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Background: Maternal and neonatal health outcomes in low- and middle-
income countries (LMICs) have improved over the last two decades.
However, many pregnant women still deliver at home, which increases the
health risks for both the mother and the child. Community health worker
programs have been broadly employed in LMICs to connect women to
antenatal care and delivery locations. More recently, employment of digital
tools in maternal health programs have resulted in better care delivery and
served as a routine mode of data collection. Despite the availability of rich,
patient-level data within these digital tools, there has been limited utilization
of this type of data to inform program delivery in LMICs.
Methods: We use program data from 38,787 women enrolled in Safer
Deliveries, a community health worker program in Zanzibar, to build a
generalizable prediction model that accurately predicts whether a newly
enrolled pregnant woman will deliver in a health facility. We use information
collected during the enrollment visit, including demographic data, health
characteristics and current pregnancy information. We apply four machine
learning methods: logistic regression, LASSO regularized logistic regression,
random forest and an artificial neural network; and three sampling
techniques to address the imbalanced data: undersampling of facility
deliveries, oversampling of home deliveries and addition of synthetic home
deliveries using SMOTE.
Results: Our models correctly predicted the delivery location for 68%–77% of
the women in the test set, with slightly higher accuracy when predicting facility
delivery versus home delivery. A random forest model with a balanced training
set created using undersampling of existing facility deliveries accurately
identified 74.4% of women delivering at home.
Conclusions: This model can provide a “real-time” prediction of the delivery
location for new maternal health program enrollees and may enable early
provision of extra support for individuals at risk of not delivering in a health
facility, which has potential to improve health outcomes for both mothers
and their newborns. The framework presented here is applicable in other
contexts and the selection of input features can easily be adapted to match
data availability and other outcomes, both within and beyond maternal health.
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Introduction

Maternal and neonatal health outcomes in low- and middle-

income countries (LMICs) have improved over the last two

decades, in part due to increasing access to facilities for

delivery and the quality of care therein (1–3). Facility-based

delivery facilitates timely access to emergency obstetric care,

and higher rates of facility delivery in sub-Saharan Africa

(SSA) are significantly associated with lower maternal

mortality (4–6). Between 2010 and 2018, it is estimated that

nearly 67% of women in SSA delivered in health facilities (7);

however, many pregnant women still deliver at home in

LMICs (8), increasing the risk of poor outcomes for both the

mother and the child should a complication occur during

childbirth. Strategies to identify and target interventions for

these women could help close the remaining gap.

Previous research exploring the likelihood of facility-based

delivery in SSA has found that attendance of at least one

antenatal care visit, proximity to a health facility, difficulty

delivering in the past, lower parity, higher maternal education

and partner involvement reduces the likelihood of home

delivery (9–14). Further studies suggest that local tradition

and beliefs, cost of delivery, household income, perceived

quality of care and fear of discrimination are also important

factors influencing the choice of delivery location (15–20).

This literature provides crucial insights into strong predictors

of health facility delivery but does not maximize prediction

accuracy for the purposes of real-time programmatic use.

The uptick of digital tools in maternal health programs,

such as mobile devices for community health workers

(CHWs) (21–26), presents a unique opportunity for real-

time implementation of predictive models (23). Digital tools

capture data of individuals enrolled in these programs that

can be used to build prediction models (24); specifically, for

maternal health, machine learning techniques can capture

complex, non-linear relationships between demographic or

clinical characteristics of the woman and birth outcomes

(27–29). These machine learning models could then be

applied back into the program to guide the interventions in

a more targeted, efficient manner. To date, few published

papers have used machine learning techniques to predict

maternal or child outcomes in SSA (26, 30–37), only one of

which focused on facility-based delivery (31). Of note, this

latter example from Ethiopia used national survey data and

not data captured on individuals enrolled in a maternal

health program.
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To address these gaps, we applied several machine learning

