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There has been a growing interest in developing cuff-less blood pressure (BP)
estimation methods to enable continuous BP monitoring from
electrocardiogram (ECG) and/or photoplethysmogram (PPG) signals. The
majority of these methods have been evaluated using publicly-available
datasets, however, there exist significant discrepancies across studies with
respect to the size, the number of subjects, and the applied pre-processing
steps for the data that is eventually used for training and testing the models.
Such differences make conducting performance comparison across models
largely unfair, and mask the generalization capability of various BP estimation
methods. To fill this important gap, this paper presents “PulseDB,” the largest
cleaned dataset to date, for benchmarking BP estimation models that also
fulfills the requirements of standardized testing protocols. PulseDB contains
1) 5,245,454 high-quality 10-s segments of ECG, PPG, and arterial BP (ABP)
waveforms from 5,361 subjects retrieved from the MIMIC-III waveform
database matched subset and the VitalDB database; 2) subjects’ identification
and demographic information, that can be utilized as additional input
features to improve the performance of BP estimation models, or to evaluate
the generalizability of the models to data from unseen subjects; and 3)
positions of the characteristic points of the ECG/PPG signals, making
PulseDB directly usable for training deep learning models with minimal data
pre-processing. Additionally, using this dataset, we conduct the first study to
provide insights about the performance gap between calibration-based and
calibration-free testing approaches for evaluating generalizability of the BP
estimation models. We expect PulseDB, as a user-friendly, large,
comprehensive and multi-functional dataset, to be used as a reliable source
for the evaluation of cuff-less BP estimation methods.
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1. Introduction

Over the past two decades, there has been a growing interest

in developing methods to estimate blood pressure (BP) from

cardiovascular-related physiological signals, such as the

photoplethysmogram (PPG) and/or the electrocardiogram

(ECG), that can be continuously acquired using low-cost and

disturbance-free sensors. The ultimate goal is that these

methods, when implemented on wearable devices, can replace

traditional cuff-based approaches (e.g., sphygmomanometer)

to enable affordable and continuous BP monitoring.

Recent BP estimation studies have been utilizing data-driven

end-to-end deep learning approaches to develop models that

learn features from raw physiological signals without relying

on prior knowledge (e.g., manually-defined statistic or

hemodynamic parameters evaluated from the PPG and ECG

signals (1–4)) while offering promising BP estimation

accuracy. Examples include combining convolutional neural

network (CNN) and recurrent neural network (RNN) (5–7),

embedding attention or residual blocks in models (8–10), or

incorporating frequency-domain information in addition to

the time-domain information (11, 12). Table 1 summarizes 17

most recent deep-learning based BP estimation studies

published in recent years.

An important point to observe from Table 1 is that while

these studies have used publically-available databases (e.g.,

Multi-parameter Intelligent Monitoring for Intensive Care

(MIMIC), MIMIC-II and MIMIC-III (22–24)), there exist

significant differences in data selection criteria, pre-processing

procedures, the number of included subjects, and the

variations in reference systolic BP (SBP) and diastolic BP

(DBP) in the datasets used for training and testing the models,

across them. As the performance of deep-learning based BP

estimation models is dependent on the characteristics of the

dataset that is used for training and testing the model, such

differences would make performance comparisons across

models largely unfair. To further clarify this point, Figure 1

shows the correlation between the reported standard deviation

of error (SDE) of estimated SBP and DBP, and the number of

considered subjects, from the studies summarized in Table 1

that had reported both values. It can be seen that these two

measures show correlation (moderate for SBP and high for

DBP), suggesting that the BP accuracy metrics are impacted by

the number of subjects used for training and testing the

models. Therefore, having one unified benchmark dataset for

computing performance metrics of BP estimation models is of

need, in order to fairly compare the performances of the

models and evaluate their generalizability.

To address the need of having a unified benchmark dataset,

a few cleaned sources, which are subsets generated from

publically-available databases, exist. These sources include the

Cuff-Less Blood Pressure Estimation Data Set from the
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University of California Irvine (UCI) machine learning

repository (25, 26) generated from the MIMIC-II database,

and the BP-Net dataset (8, 27) generated from the MIMIC

and MIMIC-II databases. However, they have limitations.

The UCI dataset lacks subject identification information,

and consequently, it remains unclear how many subjects exist

in the dataset, and which records belong to which subject.

Indeed, there has been discrepancies in the reported number

of subjects from this dataset across studies (e.g., 942 in (14),

4,254 in (25) and 12,000 in (7, 28, 29)), not leading to a

verifiable conclusion. The lack of such information would

make it difficult to use this dataset for evaluating the

generalization capability of the models to new subjects (i.e.,

calibration-free testing). The BP-Net dataset contains data

from 293 subjects, which can be too small for training deep

learning models, considering that the Association for the

Advancement of Medical Instrumentation (AAMI) standard

requires more than 85 subjects to be included in the testing set

(30, 31). If the BP-Net dataset is used for validating a model

under the AAMI standard in calibration-free way, then there

will be at most 208 subjects left in the training set, which

could be insufficient for training deep learning models that

require massive data to generalize. Moreover, both the UCI

and the BP-Net datasets consist of long continuous signal

records, which need to be further divided into subsets of short

segments to match the input size of deep learning models.

Motivated by addressing these issues, here, we present

PulseDB, the largest cleaned dataset to date, consisting of

ECG, PPG and arterial BP (ABP) waveforms retrieved from

the MIMIC-III waveform database matched subset (32) and

the VitalDB waveform database (33). PulseDB offers the

following features:

† With 14,570 h of ECG, PPG and ABP waveforms (stored in

10-s segments) from 5,361 subjects, PulseDB is the largest

cleaned dataset to date. The large size is essential for

training deep learning models that generalize well.

