratory test results

and minimum, maximum, mean, and standard deviation of measurement

values up to one year prior to hospital admission. Both serum and urine-

based tests extracted separately when available.
cInvasive and non-invasive readings for systolic blood pressure, diastolic blood

pressure, and mean arterial pressure were treated as distinct event tokens.
dFor assessment scores with multiple sub-components, each component was

treated as a distinct timestamped measurement, resulting in 30 such

assessment measurements.
eWe retained distinct laboratory tests and medications that were administered

in at least 1% of the training cohort of ICU stays.

Shickel et al. 10.3389/fdgth.2022.1029191
measurement features were derived from a set of statistical

summaries for each descriptor (minimum, maximum, mean,

standard deviation).

Temporal data: For each ICU stay, we extracted all available

vital signs, laboratory tests, medication administrations, and

bedside assessment scores recorded in our EHR system while

the patient was in the ICU (Table 2). We refer to each

extracted measurement as a clinical event. Each event was

represented as a vector containing the name of the

measurement (e.g. “noninvasive systolic blood pressure”), the

elapsed time from ICU admission, the current measured

value, and eight cumulative value-derived features

corresponding to prior measurements of the same variable

earlier in the ICU stay (mean, median, count, minimum,

maximum, standard deviation, first value, elapsed time since

most recent measurement). For bedside assessment scores

with multiple sub-components, we treated each sub-

component as a distinct measurement. Invasive and

noninvasive measurements were treated as distinct tokens. We

excluded ICU stays with sequence lengths longer than 12,000

tokens, and the resulting mean sequence length in our cohorts

was 1,996.

Data processing: Categorical features present in the pre-

ICU static data were converted to one-hot vectors and

concatenated with the remaining numerical features. Missing

static features were imputed with training cohort medians, but

no such imputation was required for the tokenized temporal

ICU data. Binary indicator masks were computed and
Frontiers in Digital Health 05
concatenated with static features to capture patterns of

missingness.

Static features were standardized to zero mean and unit

variance based on values from the training set. For each

variable name in the temporal ICU data, corresponding

continuous measurement value features were individually

standardized in the same manner. ICU measurement

timestamps were converted to number of elapsed hours from

ICU admission, and were similarly standardized based on

training cohort values.

ICU measurement names were converted to unique

integer identifiers in a similar manner to standard

tokenization mapping procedures in NLP applications. Each

temporal clinical event was also associated with an integer

position index. While similar to the positional formulations

in NLP applications, we introduce one key distinction that

is more suitable for Transformers based on EHR data: we

do not enforce the restriction that positional indices are

unique, and if two clinical events occurred at the same EHR

timestamp, they are associated with the same sequential

position index.

Each temporal measurement token consisted of integer

positional identifier, integer variable identifier, continuous

elapsed time from ICU admission, and eight continuous

features extracted from current and prior measurement values.

Following data extraction and processing, each ICU stay was

associated with two sets of data: (1) a single vector xs [ R718�1

of 718 static pre-ICU features, and (2) a matrix of T temporal

ICU measurements xt [ RT�12 including token position and

identifier. Across our entire population, the temporal ICU

measurements included 19 unique vital signs, 106 unique

laboratory tests, 345 unique medication administrations, and

29 bedside assessment score components; however, each ICU

stay only included a subset of such total variables, and its

corresponding temporal sequence only included what was

measured during the corresponding ICU stay. One of the

benefits of our proposed EHR embedding framework is the

lack of resampling, propagation, imputation, or other such

temporal preprocessing typically performed in related

sequential modeling tasks.
2.3. Clinical outcomes

For each ICU stay, we sought to predict six clinical

outcomes related to patient illness severity: ICU readmission

within the same hospital encounter, inpatient mortality, 7-day

mortality, 30-day mortality, 90-day mortality, and 1-year

mortality. Our model is formulated as a multi-task design,

and simultaneously estimates risk for all six clinical prediction

targets.
frontiersin.org
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2.4. Model architecture

The primary driver behind our ICU patient acuity

estimation model is the transformer encoder (11). Our

modified model utilizes the global and sliding window

mechanism introduced by the Longformer (18) along with

special classification tokens from BERT (12). Figure 1 shows

a high-level overview of our Transformer architecture. Our

longitudinal tokenization pipeline and Transformer modeling

architecture code will be available upon request for interested

researchers.