techniques to predict health facility delivery among pregnant

women enrolled in the maternal health program, Uzazi

Salama, in Zanzibar, Tanzania (38). We used existing program

data, captured at the time of enrollment by CHWs equipped

with a smartphone application, to build these models. In this

paper, we first provide an overview of the Uzazi Salama

program and data collection followed by rationale for choice of

variables and machine learning models. We conclude with a

discussion on the benefits of integrating prediction models

within Uzazi Salama or similar maternal health programs with

the goal of improving rates of facility delivery.
Materials and methods

Program overview

The Uzazi Salama (“Safer Deliveries”) program operated

between 2016 and 2019 in Unguja and Pemba, the two main

islands of Zanzibar. In January 2020, the program was adopted

by the Government of Zanzibar as the national community

health program, expanded to provide additional postpartum

and child health services, and was renamed Jamii ni Afya

(“Communities are Health”). The goal of the Uzazi Salama

program was to increase the number of women delivering in a

health facility by providing birth planning, counseling, and care

referrals via in-person home visits with a community health

volunteer. Henceforth, we will refer to community health

volunteers as CHWs to be consistent with the literature. CHWs

provided three scheduled health promotion home visits prior to

delivery. CHWs used a program-specific cell phone application

to guide the encounter, which also served as a real-time data

collection tool. Further details regarding the Uzazi Salama

program are available in Supplementary Material.
Study population

We included women enrolled in Uzazi Salama between 1

January 2017–30 June 2019 with a recorded delivery in this

analysis. Women had to deliver at a health facility or at home

to be included. Women who delivered on the way to the

facility and women with no birth location documented were

excluded. A total of 38,787 women met the inclusion criteria

and were considered in the analysis.
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Key variables

The models presented here depend on individual- and

community-level variables. All analyses are based strictly on

information collected by CHWs prior to or during the

enrollment visit. The considered variables are as follows:

Woman’s demographic characteristics included district of

residence, age, and the following six socioeconomic indicators:

whether all children are currently living, electricity in home,

drinking water source, roof material, floor material and

education level. CHWs collected these six socioeconomic

indicators beginning in March 2017 during in-person home

visits occurring one week postpartum. Although this

information was collected later, it is assumed that the answers

apply to the enrollment visit and in the new national program

this data is being collected at the first visit. Self-reported

clinical characteristics included details on (a) comorbidities

(HIV status, cardiac disease, diabetes, high blood pressure,

sickle cell anemia) and (b) past pregnancies as relevant

(parity category (0, 1–2, 3–4, 5–7, 8+), previous delivery

location, eclampsia, perineal tear, placenta previa, prolonged

labor, retained placenta, vacuum, cesarean section,

spontaneous abortions or stillbirths).

Current pregnancy characteristics included whether it was a

twin pregnancy, whether the baby was larger than average

(macrosomia), and the amount of money the family had

currently saved for the delivery. It also included the total

number of antenatal care (ANC) visits prior to the enrollment

visit. If the first ANC visit took place prior to enrollment,

information on the occurrence of convulsions, abdominal

pain, bleeding, headache or difficulty breathing was recorded,

along with whether the mother was charged a fee and

whether the first ANC visit was a “negative experience”,

defined as having both a privacy interruption and a wait time

of more than 3 h. We also considered if the woman was

referred back to a health facility by the CHW at the first visit

and, if so, the reason for referral. Program-associated

characteristics, also collected at the enrollment visit, included

partner permission to deliver in a health facility (which

required the partner to be present at one of the CHW visits,

else not received), estimated gestational age at enrollment,

type of recommended delivery facility, taxi price to delivery

facility as a distance proxy, whether the woman had her

reproductive and child health card available during the visit.

Name of the recommended delivery facility was included as a

proxy for perception of quality and to account for regional

differences in the patient population.