† Subject’s ID and demographic information are included for

every segment in the PulseDB dataset, making it easy to

group waveforms in the dataset with respect to subjects

for fulfilling the requirements of the testing protocols,

such as the AAMI. Moreover, BP estimation machine

learning models can use the demographic information

(e.g., age and gender) as additional features to further

improve their estimation accuracy.

† The AAMI standard, which is widely accepted for validating

cuff-less BP estimation models, requires more than 5% of

DBP measurements to be lower than 60 mmHg (30, 31). In

contrast to previous studies, which had set the threshold of

the reference DBP in their dataset to be over 60mmHg (2,

7, 19, 28) (and hence, may not fulfill the statistical

requirements of the reference SBP and DBP in the AAMI

testing protocol), here, we use a new, comprehensive data
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TABLE 1 Summary of data and BP estimation accuracy information in 17 recent deep learning-based cuff-less blood pressure estimation studies. The
error metrics represent the optimal reported testing results.

Reference Database
used

Cleaned dataset information Reference BP distribution
(mmHg)

SBP error
(mmHg)

DBP error
(mmHg)

Signals
#

Subjects N
SBP,

Mean+SD
DBP,

Mean+SD SDE MAE SDE MAE

(8) BP-Net ECG, PPG,
ABP

293 –a – – 3.58 2.59 1.97 1.33

(13) MIMIC-II PPG, ABP 92 �18,000b – – 2.99 2.29 2.32 1.93

(14) UCI ECG, PPG,
ABP

942 200,159 132.61+21.70 63.71+9.98 0.94 2.33 2.88 0.71

(15) UCI PPG, ABP – 57,757 118.22+18.01 64.34+9.66 8.46 6.17 5.36 3.66

(5) MIMIC-III
matched subset

PPG, ABP 100 �360,000b – – 4.56 3.52 2.82 2.20

(6) MIMIC ECG, PPG,
ABP

48 �1,152b – – 1.60 1.20 1.30 1.00

(16) MIMIC +
MIMIC-III

PPG, ABP 100 �340,000b – – 4.42 3.68 2.92 1.97

(9) MIMIC-III
matched subset

PPG, ABP 1,131 6,478 130.84+20.27 64.48+9.51 15.67 12.08 7.32 5.56

(17) VitalDB PPG, ABP 1,567 126,327 115.40+13.70 61.40+7.40 11.56 – 6.52 –

(18) MIMIC-II PPG, ABP 500 9,000 – – 4.74 3.23 1.96 1.59

(11) MIMIC-II PPG, ABP 304 106,074 – – 6.69 5.95 3.97 3.41

(7) UCI PPG, ABP 1,557 574,900 – – 5.41 2.30 5.65 3.97

(19) MIMIC-III ECG, ABP 1,711 �299,000b 135.69+20.57 71.72+8.84 9.99 7.10 6.29 4.61

(10) MIMIC-II ECG, PPG,
ABP

604 120,684 125.30+15.70 72.30+10.80 2.76 3.09 2.00 2.11

(20) UCI ECG, PPG,
ABP

942 – – – 5.54 5.32 3.82 3.38

(12) MIMIC-III PPG, ABP 510 �504,000b – – – 9.43 – 6.88

(21) MIMIC ECG, PPG,
ABP

39 – – – 1.26 0.93 0.73 0.52

ECG, electrocardiogram; PPG, photoplethysmogram; ABP, arterial blood pressure; N, number of BP estimations to be made from the dataset; SD, standard deviation;

SDE, standard deviation of error; MAE, mean absolute error.
aInformation is not available in the publications and cannot be approximated using other information.
bInformation is not available in the publications, but is approximated using other information.
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cleaning procedure that yields a cleaned dataset without

directly thresholding the BP values, thereby, enabling us to

generate a testing subset that fully meets the requirements

of the AAMI testing protocol. As such, PulseDB enables

standardized, reliable, and reproducible validation of cuff-

less BP estimation models.

† In addition to the physiological waveforms and subject

information, every segment in the PulseDB dataset also

includes additional information such as the positions of beat-

to-beat characteristic points, and the corresponding reference

SBP and DBP values. Hence, PulseDB is directly usable for

testing a wide variety of BP estimation models with different

input and output requirements, e.g., models taking fixed-

length windows (5, 14, 16) or beat-to-beat windows (6, 15, 21).
Frontiers in Digital Health 03
The full availability of subject information in the PulseDB

dataset enables us to generate multi-functional training and

testing subsets that support various model testing approaches.

Furthermore, we use this dataset to investigate the reasons of

performance gap in BP estimation models when data in the

training and testing sets share subjects (referred to as

calibration-based testing approach), and when the model is

tested on data from subjects not used in the training process

(referred to as calibration-free testing approach). Majority of

the data-driven BP estimation studies to date, have reported

their results using the calibration-based testing approach,

thereby, the generalizability of the models to new subjects is

not known. A few studies (9, 10, 12, 20) that have reported

results from both testing approaches suggest significant
frontiersin.org
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FIGURE 1

Scatter plot showing significant correlation between the reported
standard deviation of error (SDE) of SBP and DBP, and the used
number of subjects from studies summarized in Table 1. 15 of the
17 studies in Table 1 with reported number of subjects and SDE
were included here.
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performance difference. Using the training and testing sets

created from PulseDB, we further investigate this issue.

The rest of this paper is organized as follows. Section 2

describes the procedures of generating the PulseDB dataset.

Section 3 summarizes the information about the generated

PulseDB dataset, along with an example of using this dataset.

