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Development of a non-contact
sleep monitoring system
for children
Masamitsu Kamon1*, Shima Okada1, Masafumi Furuta2
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1Department of Robotics, Ritsumeikan University, Shiga, Japan, 2Technology Research Laboratory,
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Daily monitoring is important, even for healthy children, because sleep plays a
critical role in their development and growth. Polysomnography is necessary
for sleep monitoring. However, measuring sleep requires specialized
equipment and knowledge and is difficult to do at home. In recent years,
smartwatches and other devices have been developed to easily measure
sleep. However, they cannot measure children’s sleep, and contact devices
may disturb their sleep.

A non-contact method of measuring sleep is the use of video during sleep.
This is most suitable for the daily monitoring of children’s sleep, as it is simple
and inexpensive. However, the algorithms have been developed only based on
adult sleep, whereas children’s sleep is known to differ considerably from that
of adults.

For this reason, we conducted a non-contact estimation of sleep stages for
children using video. The participants were children between the ages of 0–6
years old. We estimated the four stages of sleep using the body movement
information calculated from the videos recorded. Six parameters were
calculated from body movement information. As children’s sleep is known to
change significantly as they grow, estimation was divided into two groups
(0–2 and 3–6 years).

The results show average estimation accuracies of 46.7 ± 6.6 and
49.0 ± 4.8% and kappa coefficients of 0.24 ± 0.11 and 0.28 ± 0.06 in the age
groups of 0–2 and 3–6 years, respectively. This performance is comparable
to or better than that reported in previous adult studies.

KEYWORDS

sleep stage, sleep monitoring, children, video monitoring, video image processing,

machine leaning

Introduction

Sleep is an important part of daily life as it reduces stress and aids recovery.

Accordingly, monitoring sleep at home can contribute to health management (1, 2). In

addition, sleep plays an important role in the development of children (3) and is also

related to their parents’ health (4). Sleep quality in children can contribute to health

management. Therefore, it is important to monitor sleep quality in children on a daily

basis to detect sleep problems. Polysomnography (PSG) is commonly used to assess

sleep quality in clinical practice, but it requires measuring various biological signals,
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such as electroencephalograms (EEGs), electromyograms, and

electrooculograms and requires specialized equipment and

knowledge (5–7). Therefore, PSG scoring is not a realistic

method for assessing the sleep stage in the home environment.

In addition, the installation of various devices may diminish

the quality of sleep in children. Thus, measurement methods

that reduce the burden on equipment installation are needed.

In recent years, electrocardiograms (ECGs), pulse-rate laser

Doppler sensors (8, 9), and cameras (10) have been used to

quantify sleep quality in homes (11). In particular, camera-

based methods are considered the most suitable for

monitoring children’s sleep because they are entirely

noncontact and easy to install. This method uses the

relationship between body movements and sleep stages, and it

has been reported that there are significant differences in the

frequencies of body movements among sleep stages (12).

Nochino et al. (13) used an infrared camera to measure sleep

quality in four stages. However, this method is intended for

adults and is unsuitable for assessing sleep in children.

Long et al. (14) quantified sleep features and patterns in

children by using an infrared camera. In this study, children’s

sleep was estimated during both waking and sleeping stages.

However, it is believed that the secretion of growth hormone

responsible for children’s development occurs during deep sleep

(15). In addition, de Goederen et al. (16) used a radar system to

estimate the four stages of sleep in children, and achieved an

accuracy of 58.0%. However, the radar system is difficult to

install and expensive, thus making it difficult to use at home.

There are various sleep measurement devices, and methods

based on body movements (17). Two commonly used devices

include the smartwatch and smartphone. Chinoy et al. (18)

evaluated the smartwatch Fitbit Alta HR. The device provided an

estimation accuracy of 90% for the distinction between sleep and

wakefulness for adults. Patel et al. (19) used a dedicated

application to assess sleep on smartphones. Their results

confirmed the lack of a correlation relationship between the sleep

stage determined by the application and that determined by PSG.