Finally, community-level characteristics were created for

inclusion in the model. For each woman, the following

variables were calculated based on program-level

information up to the time of the enrollment visit:

cumulative level of experience of the woman’s CHW

measured in 6-month increments, rate of facility delivery in
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mother’s shehia (local area), and rate of facility delivery

among women with the same CHW. These were derived

from the original data such that the rates were only based

on women who delivered prior to the enrollment date for

the woman of interest, including those enrolled in the

program prior to 1 January 2017. Women living in the same

shehia sometimes had the same CHW, resulting in some

correlation between these variables.
Data preprocessing

Some women were missing information on savings (10%)

and the six socioeconomic indicators (33%) because these

variables were added to the smartphone app after the start of

the program and because information was collected at a

specific postpartum home visit, which some women may have

missed. Data availability was high (>97%) across all other

variables. Missing values in nominal variables were imputed

with the most frequent category. K-Nearest Neighbor (KNN)

imputation (39), which uses observations from K “similar”

women in the dataset to impute a plausible value for the

woman with a missing variable, was used to impute all other

missing values. K = 1 was used for ordinal variables and K = 5

for all other variables.

We created two datasets: 80% of the women were randomly

selected, stratified by home or facility delivery, for the training

set to be used for model development and the remaining 20%

were used as a test set after completion of model

development. In both the training and test sets, 77% of

women had delivered at a health facility, creating an outcome

imbalance which could cause some prediction models to

prioritize predicting all or most observations as facility

deliveries. Three different techniques were employed to

address this imbalance: undersampling, oversampling and a

synthetic minority oversampling technique (SMOTE) (40).

First, we undersampled from the facility deliveries in the

training set by randomly selecting a subset of the same size as

the number of home deliveries, as illustrated in Figure 1. This

approach does not make full use of the information available

but avoids the issue of poorer classification of home deliveries

directly due to the imbalance of delivery facility types.

Second, we used oversampling from the minority class

(home deliveries), whereby some observations occur multiple

times in the training set. This increases the risk of overfitting

but makes full use of the information in the sample. Finally,

we also approached the imbalance issue using SMOTE, which

creates synthetic records that are “similar” to actual records

from women who delivered at home (see Section 4.2 of (40)

for further technical details). To avoid relying too heavily on

synthetic records, without compromising on the outcome

balance, we simultaneously undersampled from the facility

deliveries.
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FIGURE 1

Illustration of training set undersampling, oversampling and SMOTE with undersampling.
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Statistical modeling

Prior to model development, we summarize the

characteristics of women captured in the training dataset and

use the chi-square statistic to identify the ten factors most

associated with facility delivery. Continuous features (age,

gestational age, taxi price to delivery facility, delivery savings,

payment fee at first ANC visit, rate of facility delivery in

shehia, rate of facility delivery among women with same

CHW) were discretized for this calculation, but were left

continuous for the prediction modeling.

We then used four different models, comprising two

parametric and two non-parametric approaches, with varying

levels of regularization, given that prior knowledge about the

exact relationship between the outcome and the predictors

was very limited. As a baseline model, we used multivariate

logistic regression, assuming a linear relationship between the

covariates and the log-odds of facility delivery. We also

considered a logistic model using LASSO regularization (41),

a means of feature selection to shrink the coefficients of “less

predictive” covariates towards 0.

In addition, two non-parametric models were used: a

random forest, which calculates an average prediction across a

large set of decision trees based on bootstrapped samples and

random subsets of features, and an artificial neural network,

which consists of layers of neurons that each look specifically

at certain features of data. The tree depth for the random

forest was selected using cross validation to reduce the risk of

overfitting to the training set and making insufficient use of

the information available in the data.
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While the logistic and the regularized logistic models are

easily interpretable and the latter provides insight into

variable importance (41), the random forest model is more

flexible and may better capture complex non-linear

relationships between the variables and the outcome (29)

while offering a measure of relative variable importance (42).