Novel embedding: In typical Transformer implementations,

one-dimensional input sequences consist of integer-identified

tokens (such as textual tokens or discrete clinical concepts)

that are embedded using a lookup table, after which a

positional encoding vector is added to inject local temporality.

For existing applications of Transformers with EHR data, the

values of a given measurement are not factored into its

representation.
FIGURE 1

Overview of our proposed generalized EHR Longformer network for simul
information includes summarized history of patient medications and labo
hospital admission. Temporal ICU measurements take the flexible form o
timestamp; t, elapsed time from ICU admission, f, unique measurement ide
values). Task-specific [CLS] tokens are assigned t = time of prediction and ~

of Longformer layers with sliding self-attention windows. Global attention
concatenation of each layer’s [CLS] representations are used for a given
feedforward network and nonlinear activations. FC: fully-connected layers.

Frontiers in Digital Health 06
Our embedding scheme introduces three novelties that offer

improvements for clinical prediction tasks. First, positional

indices are derived from EHR record times and are not

unique (see Section 2.2), allowing for multiple tokens to share

the same positional index and resulting positional encoding.

Rather than enforce an arbitrary sequence order or implement

a random shuffling procedure for simultaneous tokenized

events, this modification is more flexible with respect to

clinical workflows.

Second, in addition to novel framing of relative and local

temporal relationships through positional encoding

modifications, each clinical event token also explicitly includes

absolute temporality in the form of a feature indicating the

elapsed hours from ICU admission. We hypothesized that the

injection of both relative and absolute temporality would

allow the Transformer to better model patient trajectories.

Finally, each clinical event in our tokenized input sequences

consists of several continuous measurement values in addition

to the discrete token identifiers (see Section 2.2). To our
taneously predicting multiple patient outcomes in the ICU. Pre-ICU
ratory tests, sociodemographic indicators, and features relating to
f tuples: (p, non-unique positional index of clinical event based on
ntifier integer; ~v, set of continuous features derived from measured
v ¼ 0. Tokens are individually embedded and passed through a stack
is applied to static feature representation and prediction tokens. The
task to predict the desired mortality risk. Not shown: Transformer
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knowledge, no other work integrates both discrete and

continuous data in this manner, with the majority of recent

research opting for discrete medical codes only (Section 4.2).

We augment discrete variable tokens with continuous

measurement values into our embedding to better capture

recovery or worsening trends as a patient progresses through

an ICU stay.

Our embedding module consists of (1) a traditional lookup

table used for measurement name identifier, (2) a sinusoidal

positional embedding table, and (3) a single fully-connected

layer for embedding absolute time and value-derived features.

The final sequence embedding is the summation of three

embedded vectors: (1) the embedding of absolute time with

corresponding cumulative values, (2) the measurement token

identifier embedding, and (3) a traditional sinusoidal

positional encoding. In our implementation, the sinusoidal

positional encoding is based on the position of unique

measurement times in the input sequence: for an example

sequence of measurement hours [0:1, 0:2, 0:2, 0:3, 0:3], the

positional indices are computed as [0, 1, 1, 2, 2].

Novel multi-task global tokens: In the original BERT

implementation, a single special [CLS] token is prepended to

input sequences that is meant to capture a global

representation of the entire sequence. We extend this notion

by prepending each sequence with 6 such special tokens: one

for each of our clinical outcomes. As each token in our data

scheme consists of a (time, name, values) 12-tuple, we set

time of each [CLS] token equal to the total ICU length of stay

and all values equal to zero. The special token identifiers are

embedded in a similar fashion to other ICU measurement

tokens. In our experiments, we include an additional

prediction target for long-term hospital readmission that is

used for regularization, but not included in our patient acuity

estimation. In the Longformer implementation in our

encoder, we set each of the multi-task tokens to compute

global attention, so that self-attentions are computed among

all sequence elements for each clinical outcome token.