Therefore, it is necessary to develop a simple method for

monitoring children’s sleep. We used an infrared camera, which

is easy to install and is inexpensive, to estimate the four sleep

stages of children aged 0–6 years. As it is known that sleep in

children changes considerably as they grow, we estimated the

sleep stages of children aged 0–2 years and 3–6 years. Previous

studies (13) have utilized support vector machines (SVMs) (20).

In this study, the extremely randomized trees (Extra Trees)

ensemble machine learning algorithm was used.
FIGURE 1

Measurement and analysis methods. A sleeping child was recorded
by an infrared camera, and body movements were extracted from
the video data. Some features were calculated by the body
movements as the training parameter for machine learning. And
machine learning was performed using the calculated futures and
sleep stage obtained by a simple PSG as the correct data.
Methods

In this study, we extracted body movement during sleep

from video recordings. Figure 1 shows the measurement and

analysis procedure. The measurements were performed in the
Frontiers in Digital Health 02
subjects’ homes. Eight subjects participated who were aged 0–

6 years, with a mean age of 2.3 ± 2.1 years. The measurements

were conducted for 1–4 nights per person for a total of 14

nights. The variability in the number of nights per person is

attributed to the fact that the measurements were conducted

at home, and the measurements were not always accurate.

Informed consent for measurements was obtained from the

parent of all subjects. The experiment was approved by the

Ethical Review Committee for Medical Research Involving

Human Subjects, Ritsumeikan University (BKC-Human

Medicine-2020-053). A simple PSG was used as the gold

standard for learning and evaluating the classifier. This reduced

the burden on the child because the sleep stages were assessed

with far fewer electrodes than those used in PSG in clinical

practice. A small sensor was attached to the body for recordings

with the simplified PSG. The recording device was connected

wirelessly to reduce the burden on the child during sleep. A

simple PSG was used offline by a technician to score the sleep

stages. A video of the child sleeping was recorded at the same

time as the simple PSG recording. Figure 2 shows the flow of

sleep stage estimation from video recordings. Body movements

were extracted from the videos using video processing. Six

machine learning parameters were calculated from the extracted

body movements. Sleep stages were estimated from six

parameters using Extra Trees machine learning with the simple

PSG sleep stage as the answer response sleep stages.
PSG recording and sleep stage scoring

Simple PSG scoring was performed using a ZA-X EEG

sensor (Proassist, Japan). This device has four electrodes and
frontiersin.org
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FIGURE 2

Flow of sleep stage estimation. Two types of body movements were calculated every 0.5 s using difference processing, and six features were
calculated every 30 s. Then, machine learning was apply these feature values to sleep stage estimation.
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can measure data to estimate the sleep stage. The results of this

simple PSG instrument have been reported to have a

concordance rate of 85.5% compared with PSG scoring (21).

The measured data were used to estimate the sleep stages

automatically every 30 s based on the American Academy of

Sleep Medicine (8). Subsequently, a specialist technician

corrected the results. Stage W is defined as Wake, stage R as

rapid eye movement (REM), stages N1 and N2 as Light, and

stage N3 as Deep.
Region-of-interest selection and body
movement extraction

An ELP-USBFHD05MT-DL36-J camera (Shenzhen Ailipu

Technology Co., Ltd., China) equipped with infrared light-

emitting diodes (LEDs) was used. The camera’s resolution was

1,920 × 1,080 pixels, and measurements were performed at 2

frames per second. The camera was controlled by a Jetson

Nano (NVIDIA Corporation, United States of America). The

camera was placed around the bedding, so that the entire

bedding area could be observed. The camera was placed at a

height of about 1–2 m from the bed. For the experimental

design, it is better to install the cameras at the same height

under the same conditions. However, since this study was

conducted under the conditions that each household could

install the camera, it was not possible to standardize the

height conditions.