Deep learning models typically offer additional flexibility, but

require larger sample sizes, are more computationally

expensive, and offer limited interpretability on variable

importance (43).
Model evaluation

We used multiple metrics to assess how well the test set

predictions matched the true delivery locations. The baseline

metric used was overall test set accuracy, the percent of

women in the test set that were correctly classified. Given the

skewed test set, with only ∼23% being home deliveries, the

individual performance on the minority and majority class

was also measured using true positive rate (sensitivity), which

measures the proportion of home deliveries that are classified

correctly and true negative rate (specificity), which measures

the proportion of facility deliveries that are classified correctly.

Finally, the area under the receiver operating characteristic

curve (AUC) is a measure that jointly accounts for true and

false positives, thus offering an appropriate method for

comparison among models with similar performance across

the other metrics. We computed the chi-square statistic to

estimate which predictors best discriminated between facility
frontiersin.org
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and home deliveries. All analysis was conducted using R version

3.6.1 and Python packages scikit-learn 0.23.1 and tensorflow

2.4.1. The code used for model training and testing is

available in the GitHub repository almafredriksson/facility-

delivery.
Results

Among the 31,435 women in the training set, 76.6%

delivered at a health facility and 23.4% delivered at home after

taking part in Uzazi Salama. A summary of the demographic,

programmatic and self-reported clinical characteristics for the

full dataset is presented in Tables 1, 2. We find that the 10

predictors that individually best discriminate between home

and facility deliveries are the following, in order of magnitude

of association:

(1) Previous delivery location
TABLE 1 Demographic characteristics (n = 38,787).

Variable N (%)

Overall 38787 (100%)

Delivery location

Health facility 29679 (76.5%)

Home 9108 (23.5%)

District

Kaskazini A 5799 (15.0%)

Kaskazini B 2831 (7.3%)

Kati 3529 (9.1%)

Magharibi 4853 (12.5%)

Kusini 1861 (4.8%)

Mkoani 6135 (15.8%)

Wete 3917 (10.1%)

Micheweni 4471 (11.5%)

Chake Chake 5391 (13.9%)

Age of mother

10–20 5730 (14.8%)

21–30 22406 (57.9%)

31–40 9710 (25.1%)

41+ 868 (2.2%)

Parity

0 8916 (23.0%)

1 6648 (17.2%)

2–4 14980 (38.7%)

5+ 8168 (21.1%)

Previous delivery location

At home/in community 7946 (20.5%)

On the way to health facility 338 (0.9%)

Health facility 21514 (55.6%)

No previous delivery 8916 (23.0%)
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(2) Rate of facility delivery among women with the same CHW

(3) Rate of facility delivery in shehia

(4) Name of recommended delivery facility

(5) Residential district

(6) Parity

(7) Education level

(8) Floor material

(9) Access to electricity in home

(10) Payment fee charged at first ANC visit

Figures 2, 3 illustrate the difference in distribution between

women who delivered in a facility and women who delivered at

home for key continuous predictors above. Further details

regarding test statistics for all top variables and figures

visualizing the difference in socioeconomic distribution

between women who delivered at a health facility and women

who delivered at home are available in Supplementary Material.
TABLE 2 Programmatic and self-reported clinical characteristics
(N = 38,787).

Variable N (%)

Overall 38787 (100%)

Gestational age at enrollment (weeks)

0–10 1599 (4.1%)

11–20 15231 (39.3%)

21–30 18612 (48.0%)

31–40 3331 (8.6%)

Partner permission to enroll

Yes 16881 (43.5%)

No 21906 (56.5%)

Taxi price to delivery facility (TZS)

0–10,000 14101 (36.6%)

10,001–20,000 13573 (35.3%)

20,001–30,000 7280 (18.9%)

30,000+ 3544 (9.2%)

CHW experience level (months)

0–6 8567 (22.3%)

7–12 9176 (23.9%)

13–18 8779 (22.8%)

19–24 7394 (19.2%)

25+ 4522 (11.8%)

HIV status

Positive 443 (1.2%)

Negative 37367 (96.3%)

Unknown 977 (2.5%)

Cardiac disease

Yes 52 (0.1%)

No 38662 (99.9%)

High blood pressure

Yes 132 (0.3%)

No 38582 (99.7%)
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FIGURE 2

Histogram of facility delivery rates among women with the same community health worker.