Finally, Section 4 discusses the advantages that PulseDB

offers over existing datasets, and concludes the paper.
2. Methods

All 5,245,454 10-s signal segments in the PulseDB dataset

are available for download from the GitHub repository at

(34), in the form of MATLAB structure arrays stored in 5,361

MATLAB data files, each corresponding to one subject in the

dataset. Here, we describe how the dataset is formed and

structured.
2.1. Original source selection

We referred to the list of open cardiovascular waveform

databases summarized in (35) to select the original sources of

data to work with. Among the listed databases, the MIMIC-II

and MIMIC-III waveform databases and their matched
Frontiers in Digital Health 04
subsets, the VitalDB waveform database, and the Pulse Wave

DataBase fulfill the requirements of simultaneously containing

ECG, PPG and ABP recordings, as well as including a large

number of subjects (>1000). The Pulse Wave DataBase is an

in-vitro database generated from a simulated cardiovascular

model (36), and was thereby excluded. In the remaining

databases, only the MIMIC-II and MIMIC-III waveform

databases matched subsets and the VitalDB database contain

subject identification and demographic information. Since the

MIMIC-III matched subset is a superset of the MIMIC-II

matched subset (32), the MIMIC-III matched subset (32) and

the VitalDB database (33, 37) were selected as the original sources.
2.2. Record selection

The MIMIC-III matched subset v1.0 (32) includes 22,317

records from 10,282 patients who stayed in the critical care

unit (ICU) of the Beth Israel Deaconess Medical Center. The

VitalDB database (33) contains 6,388 records from 6,090 ICU

patients who underwent surgeries in the Seoul National

University Hospital. Records in these two datasets were

checked and retrieved using the WaveForm DataBase

(WFDB) toolbox (38), and the VitalDB Python library, under

the following protocols:

† Presence of ECG, PPG and ABP signals: A record must

simultaneously contain PPG, ABP, and lead-II ECG signals

to be included in our dataset. The lead-II ECG was selected

as it was available in both original datasets. In both datasets,

the PPG signals were measured from the fingertip (39, 40).

† No invalid samples: Signal records in both original datasets

contain invalid placeholder values (NaN). Therefore, we

defined a valid interval in each record as an interval in

which all the ECG, PPG and ABP signals have valid

numerical sample values. For each record, a valid interval

with the longest duration was retrieved. The duration of

the kept valid intervals ranged between 10 s and 10 h.

The above record selection procedure resulted in retrieving

4,941 records from the MIMIC-III matched subset, and 3,458

records from the VitalDB database. Signals acquired from the

VitalDB database were downsampled from 500 Hz to 125 Hz

to have a consistent sampling rate with the signals from the

MIMIC-III matched subset.
2.3. Retrieving demographic information

In the MIMIC-III matched subset and the VitalDB

database, the records are matched with the patients from

whom the signals are retrieved. In the MIMIC-III matched

subset, each record is named with a subject ID and the date

of the ICU admission. In the VitalDB database, each record
frontiersin.org
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corresponds to a case ID that can be matched with a subject ID.

For each record in PulseDB, the subject IDs provided in these

two original datasets were matched back to their

corresponding clinical databases to retrieve demographic

information. For the MIMIC-III matched subset, subjects’ age

and gender were fetched from the MIMIC-III clinical database

(24). For the VitalDB database, subjects’ age, gender, weight,

height and body mass index (BMI) were fetched from an

affiliated web API (37).
2.4. Extracting the characteristic points

The following characteristic points were extracted from the

ECG, PPG and ABP signals for each record in the PulseDB

dataset.
2.4.1. ECG R-peaks
The R-peaks of the ECG signal were detected for each

record using the Pan-Tompkins QRS detection algorithm

(41). This algorithm features a backtracking mechanism to

robustly locate the R-peaks by estimating a running heart rate

from 8 previously detected R-peaks. Therefore, it functions

optimally when applied to the whole ECG record.
2.4.2. PPG systolic peaks and turning points
The systolic peaks of the PPG signal were extracted using

Elgendi’s algorithm (42), and the turning points were located

as the minima between every two consecutive systolic peaks.

This algorithm works by applying moving average filters to

the PPG signal to estimate the baseline level of the signal,

locating the systolic and diastolic phases of each PPG cycle as

the major fluctuations of the signal with larger amplitudes

than the baseline level. The PPG signal was filtered with a 4th

order Chebyshev-II filter at [0:5, 8] Hz before presenting to

the Elgendi’s algorithm, as suggested in previous studies (12,

16, 43–45) for optimally suppressing noise and baseline

wandering, and preserving PPG morphology features.
2.4.3. ABP systolic peaks and turning points
Due to the presence of unspecified inter-signal delays in the

MIMIC-III waveform database (39), beat-to-beat SBP and DBP

values were extracted from cycles of the ABP signal.

Considering the morphological similarity between the PPG

and the ABP signals, the beat-to-beat systolic peaks and

turning points of ABP were extracted using exactly the same

method as for the PPG signal, and the amplitudes of the

systolic peaks and the turning points were used as the SBP

and DBP values of each beat.
Frontiers in Digital Health 05
2.5. Data segmentation and cleaning

After extracting the characteristic points from the records,

we selected high quality segments from the records to form

the cleaned PulseDB dataset. Data selection is conducted by

dividing each record into 10-s non-overlapping segments, and

determining whether to include or discard each segment. The

reference SBP and DBP values of each segment are thus

defined as the average beat-to-beat SBP and DBP values

within each segment, respectively. As such, the dataset is

ready to be used for supervised training of end-to-end deep

learning models that take less than 10 s of ECG and/or PPG

signals as input, for estimating the SBP and DBP values of

each segment.