Figure 3 shows the body movement extraction procedure.

The bedding was extracted as a region-of-interest (ROI) in the

video for body motion extraction. The ROI extraction

eliminated body movements (other than those related to the

subject), such as the unintended appearance of parents. The

ROI was set manually by the researcher. The extracted ROIs

were transformed by trapezoidal correction according to their
Frontiers in Digital Health 03
size. For the extraction of body motion, we used differences

and binarization. The difference calculation method is shown

in Equation 1. Id is the difference image, In is the n th frame,

x is the vertical pixel coordinate, and y is the horizontal pixel

coordinate.

Id(x, y) ¼ jIn(x, y)� In�1(x, y)j ð1Þ

In this process, the difference in pixel-by-pixel luminance

values between the nth and the (n− 1)th frames of the

grayscale video was calculated. In the binarization process,

pixels above the threshold were converted to white pixels

(luminance value: 255), and the pixels below the threshold to

black (luminance value: 0). Finally, the number of white

pixels was counted as the amount of body movement.

Equation 2 shows the equation for the amount of body

motion. dif fn is the amount of body motion in the nth

frame, Ibn is the image after binarization in the nth frame x is

the vertical pixel coordinate, and y is the horizontal pixel

coordinate.

dif fn ¼
Px

i¼1

Py
j¼1 Ibn(x, y)

255
ð2Þ

Motion extraction was performed twice, every 0.5 s, and two

motion values were extracted. The first amount of body

movement was calculated between the nth and (n− 1)th

frames, corresponding to a very small temporal difference

(0.5 s), allowing us to detect fast body movements. The

second amount of body movement was computed between

the nth and (n− 6)th frames, which corresponds to a large

temporal difference (3.0 s), therefore allowing the detection of

slow body movements.
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FIGURE 3

Procedure of the body movement extraction. Only the bed area was extracted from the video using trapezoidal correction, and converted to a black-
and-white image using grayscaling, differencing, and binarization processes. The number of white color pixels, It means that a pixel has had a change
in luminance value since the previous frame, was counted as the amount of body movement.
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Sleep stage estimation

Extra Trees was used to estimate the sleep stages from body

movements (22). To use this classification method, six

parameters were calculated from two types of extracted body

movements. These parameters were calculated once every 30 s.

This process is the same timing as the determination of sleep

stage based on simple PSG scoring. Extra Trees was then

trained using six parameters and the sleep stages from simple

PSG scoring. Sleep stages were estimated sequentially by using

the six parameters. The amount of body movement varied

with sleep stages (12). The amount of physical activity was

related to sleep, even in children (23, 24). In Wake, body

movements were large and frequent; in Light and REM, body

movements tended to be more frequent, but the number of

body movements was greater in Light than in REM.

Conversely, in the case of Deep, body movements were almost

absent. These results indicate that the average amount of body

movements, frequency of body movements, and elapsed time

are necessary to identify sleep stages. Therefore, six

parameters were calculated using the following equation to

represent the characteristics necessary for estimation. Note

that dif f i,0:5 is the fast body movement of the i th frame, and

dif f i,3:0 is the slow body movement of the i th frame.

Parameter 1: The first parameter was estimated using Equation

3 (n ¼ 1, 61, 121, � � �). This parameter is a moving average of

body movements during 30 s and represents the magnitude of

body movements. This parameter was used for Wake

classification.

SumMean30 ¼
Pnþ59

i¼n dif f i,0:5 þ dif f i,3:0
60

ð3Þ
Frontiers in Digital Health 04
Parameter 2: The second parameter was estimated based on

Equation 4 (n ¼ 1, 61, 121, � � � ). This parameter is the

logarithm of the moving average over a period of 300 s. If the

result is less than one, then it is replaced by zero. If it is

greater than one, then the logarithm is calculated. This

parameter represents the frequency of body movements over

5 min and is used to discriminate between REM and Light.