FIGURE 3

Histogram of facility delivery rates among women in the same shehia (local area).
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Undersampling

After performing undersampling, the training set consisted

of 14,572 women; 7,286 women from each outcome class. The

logistic regression model, its regularized counterpart and the

random forest model achieve an overall classification

accuracy of 72%–74% on the test set (see Table 3). While

these three models have a slight difference in accuracy across

the two outcome classes, the neural network shows a major

performance gap, where facility deliveries are more
Frontiers in Digital Health 06
accurately predicted than home deliveries. The random forest

model shows the most promising performance on the home

deliveries with correct classification in more than 74% of the

cases. The associated variable importance measure, reflecting

how often a variable is used in the condition that splits a

tree branch into two, suggested that the rate of facility

delivery among women in the same shehia or with the same

CHW are key predictors. As previously noted, there is some

correlation between these variables as women in the same

shehia may have the same CHW.
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TABLE 3 Model performance on test set by training set type.

Training set Classifier True positive ratea True negative rateb Overall accuracy AUC

Undersampled N = 14,572 Logistic 71.7% 74.0% 73.5% 0.801
Regularized Logistic 71.0% 74.5% 73.7% 0.799
Random Forest 74.4% 71.8% 72.4% 0.800
Neural Network 56.1% 80.3% 74.6% 0.744

Oversampled N = 47,486 Logistic 71.1% 74.5% 73.7% 0.802
Regularized Logistic 71.0% 74.6% 73.8% 0.802
Random Forest 71.1% 73.8% 73.1% 0.799
Neural Network 75.1% 65.9% 68.1% 0.772

SMOTE with minor undersampling N = 30,000 Logistic 71.8% 74.0% 73.5% 0.801
Regularized Logistic 71.1% 74.5% 73.7% 0.802
Random Forest 68.6% 76.5% 74.6% 0.798
Neural Network 58.9% 80.8% 75.7% 0.778

aProportion of home deliveries that are classified correctly.
bProportion of facility deliveries that are classified.
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Oversampling

After performing oversampling, the training set consisted of

47,486 women; 23,743 women who had delivered at a facility,

7,368 unique observations from women who delivered at

home, and 16,735 observations from women who delivered at

home that were sampled from the 7,368 unique observations.

The neural network shows a promising true positive rate and

correctly identifies more than 75% of home deliveries (see

Table 3). The logistic and regularized logistic models both

achieve an overall accuracy of close to 74%. The similar

performance across the two logistic models suggests that little

or no feature selection occurred.
SMOTE with minor undersampling

After performing SMOTE with minor undersampling, the

training set consisted of 30,000 women; 15,000 women who

had delivered at a facility, 7,368 unique observations from

women who delivered at home, and 7,632 synthetic

observations similar to women who delivered at home. The

unregularized logistic and regularized logistic regression models

trained on synthetic records performed well with true positive

rates just below 72% (see Table 3), but generally predicted

facility deliveries more accurately than home deliveries.

Further details about the false positive rate and false negative

rate of each model are available in Supplementary Material.
Discussion

Our paper is one of few using machine learning approaches to

predict facility delivery in SSA. Across varying modeling and

balancing techniques, we found the accuracy to be 68%–77%,
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with slightly higher accuracy when predicting facility delivery

versus home delivery. One other paper has previously shown

the utility of these types of models and successfully predicted

skilled birth attendance in Ethiopia using retrospectively

collected survey data (31). The model we present operates on

program data collected at enrollment, including community-

level factors, which enables prospective implementation and

integration into existing maternal health programs. It could also

be used in real-time to assess the risk of home delivery and

provide tailored intervention. We found education, age and

parity to be important, which corroborates findings from other

papers (9–14). However, we also found community-level

variables to be highly predictive, highlighting their importance

for inclusion in the prediction models.