Novel inclusion of static patient data: In many sequential

models for clinical prediction, a final encounter representation

is obtained by concatenating the pre-sequence static patient

representation with the sequential representation. In our

work, we prepend each ICU sequence with the representation

obtained from passing the static patient information vector

through a fully-connected network. We assign this static

token as global, so that every time step computes attention

with the static data. We hypothesized that this more fine-

grained injection of patient information at every time step

would improve the capacity of our model to learn important

and more personalized patient trajectory patterns.

Model details: Our final model consisted of an embedding

layer, followed by 8 Longformer layers, and a separate linear

prediction layer for each of our 6 clinical outcomes. For

making a task-specific prediction, the task-specific linear layer
Frontiers in Digital Health 07
uses the concatenation of representations corresponding to its

special [CLS] token at each of the 8 layers. In our initial

Longformer implementation, we used a hidden size of 128, a

feedforward size of 512, 8 attention heads, a sliding window

of size 128, dropout of 0.1, and a batch size of 21.

Hyperparameters were chosen with respect to hardware

constraints; hyperparameter optimization will be a focus of

future work.

Experiment details: Models were trained using a

development set of 60,516 ICU stays corresponding to 80% of

our total ICU cohort. 10% of this development set was used

for early stopping based on the mean AUROC among all six

clinical outcomes and a patience of four epochs. All

experiments were conducted on a local Linux server equipped

with two i7-7820X 3.6 GHz CPUs, 3 NVIDIA GeForce RTX

2080Ti GPUs, 512GB SSD storage, and 128GB RAM. Models

were designed and run using the PyTorch and Hugging Face

Python libraries.

In this feasibility study, we compared performance against

six other ICU prediction models:

• Longformer using tokenized data sequences with only

discrete code identifiers. In this variant of our proposed

framework, we do not include the continuous

measurement values in the representation of each event

token.

• Recurrent neural network (RNN) with gated recurrent units

(GRU) using continuous multivariate time series inputs. In

this experiment, the flexibility of our tokenization scheme

is removed, and more traditional “tabularized” input data

sequences were constructed where each variable is assigned

a distinct column. Sequences were constructed with

continuous current values and resampled to 1-hour

frequency to align with common practice found in

literature. Multi-task predictions were drawn from the final

hidden state of the GRU encoder. Static patient

information was concatenated with the sequence

representation and fed through fully-connected layers

before classification.

• GRU with attention mechanism. This variant is identical to

the above, but with the addition of a simple attention

mechanism over the hidden states of the GRU. States are

weighted by alignment scores and summed to yield a final

attention-based sequential representation.

• Tokenized GRU with attention. In this final experimental

setting, we used the same novel EHR embedding and

tokenization approach as with our Transformer model

architecture (see Section 2.2), but instead use a GRU with

attention mechanism in place of the Transformer model.

• CatBoost (20) gradient boosting algorithm. The algorithm

employs gradient boosting on decision trees for both

regression and classification tasks. Gradient boosting

algorithms have shown benefits over random forests and
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require comparatively less hyperparameter tuning for

optimal performance. For this experiment, the embedding

layers are removed and the CatBoost model is trained on

samples containing both the pre-ICU information and

concatenated ICU measurements.

• XGBoost (21) gradient boosting algorithm. This experiment

and associated data processing is identical to CatBoost,

except an XGBoost model is used for prediction.
3. Results

At present time, the primary aim of our novel mortality

prediction model is not to show state-of-the-art improvements

in model accuracy; rather, we present this work as a feasibility

study for future research. We believe our novel modifications

of existing Transformer architectures for use in clinical EHR

applications will result in highly flexible and more

personalized patient representations and predictions across a

variety of clinical tasks.