PropMean300 ¼ log10

Pnþ599
i¼n dif f i,0:5 � dif f i,3:0

600

 !
ð4Þ

Parameter 3: The third parameter is given by Equation 5

(n ¼ 1, 61, 121, � � � ). This parameter is a moving average

over a period of 300 s and represents the magnitude of body

movement over a long period of time. This parameter was

used to discriminate the long-time Wake and long-time Deep

with little movement.

SumMean300 ¼
Pnþ599

i¼n (dif f i,0:5 þ dif f i,3:0)

600
ð5Þ

Parameter 4: The fourth parameter is given by Equation 6. This

parameter is the duration of frames during which body motion

is below a certain level, thus representing the duration of the

stationary state. Similar to parameter 3, this parameter was

used to discriminate between Deep and little movements.

NonBM ¼ 0 dif f i,0:5 þ dif f i,3:0 . k

NonBM ¼ NonBM þ 1 dif f i,0:5 þ dif f i,3:0 � k

(
ð6Þ
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Parameter 5: The fifth parameter is given by Equation 7

(n ¼ 1, 61, 121, � � � ). This is the time elapsed since the start

of the measurements. This parameter represents the number of

epochs. There was a tendency for deeper sleep in the first half

and more REM in the second half. Therefore, this parameter

was used to determine the difference between Deep and REM.

Epoch ¼ nþ 59
60

ð7Þ

Parameter 6: The sixth parameter is given by Equation 8

(n ¼ 1, 61, 121, � � � ). This parameter denotes the dispersion

of body movements during a period of 30 s and represents

the frequency of body movements. It was used to classify

Deep, which contains few body movements, and REM, which

contains many body movements.

Variance30 ¼Pnþ59

i¼n
(dif f i,0:5 þ dif f i,3:0)

2 � (dif f i,0:5 þ dif f i,3:0)
2

� �
ð8Þ

The size of a child’s body varies considerably at different stages

of growth. In this study, the amount of body movement used

varied considerably depending on the size of the child’s body.

Sleep duration also varied between the subjects and days. This

may lead to inaccurate estimation of the sleep stages. Therefore,

all parameters were standardized to have a mean of zero and a

variance of one. Standardization was implemented based on

Equation 9, where i denotes the number of parameters, Parami
FIGURE 4

Sleep stage and calculated parameters. (A) Moving average over 30 s and rep
time. (B) Logarithm of the moving average over 300 s and representation o
Moving average over 300 s and representation of the magnitude of the
movements below a certain level and representation of the duration of still
representation of the elapsed time. (F) Variance of body movements ov
movements over a short period of time.
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is the i th parameter, Parami is the average of the i th

parameter, and SParami denotes the variance of the i th parameter.

Standard Parami ¼ Parami � Parami

SParami

ð9Þ

These parameters constitute discrete data. The parameters

were not expected to differ considerably for each sleep stage.

Therefore, the classifier needs to be trained by dividing the

data into smaller pieces. For this reason, we used Extra Trees

based on decision trees as the classifier used in this study.

Examples of the results for the six calculated parameters are

presented in Figure 4. Because the tendency of the sleep stages

varied considerably depending on the child’s development,

machine learning with the Extra Trees classifier was used to

estimate and evaluate the two groups of children (0–2 years

old, and 3–6 years old).

Leave-one-out cross-validation was performed to evaluate

the classification performance, and accuracy, sensitivity, and

specificity were calculated for each of the four sleep stages to

evaluate the classification performance. The overall estimated

accuracy and Cohen’s kappa coefficient (25) were calculated.
Results and discussion

Results of simple PSG scoring

In total, 50 nights were evaluated: 21 nights for children

with ages in the range of 0–2 years, and 29 nights for those
resents the magnitude of the body movement over a short period of
f the frequency of body movements over a long period of time. (C)
body movement over a long period of time. (D) Duration of body
ness. (E) Number of frames converted to the number of epochs and
er a period of 30 s, and representation of the frequency of body
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in the 3–6 year age range. However, in many cases, scoring with

the simple PSG failed, and the data available for analysis were

limited to six nights for children aged 0–2 years old, and

eight nights for children aged 3–6 years old (a total of 14

nights). Most of the simple PSG scoring failures were caused

by children disliking the electrodes and removing them.