The low quality segments were rejected in the PulseDB

dataset under the following procedure:
2.5.1. Excluding saturated and flatline signals
Segments with ECG, PPG or ABP signals having more than

3 consecutive samples of the same value equaling to the

minimum or maximum amplitude within the segment, or

more than 1 s of the same amplitude, were removed from the

dataset. As suggested in (12), this procedure removes

segments containing saturated or non-recording signals, which

are invalid for BP estimation.
2.5.2. Validation of PPG and ABP signals
In order to have reliable reference BP values for model

training and testing, segments with ABP signals with

abnormal morphology (e.g., influenced by noise or

interference) and/or with unrealistic sample values (e.g.,

negative amplitudes) were excluded. For this process, a

widely-used exclusion method is to apply threshold to the

SBP and DBP values extracted from the ABP signal, with the

DBP level often set to be higher than 60 mmHg (2, 7, 19, 28).

However, using such a range makes it difficult to generate

testing subsets that fully comply with the AAMI testing

protocol, which requires more than 5% of the reference DBP

values to be lower than 60 mmHg (30, 31).

To address this issue, motivated by the fact that properly

recorded PPG and ABP signals with normal morphology

should be highly correlated (46), we propose a segment

selection method based on validating the PPG and ABP

signals mutually. That is, segments containing ABP signal

with abnormal morphology can be excluded by checking the

correlation between the PPG and the ABP signals. The

following procedure was implemented.

† Cardiac cycle detection: A segment is included in the dataset

only when at least 1 cardiac cycle of ECG, PPG and ABP

signal in the segment can be located from their extracted

characteristic points.
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† PPG signal quality evaluation: 5-s sliding windows were

applied to the PPG signal in each 10-s segment. The

segment is excluded from the dataset if the skewness

signal quality index (sSQI) of the PPG signal in any

window is <0, as suggested in (47).

† PPG-ABP correlation analysis: The PPG and the ABP signals

are first aligned using a lag that yields the highest cross

correlation between the two signals to compensate the

phase difference of the two signals and the inter-signal

misalignment in the MIMIC-III database (16, 39). Next,

the Pearson’s correlation coefficient between the aligned

signals is calculated, and the segment is rejected if the

correlation coefficient is <0.9, as suggested in (46).

2.6. Training and testing subsets for
various testing protocols

The cleaned PulseDB dataset was further separated into 1

training and 3 testing subsets ready to be used for

reproducible evaluation of deep learning-based BP estimation

models. Each of these 3 testing subsets corresponds to a

specific testing protocol, which are named here as the

“AAMI” testing set, the “calibration-based” testing set, and

the “calibration-free” testing set. Additionally, an “AAMI

calibration” set is generated for calibration-based testing under

the AAMI protocol.

The AAMI testing set was generated from the PulseDB

dataset, such that it fulfills the requirements of the AAMI

standard including having more than 85 subjects, having at

least 3 estimations from each subject, and having more than
TABLE 2 AAMI standard requirements and their corresponding values
for the AAMI testing set generated from the PulseDB dataset.

Checked items AAMI
requirements

AAMI
testing set

Number of subjects �85 242

Number of measurements per
subject

�3 3–14

Number of total measurements �255 1,340

Proportion of reference
SBP �100 mmHg

�5% 14.63%

Proportion of reference
SBP �160 mmHg

�5% 15.52%

Proportion of reference
SBP �140 mmHg

�20% 38.81%

Proportion of reference
DBP �60 mmHg

�5% 25.75%

Proportion of reference
DBP �100 mmHg

�5% 9.40%

Proportion of reference
DBP �85 mmHg

�20% 27.24%

Frontiers in Digital Health 06
5% of very high and low SBP and DBP measurements within

the testing set. Table 2 summarizes the requirements of the

AAMI standard and their corresponding values for the testing

set generated from the PulseDB dataset, indicating that all the

requirements are met. Segments that were not included in

the AAMI testing set, but were from subjects included in the

AAMI testing set, were gathered to form the AAMI

calibration set.

Next, all the segments from subjects who have been

included in the AAMI testing and calibration sets were

removed, and the remaining segments in the dataset were

balanced with respect to each subject to ensure equal

contribution from each subject. To achieve this, a desired

number of segments (K) from each subject was selected.

Figure 2 shows the trade-off between the number of segments

required from each subject and the number of subjects having

�K segments. Based on this, we selected K to be 400 to

balance the number of subjects from the MIMIC-III matched

subset and the VitalDB database. For subjects having more

than K segments, K segments were randomly sampled from

each subject, while other segments were discarded. From this

subset, segments from 10% of randomly-selected subjects were

drawn to form the calibration-free testing set. Segments from

the remaining 90% of subjects were divided into the

calibration-based testing set and the training set. For each of

these subjects, 10% of segments were randomly sampled to be

put into the calibration-based testing set, while the remaining

segments form the training set. Thereby, a variety of testing

sets (AAMI, calibration-free, and calibration-based) are readily

accessible for evaluating the BP estimation models.
FIGURE 2

Red solid line: number of usable subjects in the PulseDB dataset
when requiring each subject to have at least K segments. Blue and
orange dashed lines: number of usable subjects from the MIMIC-
III matched subset and the VitalDB database, for each selected K.
The subjects used for generating the AAMI testing set were
removed and not included here.
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The GitHub repository (34) includes MATLAB scripts for

reproducing the subject-balanced training set, calibration-

based testing set and calibration-free testing set, as well as the

AAMI testing set and the AAMI calibration set (see Table 4).
3. Results

3.1. Statistical information of the PulseDB
dataset

Table 3 summarizes the demographic and BP distribution

information of the proposed PulseDB dataset. The dataset

includes 5,245,454 10-s segments from 5,361 subjects. The

histogram of the SBP and DBP values and the mean and

standard deviation (SD) of subject-specific SBP and DBP

values in the PulseDB dataset are shown in Figure 3. As seen

in Table 3 and Figure 3, the generated dataset is sufficiently

large with respect to having both inter-subject and intra-

subject variations in SBP and DBP, making it ideal for

evaluating BP estimation model’s performance on tracking the
TABLE 3 Summary of statistical information of the proposed PulseDB
dataset.