In this first iteration of our experiments, we did not perform

any hyperparameter optimization, instead choosing sensible

settings that both highlight the novel aspects of the

architecture and work with our hardware constraints. In

passing, we note that often parameter tuning is an essential

component of enhancing performance, and future iterations

of this work will focus on optimizing crucial parameters such

as learning rate, dropout, number of self-attention heads,

number of self-attention layers, hidden dimension, and size of

the sliding self-attention window.

Our results are shown in Table 3. Our Transformer

architecture with novel EHR embedding and tokenization

scheme yielded slightly superior mean AUROC (0.929) across

all six clinical prediction tasks, with individual task AUROC

ranging from 0.843 (ICU readmission) to 0.983 (7-day

mortality). The Transformer using tokenized embeddings that

omit continuous measurement values resulted in the lowest

mean AUROC (0.773) and worst performance across most of

the clinical outcomes, ranging from 0.512 (ICU readmission)
TABLE 3 Multi-task prediction results expressed as area under the receiver

Model Data Mean

Transformer Tokenized events (discrete only) 0.773

Transformer Tokenized events + continuous measurement values 0.929

GRU Resampled multivariate time series 0.900

GRU with attention Resampled multivariate time series 0.909

GRU with attention Tokenized events + continuous measurement values 0.927

CatBoost Tokenized events + continuous measurement values 0.863

XGBoost Tokenized events + continuous measurement values 0.836
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to 0.900 (7-day mortality). It outperformed the XGBoost

model for inpatient and 7-day mortality.

In terms of GRU baseline models, the traditional model and

data processing scheme resulted in the lowest baseline accuracy,

with mean AUROC of 0.900 and task AUROC ranging from

0.750 (ICU readmission) to 0.972 (7-day mortality). The

augmentation of this model and data scheme with traditional

attention mechanism improved the performance to a mean

AUROC of 0.909.

The best GRU baseline model used our novel EHR

embedding, tokenization, and representation pipeline. This

model yielded a mean AUROC of 0.927 with individual task

AUROC ranging from 0.831 to 0.982. It performed best for

predicting 30-day mortality and 90-day mortality, although

the relative difference compared with the transformer is

minimal. For the gradient boosting algorithms, CatBoost

outperformed XGBoost across all outcomes (mean AUROC:

0.863 vs. 0.836) except for predicting ICU readmission

(AUROC: 0.759 vs. 0.762). The CatBoost model performed

similarly to the baseline GRU model for all other outcomes.

The tree-based models were predominantly outperformed by

GRU models with attention.

Across all models and data representation schema, ICU

readmission proved the most difficult task. Among the

multiple prediction horizons for patient mortality, models

were best able to predict 7-day mortality, followed by

inpatient mortality, 30-day mortality, 90-day mortality, and 1-

year mortality.
4. Discussion

4.1. Principal findings

This work presents a novel ICU acuity estimation model

inspired by recent breakthroughs in Transformer

architectures. Our proposed model framework incorporates

several novel modifications to the existing Transformer

architecture that make it more suitable for processing EHR
operating characteristic curve (AUROC).

Readmission Mortality

ICU Inpatient 7-
Day

30-
Day

90-
Day

1-
Year

0.512 0.889 0.900 0.831 0.777 0.727

0.843 0.978 0.983 0.953 0.923 0.892

0.750 0.960 0.972 0.938 0.907 0.872

0.770 0.965 0.975 0.946 0.914 0.882

0.831 0.977 0.982 0.954 0.925 0.891

0.759 0.901 0.915 0.890 0.868 0.847

0.762 0.867 0.878 0.859 0.833 0.817
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data of varying modalities. Through initial feasibility

experiments, our model was on par with, or outperformed,

common variants of RNN baselines, and we feel our approach

holds promise for incorporating additional EHR-related

outcome prediction tasks and additional sources of EHR input

data.