For all but two combinations of modeling and balancing

techniques, the performance was higher when predicting facility

delivery, which is consistent with the fact that all the models

based on oversampling and synthetic records have less real

information about home deliveries available regardless of the

balanced training set. Importantly, the classification used in this

paper is optimized for overall prediction accuracy, but in

practice, the classification thresholds could be altered manually

to increase or reduce the sensitivity and specificity of the

algorithm according to maternal health program priorities and

the cost of specific interventions used. Across the undersampled

and the oversampled training set, the random forest model and

the neural network respectively obtain the highest true positive

rate or, equivalently, shows the strongest performance on home

deliveries (74.4% and 75.1% respectively). The former achieves

this without compromising noticeably on the performance for

facility deliveries. For the partly synthetic training set, the logistic

regression model achieves the highest classification accuracy on

the home deliveries at 71.8%. Among these three candidate

models, the undersampled random forest is the only one to

show strong performance on the home deliveries, which we are

particularly interested in identifying, without noticeably
frontiersin.org
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sacrificing performance on the facility deliveries. This strong

performance of the non-parametric random forest model relative

to the parametric methods suggests that there may be non-linear

relationships present that the traditional parametric models may

not fully capture.

While the training data is specifically obtained from Uzazi

Salama, the framework is applicable in other contexts and the

selection of input features can easily be adapted to match data

availability and other outcomes, both within and beyond

maternal health. The insights obtained here will be leveraged to

predict delivery location for pregnant women who are enrolled in

the Jamii ni Afya program. We hypothesize that the prediction

accuracy will be improved as socioeconomic data will be collected

for all individuals. Extensions of this work include updating

predictions after additional data is collected at future CHW home

visits, which would allow for multi-stage program tailoring.

There are several limitations to our findings, including

missing data, which is a common issue in these contexts. In

the Uzazi Salama data, we had missingness in several variables,

primarily among the socioeconomic indicators. We used the

KNN algorithm to impute values, given that it generally

performs well compared to similar techniques and the risk of

model misspecification is low, as it is fully non-parametric (40).

However, applying it to a dataset with a vast number of

predictors increases the risk of relying on features with limited

relevance to the outcome, which can add randomness to the

distance measure used to select neighbors and subsequently

reduce the quality of the imputation (44). We further recognize

that although several socioeconomic indicators were included

in the analysis, there may be nuances of each woman’s

socioeconomic status that have not been fully captured.

Similar to most maternal health programs, Uzazi Salama

also experienced loss to follow-up. Approximately 14% of

enrollees did not have a delivery outcome recorded and were

excluded from the analysis, as we did not feel comfortable

imputing these. We hypothesize that women who are lost to

follow-up have either traveled to another location, such as a

family home, to deliver and CHWs were not able to reach

them or they are hesitant to tell their CHW that they

delivered at home. However, as this study does not claim

causality, the main concern of this potential data bias is

primarily reduced prediction accuracy rather than confounding.
Conclusion

We compared four machine learning models and three

sampling techniques to display the utility of using routinely

collected maternal health program data to predict delivery

location. Our models correctly captured the delivery location

for 68%–77% of the women in our test set, with slightly higher

accuracy when predicting facility delivery versus home delivery.

We demonstrate that prediction models can effectively be used
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to obtain a “real-time” prediction of the delivery location for

new maternal health program enrollees. Embedded in a cell

phone application, this model can be leveraged to immediately

alert the CHW to individuals at particularly high risk of

delivering at home, allowing for provision of extra support or

further visits, which has potential to improve health outcomes

for both mothers and children. While our training data

originates from the Uzazi Salama, the framework is applicable

in other contexts and the selection of input features can easily

be adapted to match data availability and other outcomes, both

within and beyond maternal health.
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