Item PulseDB

Number of subjects 5,361

Number of subjects from MIMIC/VitalDB 2,423/2,938

Number of segments 5,245,454

Age (mean+ SD) 60:87+ 15:58

Gender 3,013 male, 2,348 female

SBP (mmHg, mean+ SD) 121:42+ 22:10

DBP (mmHg, mean+ SD) 61:87+ 13:01

Average SBP per subject (mmHg, mean+ SD) 117:83+ 17:15

Average DBP per subject (mmHg, mean+ SD) 62:08+ 10:76

SD of SBP per subject (mmHg, mean+ SD) 11:87+ 6:26

SD of DBP per subject (mmHg, mean+ SD) 6:52+ 3:66

TABLE 4 Summary of statistical information of the training, calibration, and

Subset Training Calibration-based testing

Number of subjects 2,506 2,506

Subjects from MIMIC/VitalDB 1,213/1,293 1,213/1,293

Number of segments per subject 360 40

Subject group A A

SBP (mmHg, mean ± SD) 118:60+ 21:03 118:64+ 21:01

DBP (mmHg, mean ± SD) 61:86+ 12:65 61:88+ 12:64
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BP changes of a subject, as well as estimating the baseline BP

levels of various subjects.

Table 4 summarizes the statistical information of the

balanced training and 3 testing subsets, as well as the AAMI

calibration set generated from PulseDB. As discussed, the

training set and the calibration-based testing set contain

segments from the same subjects in group A, and the AAMI

testing set and the AAMI calibration set contain segments

from the same subjects in group C (but with non-overlapping

segments), while the training set, the calibration-free testing

set and the AAMI testing set contain disjoint groups of

subjects. As such, calibration-based or calibration-free testing

can be achieved by choosing data from overlapped or disjoint

groups of subjects for model training and testing (discussed

further in Sections 3.3 and 4.2). Also, since the AAMI testing

set requires specific ratio of very low and high SBP and DBP

values, the SBP and DBP distributions in the manually-

selected AAMI testing set are different compared to the other

training and testing subsets that were generated from random

sampling, with respect to having shifted mean values and

larger SD.
3.2. Validation of signal quality of PPG and
ECG segments

The effectiveness of the data cleaning procedure proposed in

Section 2.5 was further validated by evaluating the quality of the

ECG and PPG signals in PulseDB, using the method proposed

in (48). This method judges the quality of the ECG and PPG

signals using a combination of a set of feasibility rules and an

adaptive template matching approach. The feasibility rules are

defined as

1. The heart rate evaluated from the ECG R-peaks or the PPG

systolic peaks in the 10-s segment should be between 40 and

180 beats per minute.

2. The maximum peak-to-peak interval of the ECG R-peaks or

the PPG systolic peaks should be within 3 s.

3. The ratio of the maximum and minimum peak-to-peak

intervals of the ECG R-peaks or the PPG systolic peaks

should be less than 2:2.
testing sets generated from the PulseDB dataset.

Calibration-free testing AAMI testing AAMI calibration

279 242 242

135/144 126/116 126/116

400 3–14 1–14,833

B C C

118:84+ 20:59 131:50+ 27:75 123:96+ 23:12

62:00+ 12:27 73:61+ 18:22 63:18+ 13:63
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FIGURE 3

Distributions of the SBP and DBP in the PulseDB dataset. Top: histogram showing the distribution of reference SBP and DBP. Bottom: plot of subject-
specific mean and standard deviation (SD) of SBP (left) and DBP (right).
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If the feasibility rules are satisfied, then a signal quality index

(SQI) based on adaptive template matching is calculated for

each 10-s ECG or PPG segment as follow.

1. The median of beat-to-beat interval of the ECG R-peaks or

the PPG systolic peaks is calculated as W.

2. Centering at each of the ECG R-peaks or the PPG systolic

peaks, the ECG or the PPG windows with duration W are

extracted. An adaptive template is calculated by averaging

all windows taken from the segment.

3. The SQI of each 10-s segment is calculated as the average

Pearson’s correlation coefficient between the adaptive

template and each of the beat-to-beat windows within the

segment.

It is suggested in (48) that ECG and PPG segments of good

quality should have the SQI value exceeding 0:66 and 0:86,

respectively.

The above described method was applied to all 5,245,454

segments in PulseDB, using the R-peak and systolic peak

annotations extracted and included in PulseDB as described
Frontiers in Digital Health 08
in Section 2.4. Results show that 94:3% of the segments have

ECG signal satisfying the feasibility rules, among which 99:8%

of the segments also satisfy the SQI threshold rule.

Meanwhile, 95:9% of the segments have PPG signal satisfying

the feasibility rules, with 99:7% of these segments also

satisfying the SQI threshold rule. Considering the complicated

physiological status of ICU patients involved in the PulseDB

dataset, whose heart rate may fall out of the boundary defined

by the feasibility rules (48), we can conclude that the ECG

and PPG signals in PulseDB are of high quality.
3.3. Example of analysis with PulseDB: the
performance gap between calibration-
based and calibration-free model testing

BP estimation model studies have been typically using two

approaches to evaluate the accuracy of their BP estimation

models: “calibration-free” and “calibration-based.” Calibration-

free approaches test the model with the data from subjects
frontiersin.org
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that are disjoint from the subjects used for training the model,

while for the calibration-based approaches, the data in the

training and testing sets share subjects in various ways, such as

† the training set is generated through random sampling over

all data from all subjects, and the remaning data is used for

testing,

† a set portion of data from every subject is used for training,

and the remaining is used for testing,

† the model is trained using calibration-free approach, but is

fine-tuned again using the data from testing subjects.