One of the advantages of our work is that input elements are

treated as distinct. For example, if heart rate, respiratory rate,

and SPO2 were recorded at the same timestamp in an EHR

system, our framework operates on these individual elements,

rather than combining them into a single aggregated time step

as in similar RNN or CNN-based work. From an

interpretability standpoint, combined with the inherent self-

attention mechanisms of the Transformer, isolation of inputs

allows for improved clarity with respect to important or

contributing clinical factors. While one area of recent

sequential interpretability research involves multivariate

attribution for aggregated time steps (5, 22), Transformer-

based approaches such as ours obfuscate the need for

multivariate attribution, as attentional alignment scores are

assigned to individual measurements. This property highlights

the potential for EHR Transformers to shed increased

transparency and understanding for clinical prediction tasks

built upon complex human physiology.

Furthermore, while many sequential applications of deep

learning to EHR (including recent implementations of

Transformer techniques) make use only of discrete clinical

concepts, our proposed framework extends the

representational capacity by integrating continuous

measurement values alongside these discrete codes and events.

The inclusion of continuous measurement values represents

an important step forward, as the measured result of a clinical

test or assessment can provide crucial information alongside a

simple presence indicator that can help complex models

develop a better understanding of patient state and overall

health trajectory.

Given the flexible nature of our Transformer framework,

each patient input sequence only contains the measurements

that were made during the ICU encounter. The advantages

for EHR applications are twofold. First, in traditional RNN or

CNN-based work, the distance between time steps is assumed

to be fixed, and this is typically achieved by resampling input

sequences to a fixed frequency by aggregating measurements

within resampled windows, and propagating or imputing

values into windows without present values. Such a scheme

has the potential for introducing bias, and when using our

novel EHR embedding paradigm and Transformer-based

modeling approach, the problem of missing values is made

redundant given the explicit integration of both absolute and

relative temporality for each irregularly measured clinical

event. Additionally, in typical deep sequential applications

using EHR data, the number of input features at each time

step must be constant. This is achieved by an a priori
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identification and extraction of a subset of clinical descriptors

thought to be relevant indicators for a given prediction task.

As we have shown, when using a Transformer-based

approach with our flexible tokenization scheme, any and all

EHR measurements can be easily incorporated into the

prediction framework, even when some types do not exist for

a given patient or ICU encounter, and do not necessitate bias-

prone imputation techniques.

While the Transformer offers several benefits over existing

sequential deep learning models such as the RNN, it is not

without drawbacks. Because the self-attention mechanism is

highly parallelizable and does not require step-wise iterative

processing of a sequence (unlike the RNN), there is a tradeoff

between faster computation and a much larger memory

footprint (complexity O(n2) without scope modifications). As

such, Transformers may be infeasible to implement in

training environments with limited computational resources.

In our approach, we introduced a novel method for

incorporating static, pre-sequential patient information and

patient history into the overall prediction model. Typically,

such static information is concatenated with a final sequential

representation before making a prediction. We instead include

static information as a distinct token in the input sequence,

and assign global attention using the Longformer self-

attention patterns. In effect, static patient-level information is

injected into the self-attention representation of every ICU

measurement, allowing more fine-grained and personalized

incorporation of changes in overall patient health trajectories.

Another novel contribution we feel can be applied to even

non-EHR tasks is the expansion of the special BERT

classification token into a separate token per classification

target in a multi-task prediction setting. Given the global self-

attention patterns between all task tokens and every sequential

input element, such a scheme allows the model to develop

task-specific data representations that can additionally learn

from each other.