Another reason was the difficulty in operating the equipment.

Although PSG scoring is necessary for research, PSG scoring

is not a suitable method for daily monitoring of sleep stages

in children.

The percentage of each sleep stage obtained by PSG as

correct data is shown in Figure 5. The epochs are the total

number of sleep stages determined once every 30 s from PSG.

From this, REM sleep is more common in children aged 0–2

years old, while REM is less common in children aged 3–6

years old due to changes in the sleep cycles. However, in

clinical PSG examinations, the depth was approximately 30%

in normal subjects (26). However, the simple PSG scoring

results were low: 18% in children who were 0–2 years old,

and 22% in children who were 3–8 years old. This may be

because the device used was a simple PSG scoring device, the

subjects were children, and their sleep cycles were not stable.
Sleep stage estimation

Examples of estimated sleep stages are shown in Figure 6.

Table 1 presents the estimated results for each sleep stage.

Table 2 shows the estimation accuracy and kappa coefficient

of each dataset. The estimation accuracy of Wake was 90.3 ±

5.1% and was the highest in the age group of 0–2 years, and

97.5 ± 1.3% in the age group of 3–6 years. This was owing to

frequent body movements during wakefulness, which was well

characterized by parameter 1. However, the specificity of the

4th, 5th, and 6th datasets of children with ages in the range
FIGURE 5

(A) Percentages of sleep stages determined by simple polysomnography (PS
determined by simple PSG at ages in the range of 3–6 years.
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of 0–2 years was low. This may be owing to the short time

between bedtime and sleep onset and the low frequency of

mid-waking. The same tendency was observed in the second

children data with ages in the range of 3–6 years. The

estimation accuracy of Light was the lowest in both grooves,

and its sensitivity and specificity were also low. This was due

to the fact that Light accounts for approximately half of the

sleep period and includes the transition period to other sleep

stages. Therefore, it is inevitable that misclassification will

increase in machine learning. The accuracy of REM was

70.6 ± 7.2% in children with ages in the range of 0–2 years,

and 66.8 ± 4.7% in the 3–6 age group, thus indicating that the

accuracy of REM estimation was higher in the 0–2 age group

compared with that for children the 3–6 age group. This was

because REM accounts for a larger proportion of total sleep

in children with ages in the range of 0–2 years. In addition,

children’s sleep showed the same performance as that of

adults in the previous study, despite a higher percentage of

REM sleep. This is attributed to the effects of parameters 2, 5,

and 6. The accuracy of Deep sleep estimation was 75.9 ± 3.7%

in children with ages in the range of 0–2 years, and 79.5 ±

3.3% in children with ages in the range of 3–6 years, probably

because parameters 3–6 could be used to determine Deep

sleep. However, the low specificity of Deep sleep in children

with ages in the range of 0–2 years may be owing to the low

number of Deep sleep patterns in the sleep stages as judged

by simple PSG. The accuracy of the estimation of each sleep

stage is comparable to that reported in a previous study on

adults (13).

Table 2 shows that the mean accuracy of the estimates for

the age group 0–2 years old is 46.7 ± 6.6%, and the kappa

coefficient is 0.24 ± 0.11. In the age group of 3–6 years old,

the mean accuracy of the estimation is 49.0 ± 4.8%, and the

kappa coefficient is 0.28 ± 0.06. In a previous study (13), the

results for adults yielded an average estimation accuracy of
G) at ages in the range of 0–2 years. (B) Percentage of sleep stages
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FIGURE 6

Example of sleep stage estimation results. (A) Children with ages in the ranges of (A) 0–2 years, and (B) 3–6 years.