Some studies have considered both testing approaches, reporting

a significant performance gap between the outcomes of the two.

Table 5 summarizes the recent BP estimation studies that have

included both calibration-based and calibration-free testing

results of their proposed models. As can be seen, in all cases,

compared to calibration-free, the models show lower error in

calibration-based situations. The Pearson’s correlation

coefficients reported in (10) shows a drastically reduced

capability of tracking BP variation under the calibration-free

testing protocol. The results suggest that these models have

poor generalization to data from unseen subjects.

To further investigate the gap between the outcomes of the

calibration-based and calibration-free testing approaches, here,

using the training set and the two calibration-based and

calibration-free testing sets from the PulseDB, we investigate

the change of testing performances in the two testing

approaches as the model gradually fits to the training set (49).

We used a 1D-modified ResNet-18 (50) to estimate the SBP

or DBP labels from the ECG and PPG signals in each

segment. The architecture of the used 1D ResNet-18 is

illustrated in Figure 4. The 1D ResNet-18 is constructed by

replacing each of the 2D convolution, batch normalization

and pooling layers in the original ResNet-18 design with their

1D substitutions, modifying the number of input channels to

2 for taking the ECG and PPG signals as inputs, and

changing the final dense layer to have 1-dimensional

regression output for BP estimation. Two models were

trained, one for estimating SBP and one for estimating DBP,

starting from the same parameter initialization with fixed

random seed. Each model was trained for 100 epochs, using

mean squared error (MSE) loss and Adam optimizer at 10�6

learning rate.

Figure 5 summarizes changes of the MSE loss, the mean

error (ME), and the SDE on the training set, the calibration-

based testing set, and the calibration-free testing set, along the

process of training the model epoch-by-epoch on the training

set. Very similar trends were observed when the model is

trained to estimate SBP or DBP. It can be observed that the

ME on the training set is able to merge to 0 in the first few

epochs, and remains at 0 for the rest of training epochs, while

the SDE on the training set starts from being close to the SD

of BP in the training set (as seen in Table 4), then, slowly
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FIGURE 4

Structure of the 1D-modified ResNet-18 used for comparing calibration-based and calibration-free model testing approaches.
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decreases along the whole training process. This indicates that

the model first estimates all output BP values with the mean

BP value in the training set, then gradually learns to explain

the BP variation in the training set using the information from

the input. However, generalization is only observed on the

calibration-based testing set, whose loss and SDE consistently

decreases as the training goes on, while on the calibration-free

testing set, a sign of over-fitting shows up early within the first

20 epochs, after which the loss and SDE start to increase

instead of decrease. This implies that the additional

information that the model learns after the first 20 epochs can

improve the BP estimation accuracy on the group of subjects

whose data has been seen by the model in the training set, but

is not capable of explaining the BP variation on new, unseen

subjects. Such incapability of generalization to data from

unseen subjects leads to the model’s performance gap when
Frontiers in Digital Health 10
validated using calibration-based and calibration-free testing,

even when the two testing sets share similar BP distributions,

as summarized in Table 4.

The lack of generalization on unseen subjects could be due

to the heterogeneity of cardiovascular relationships between

ECG, PPG and BP among people. Additional information

such as subject’s demographics may be fused to the deep

learning process to provide information that better explains

the differences across subjects, which could have been hard to

infer from the ECG and PPG signals alone. On the other

hand, in the ECG and PPG signals, physiological information

resides in the temporal scaling and shifting of recurring

amplitude patterns caused by cardiac cycles. Therefore, the

deep learning architectures for interpreting ECG and PPG

signals may have to be optimized for learning from quasi-

periodic signals, as well as for regression. Moreover, applying
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FIGURE 5

Change of error metrics on the training set, the calibration-based testing set, and the calibration-free testing set, when training the 1D ResNet-18 to
estimate SBP (left) or DBP (right). MSE, mean squared error; ME, mean error; SDE, standard deviation of error.
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restrictions on the feature maps or embeddings extracted by the

deep learning models, such as the usage of domain adversarial

training (28) or generalizable independent latent excitation

(51) can help enforcing subject non-specificity of the model.

These methods may improve the cross-subject generalization

capability of BP estimation models.
4. Discussion

4.1. Comparison with existing datasets

Table 6 compares the PulseDB dataset proposed here to

other open datasets that have been used in cuff-less BP
Frontiers in Digital Health 11
estimation studies. The PulseDB dataset offers the following

advantages:

† Inclusion of demographic information: By choosing the

MIMIC-III matched subset and the VitalDB database as

the source datasets, the proposed PulseDB dataset includes

demographic information, which would enable subsets

generated from PulseDB to meet specific testing

requirements, such as grouping subjects with respect to

age or gender, or separating subjects that have been used

for training from testing. Furthermore, the availability of

age and demographic information in the dataset could be

used as input information, in addition to the

physiological signals, to improve the performance of the
frontiersin.org
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TABLE 6 Comparison between the proposed PulseDB dataset and other cardiovascular signal datasets that have been frequently used in cuff-less BP
estimation studies.