As with other retrospective machine learning models for

predicting patient outcomes from longitudinal data, our

transformer framework offers the potential for augmenting

clinical decision-making with dynamic data-driven risk

estimations that can be used to help forecast patient trajectory

and guide treatment and care strategies. Intended not to

mandate particular course of action, tools such as ours can

complement existing standards of care and provide clinicians

with additional support.
4.2. Related work

4.2.1. Transformer models
First introduced by Vaswani et al. (11) for machine

translation tasks, the Transformer is a deep learning

architecture built upon layers of self-attention mechanisms.
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The Transformer views attention as a function of keys K,

queries Q, and values V. In the work of Vaswani et al. (11),

all three elements came from the same input sequence, and is

why their style of attention is referred to as self-attention. In

a similar manner to previously described works, compatibility

between a key and query is used to weight the value, and in

the case of self-attention, each element of an input sequence

is represented as a contextual sum of the alignment between

itself and every other element. Similar to the memory

networks of Sukhbaatar and Szlam (23), the Transformer also

involves the addition of a positional encoding vector to

preserve relative order information between input tokens.

An end-to-end Transformer architecture typically includes

both an encoder and decoder component. While critical for

many NLP tasks such as machine translation, our architecture

utilizes only the Transformer encoder, which encodes input

sequences into hidden representations that are subsequently

used for predicting patient mortality.

A comprehensive overview of the Transformer and BERT is

beyond the scope of this section; we refer interested readers to

Vaswani et al. (11) and Devlin et al. (12), respectively.

Briefly, the first stage of a Transformer encoder typically

includes an embedding component, where each input sequence

element is converted to a hidden representation that is fed into

the remainder of the model. In its original NLP-centered

design where inputs are sequences of textual tokens, a

traditional embedding lookup table is employed to convert

such tokens into continuous representations. Unlike similar

sequential models like RNNs or CNNs, the Transformer is

fundamentally temporally agnostic and processes all tokens

simultaneously rather than sequentially. As such, the

Transformer embedding module must inject some notion of

temporality into its element embeddings. In typical

Transformer implementations, this takes the form of a

positional encoding vector, where the position of each element

is embedded by sinusoidal lookup tables, which is subsequently

added to the token embeddings. The primary aim of such

positional embeddings is to allow the model to understand

local temporality between nearby sequence elements.

At each layer of a Transformer encoder, a representation of

every input sequence element is formed by summing self-

attention compatibility scores between the element and every

other element in the sequence. Typical with other deep

learning architectures, as more layers are added to the

encoder, the representations become more abstract.

The recent NLP method BERT (12) is based on

Transformers, and at present time represent state of the art in

a variety of natural language processing tasks. In addition to

its novel pretraining scheme, BERT also prepends input

sequences with a special [CLS] token before a sequence is

passed through the model. The goal of this special token is to

capture the combined representation of the entire sequence,

and for classification tasks is used for making predictions.
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Transformers are also being used in computer vision as well,

with great success. For example, videos especially benefit from

Transformers which can learn the temporal and spatial

features of vision data. They have shown to before the same

or better for vision tasks, while also reducing vision-specific

induction bias Han et al. (24). For video data, they can be

used for trajectory tracking of objects like balls Patrick et al.

(25) using attention on objects in images, as well as

approximate self attention to reduce quadratic dependency.

While the Transformer is in one sense more efficient than

its sequential counterparts due to its ability to parallelize

computations at each layer, one of the main drawbacks is its

required memory consumption. Since each input element of a

sequence of length n must be compared with every other

input element in the sequence, typical Transformer

implementations require memory on the order of O(n2).

While acceptable for relatively short sequences, the memory

consumption quickly becomes problematic for very long

sequences. Decreasing the memory requirement of

Transformers is an area of ongoing research.

One potential solution was proposed by Beltagy et al. (18) in

their Longformer architecture. Rather than computing full n2

self-attentions, they propose a sliding self-attention window of

specified width, where each input sequence element is

compared only with neighboring sequence elements within

the window. They extend this to include user-specified global

attention patterns (such as on the special [CLS] tokens for

classification) that are always compared with every element in

the sequence. Through several NLP experiments, they

demonstrate the promising ability of the Longformer to

approximate results from a full Transformer model.