Citation Database Source of data # of
subjects

Physiological signals Demographic
information

This work PulseDB MIMIC-III matched subset,
VitalDB

5,361 ECG, PPG, ABP Age, Gender, Heighta, Weighta,
BMIa

(25, 26) Cuff-Less Blood Pressure Estimation
Data Set (UCI)

MIMIC-II –b ECG, PPG, ABP –

(8, 27) BP-Net MIMIC, MIMIC-II 293 ECG, PPG, SBP, DBP –

(52) MIMIC-II waveform database
matched subset v3.1

MIMIC-II 2,809 ECG, PPGa, ABPa, RESa,
Othersa

Age, Gender

(32) MIMIC-III waveform database matched
subset v1.0

MIMIC-III 10,282 ECG, PPGa, ABPa, RESa,
Othersa

Age, Gender

(22, 52) MIMIC database v1.0 ICU patients �90 ECG, PPGa, ABPa, RESa,
Othersa

–

(23, 54) MIMIC-II waveform database v3.2 ICU patients – ECG, PPGa, ABPa, RESa,
Othersa

–

(24, 39) MIMIC-III waveform database v1.0 ICU patients �30,000 ECG, PPGa, ABPa, RESa,
Othersa

–

(33, 37) VitalDB ICU patients 6,090 ECG, PPGa, ABPa, Othersa Age, Gender, Height, Weight,
BMI

(55, 56) University of Queensland Vital Signs
Dataset

Anesthesia patients 32 ECG, PPG, ABP, CO2, EEGa,
Othersa

–

ECG, electrocardiogram; PPG, photoplethysmogram; ABP, arterial blood pressure; CO2, capnography; EEG, electroencephalogram; RES, respiratory.
aData is not always available throughout the entire database.
bInformation is not available in the database.
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BP estimation models. On the other hand, in the MIMIC,

MIMIC-II, MIMIC-III, and University of Queensland

databases, physiological signals in the databases were

archived as records, with each record corresponding to a

consecutive running session of the bedside monitors in

the operating room (39, 53, 54, 56). For the University

of Queensland and the MIMIC databases, the

demographic information was not recorded, while for the

MIMIC-II and MIMIC-III databases, demographic

information (age and gender) is available in stand-alone

clinical databases. However, the ID of record in the

waveform database and the ID of subjects in the clinical

database were independent. As such, without additional

unpublished information that have been used to create

the MIMIC-II and MIMIC-III matched subsets,

demographic information is not available for MIMIC,

MIMIC-II, MIMIC-III and University of Queensland

databases, as well as the UCI dataset and the BP-Net

dataset that were derived from them.

† Data cleaning: As seen in Table 6, the PPG and ABP

signals are not always available for all subjects in the

MIMIC, MIMIC-II, MIMIC-III and VitalDB databases,

as well as the MIMIC-II and MIMIC-III matched

subsets. Moreover, records in these databases often

contain segments with invalid signals, since sensors may
Frontiers in Digital Health 12
be removed from the patients during the period in

which the monitor was on. Consequently, these

databases are not suitable for benchmarking BP

estimation models before performing data cleaning

procedures. This has led to the creation of cleaned

databases such as the PulseDB, the UCI dataset, and the

BP-Net dataset, among which PulseDB is the largest

with respect to the total signal duration and the number

of included subjects.

† Training and testing separations: PulseDB is the first open

cuff-less BP estimation dataset that has been separated to

subject-balanced training and testing sets, with each of

the testing set corresponding to a commonly-used

testing protocol. These pre-defined training and testing

subsets make it easy to have comparable, reproducible

and standardized evaluation of cuff-less BP estimation

methods.

All 5,245,454 10-s signal segments in the PulseDB dataset

are available for download from the GitHub repository at

(34), in the form of MATLAB structure arrays stored in 5,361

MATLAB data files, each corresponding to one subject in the

dataset. The GitHub repository also includes MATLAB scripts

for reproducing the subject-balanced training set, calibration-

based testing set, calibration-free testing set, and AAMI
frontiersin.org
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testing and calibration sets summarized in Table 4 from the

segment files.
4.2. Protocols for benchmarking using
PulseDB

PulseDB supports a number of protocols for benchmarking

BP estimation models. Below, we discuss how different

benchmarking protocols can be realized using the PulseDB

subsets, and how BP estimation errors can be evaluated.
4.2.1. General model training and testing
As seen in Table 4, the subject-balanced training,

calibration-based testing and calibration-free testing sets of

PulseDB share similar BP distribution, making them ideal for

evaluating the performance of BP estimation models. Note

that for methods summarized in Table 5, the calibration-

based and calibration-free testing approaches require re-

splitting the dataset into subsets, thereby, leading to different

training data for each approach. However, in PulseDB, the

subset generation methods (described in Section 2.6) enable

the co-existence of calibration-based and calibration-free

testing sets when the model is trained on single training set

(as seen in Section 3.3). Using this feature of PulseDB makes

it possible to record error metrics on both calibration-based
TABLE 7 AAMI standard requirements and their corresponding values
for the supplementary AAMI testing set generated from subjects
retrieved from only VitalDB. This is a subset of the AAMI testing set
summarized in Tables 2 and 4.

Checked items AAMI
requirements

Supplementary AAMI
testing set

Number of subjects �85 116

Number of
measurements per
subject

�3 3–10

Number of total
measurements

�255 666

Proportion of reference
SBP �100 mmHg

�5% 15.62%

Proportion of reference
SBP �160 mmHg

�5% 21.47%

Proportion of reference
SBP �140 mmHg

�20% 42.64%

Proportion of reference
DBP � 60 mmHg

�5% 24.47%

Proportion of reference
DBP �100 mmHg

�5% 10.51%

Proportion of reference
DBP �85 mmHg

�20% 31.53%
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and calibration-free testing sets simultaneously, for

investigating the change in inter- and intra-subject

generalization capability of the models upon training,

parameter tuning, and structural adjustments.
4.2.2. Training and testing under the AAMI
protocol

By including the AAMI calibration set retrieved from the

same group of subjects in the AAMI testing set, PulseDB

supports model training and testing, subject to the AAMI

protocol in both calibration-based and calibration-free

manners. For a BP estimation model to demonstrate potential

compliance with the AAMI standard, the trained model

(either calibration-based or calibration-free) should be used to

estimate one pair of SBP and DBP values for each segment in

the AAMI testing set. For both SBP and DBP estimations, the

ME and the SDE among all segments must be within +5 and

8mmHg (31).
4.2.3. Error evaluation
A variety of error metrics can be evaluated for BP

estimation, such as ME, SDE, the mean absolute error (MAE)

(12, 14), the root mean squared error (RMSE) (8, 57), the

unit-less coefficient of determination (R2) (9, 58) and the

Pearson’s correlation coefficient (R) (10, 16). Below, we

discuss the significance of including these metrics for

evaluating the performance of BP estimation models.

ME and SDE are calculated as

ME ¼ 1
n
�
Xn
i¼1

(cBPi � BPi), (1)

SDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1
�
Xn
i¼1

[(cBPi � BPi)�ME]2
s

, (2)

where n is the number of total estimations, BPi is the ith

reference SBP or DBP value, and cBPi is the ith SBP or DBP

value estimated by the model. ME and SDE are estimators of

the BP estimation bias, and the range of error in which the

model’s error on the population resides, under the assumption

of normally-distributed error (59, 60). However, limited data

could impact the validity of these measures (31). For example,

low ME and SDE values do not necessarily imply an accurate

model when the SDE is close to the SD of reference BPs in

the testing set. Therefore, it is important to interpret these

metrics with information known about the dataset, such as

the mean and SD of the reference BP values.

RMSE and MAE are commonly-used loss metrics, although

many BP estimation models are trained with the MSE loss. The
frontiersin.org
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MAE is calculated as

MAE ¼ 1
n
�
Xn
i¼1

jcBPi � BPij: (3)

Overall, we suggest reporting R2 in addition to the above

loss metrics to enable cross-dataset comparison of model’s

performance, since it is an unit-less error metric normalized

by the total sum of squares in the dataset, calculated as

R2 ¼ 1�
Pn

i¼1 (BPi � cBPi)
2Pn

i¼1 BPi � 1
n
�Pn

i¼1 BPi

� �2 : (4)

R, on the other hand, is not appropriate to be used as

an error metric, since it depicts correlation instead of

error, which can remain high even in the presence of

large error (60).
4.3. Limitations

The ECG, PPG and ABP signals retrieved from the

MIMIC-III database matched subset lack precise alignment,

with an undetermined and inconsistent inter-signal

misalignment for up to 500 ms (39). This limitation makes

the analysis that rely on the synchronization of ECG, PPG or

ABP waveforms (e.g., extraction of the pulse arrival time),

unreliable. Unlike the MIMIC database, however, waveform

synchronization is secured in the VitalDB dataset (33).

Therefore, we suggest using segments from VitalDB for the

analysis requiring precise inter-signal alignment among

ECG, PPG or ABP.

To facilitate the usage of the PulseDB dataset for studies that

rely on the alignment of ECG, PPG or ABP signals, a

supplementary series of training, calibration-based testing,

calibration-free testing, AAMI testing, and AAMI calibration

subsets are generated, by choosing data only from the

VitalDB subjects. Table 7 compares the statistical information

of the supplementary AAMI testing set generated from 116

subjects of the VitalDB dataset with the AAMI standard

requirements, confirming that all requirements are fulfilled.

These subsets are available for download from Kaggle at (61),

and can be reproduced from the script provided in the

GitHub repository at (34).
4.4. Conclusions

In summary, we presented PulseDB, a new cleaned dataset

for reliably validating deep learning-based cuff-less BP
Frontiers in Digital Health 14
estimation methods. By combining signals from two

publicly-available ICU databases, PulseDB is the largest

cleaned dataset, to date, making it ideal for training and

testing data-driven BP estimation models. The inclusion of

subject’s demographic information and characteristic point

positions in PulseDB extends its usage to various machine

learning approaches, such as sequence-to-label estimation of

SBP/DBP, sequence-to-sequence estimation of ABP, and

beat-to-beat estimation of SBP/DBP, with no to minimal

adjustment. The creation of the training set, the three

testing sets (calibration-free, calibration-based and AAMI

testing) enables reproducible and comparable accuracy

evaluation across models, thereby, it can be used as a solid

platform to fairly benchmark the generalization capability of

BP estimation models and compare their estimation

performance. An example study utilizing these subsets was

conducted, which demonstrated that the performance gap

between calibration-free and calibration-based model

validation is due to the fact that information learned by the

model, after the initial training epochs, generalizes to the

group of subjects seen during training, but not to new,

unseen subjects, probably due to the physiological

differences across subjects. Overall, we expect the proposed

PulseDB dataset to be a comprehensive, flexible and easy-to-

use source of data for developing and evaluating cuff-less

BP estimation methods.
4.5. Licenses

PulseDB is released with data derived from the MIMIC-III

matched subset and the VitalDB dataset. Data derived from the

MIMIC-III matched subset are released under the Open

Database License (ODbL), while data derived from the

VitalDB dataset are released under the Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0) license. Files and their corresponding licenses

are specified in the GitHub repository of PulseDB at (34), as

well as on Kaggle at (61).
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