4.2.2. Transformers in healthcare
Given the similarity between textual sequences and

temporal patient data contained in longitudinal EHR records,

several works have begun exploring the efficacy of

Transformers and modifications of BERT for clinical

applications using electronic health records. In terms of

patient data modalities, existing implementations of

Transformers in a clinical setting tend to fall under three

primary categories:

Perhaps the most aligned with the original BERT

implementation, several studies adapt and modify BERT for

constructing language models from unstructured text

contained in clinical notes. The ClinicalBERT framework of

Huang et al. (26) used a BERT model for learning continuous

representations of clinical notes for predicting 30-day hospital

readmission. Zhang et al. (27) pretrained a BERT model on

clinical notes to characterize inherent bias and fairness in

clinical language models.

Song et al. (17)’s SAnD architecture developed Transformer

models for several clinical prediction tasks using continuous

multivariate clinical time series.
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The majority of existing EHR Transformer research has

focused on temporal sequences of discrete EHR billing codes.

Li et al. (16)’s BEHRT framework modified the BERT

paradigm for predicting future disease from diagnosis codes.

Med-BERT (15) demonstrated the performance advantages of

a contextualized clinical pretraining scheme in conjunction

with a BERT modification. RAPT (28) used a modified

Transformer pretraining scheme to overcome several

challenges with sparse EHR data. SETOR (29) utilized neural

ordinary differential equations with medical ontologies to

construct a Transformer model for predicting future

diagnoses. RareBERT (30) extends Med-BERT for diagnosis of

rare diseases. Meng et al. (31) used Transformers for

predicting depression from EHR. Hi-BEHRT (16) extends

BEHRT using a hierarchical design to expand the receptive

field to capture longer patient sequences. Choi et al. (32) and

Shang et al. (33)’s G-BERT architecture capitalize on the

inherent ontological EHR structure.

In contrast to the isolated data modalities implemented in

existing EHR Transformers, the novel embedding scheme

utilized in our models combines both discrete and continuous

patient data to generate a comprehensive representation of

distinct clinical events and measurements.
4.5. Limitations

This feasibility study has several limitations and is intended

as a methodological guiding framework for future multimodal

and multi-task EHR Transformer research. Our retrospective

dataset is limited to patients from a single-center cohort.

Future work will evaluate performance in external validation

cohorts such as MIMIC-IV (34). We also present results with

parameters that maximize our limited hardware capacity;

future work will focus on several hyperparameter tuning and

model selection procedures. The baseline models we present

for comparison are drawn from simplified implementations

found in clinical deep learning research, and more recent

approaches may offer enhanced predictive performance. From

the results in Table 3, one might conclude that our EHR

embedding procedure had a larger impact than use of the

Transformer architecture, given the competitive AUROC of

the attentional GRU baseline when implementing our

tokenization pipeline for estimating risk of patient mortality.

Future work will focus on disentangling the relative impacts

of both model and data representation designs.
4.6. Conclusions and next steps

We feel there is still great potential for exploring additional

benefits of our approach with diverse EHR data for a variety of

clinical modeling and prediction tasks, especially in the realm of
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clinical interpretability. Given our promising pilot study results,

future versions of this work will perform hyperparameter

optimization with a focus on maximizing predictive accuracy.

Additionally, since transformers are fundamentally composed

of attention mechanisms, they can be analyzed with respect to

particular outcomes, time points, or variables of interest to

highlight important contributing factors to overall risk

estimation. Future research will emphasize analyzing self-

attention distributions between input variables and clinical

outcomes to further the clinical explainability and enhance

the clinical trust of Transformers in healthcare. We believe

there is great potential for multimodal patient monitoring

using flexible EHR frameworks such as ours. Future research

will also focus on augmenting our multi-modal datasets with

additional clinical data modalities such as clinical text and

images, and pre-training our Transformer architectures with

self-supervised prediction schemes across a variety of input

data and clinical outcomes.
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