TABLE 1 Estimation of the different sleep stages for each studied subject.

Age Stages Data number Average

1 2 3 4 5 6 7 8

0–2 Deep Accuracy 73.7 78.1 78.9 73.0 71.5 80.4 – – 75.9 ± 3.7
Sensitivity 31.8 66.5 16.3 23.8 58.3 66.4 – – 43.8 ± 22.5
Specificity 19.9 37.3 21.5 35.6 37.5 50.4 – – 33.7 ± 11.4

Light Accuracy 60.8 62.9 47.9 49.8 54.8 62.9 – – 56.5 ± 6.7
Sensitivity 36.6 34.2 37.3 38.3 26.1 34.4 – – 34.5 ± 4.4
Specificity 60.4 53.9 44.0 37.5 51.2 63.1 – – 51.7 ± 9.7

REM Accuracy 79.8 75.6 60.1 70.6 64.9 72.8 – – 70.6 ± 7.2
Sensitivity 85.0 70.6 50.4 47.5 61.1 65.4 – – 63.3 ± 13.8
Specificity 61.7 59.1 42.2 54.8 43.6 61.9 – – 53.8 ± 8.9

Wake Accuracy 93.3 86.1 95.4 83.2 95.2 88.5 – – 90.3 ± 5.1
Sensitivity 65.2 40.8 96.5 44.6 28.6 83.3 – – 59.8 ± 26.4
Specificity 75.3 54.0 49.1 14.5 36.4 3.9 – – 38.9 ± 26.4

3–6 Deep Accuracy 80.8 82.2 82.6 79.0 73.8 78.4 76.1 84.4 79.5 ± 3.3
Sensitivity 69.7 71.4 67.6 70.4 54.3 65.5 51.4 75.2 66.5 ± 6.3
Specificity 52.8 57.4 54.4 45.5 58.7 46.3 58.4 68.8 52.5 ± 5.5

Light Accuracy 58.5 57.5 57.2 55.0 51.0 49.4 58.7 50.5 54.8 ± 3.8
Sensitivity 33.5 45.6 29.2 29.1 34.4 20.5 51.9 16.7 32.0 ± 8.3
Specificity 62.2 66.7 60.3 52.4 33.1 43.6 45.6 44.3 53.1 ± 12.7

REM Accuracy 72.1 71.5 65.1 68.5 63.5 60.2 68.7 58.5 66.8 ± 4.7
Sensitivity 71.8 53.4 73.9 67.7 27.4 58.9 39.4 67.1 58.8 ± 17.3
Specificity 45.5 39.9 44.5 49.5 30.0 34.0 41.6 29.1 40.6 ± 7.4

Wake Accuracy 97.3 95.1 98.6 98.8 96.5 97.4 99.1 97.2 97.3 ± 1.4
Sensitivity 89.7 75.0 85.1 74.6 97.8 71.4 91.2 66.7 82.3 ± 10.3
Specificity 76.1 9.2 78.4 95.7 62.9 89.6 96.3 73.9 68.6 ± 31.2

Kamon et al. 10.3389/fdgth.2022.877234
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TABLE 2 Total accuracy and kappa coefficient outcomes.

Age Data number

1 2 3 4 5 6 7 8 Average

0–2 Total accuracy [%] 53.8 51.4 41.2 38.3 43.2 52.3 – – 46.7 ± 6.6
Kappa 0.35 0.33 0.1 0.12 0.19 0.32 – – 0.24 ± 0.11

3–6 Total accuracy [%] 54.36 53.15 51.83 50.66 42.42 42.71 51.3 45.3 49.0 ± 4.8
Kappa 0.37 0.3 0.31 0.29 0.18 0.21 0.3 0.25 0.28 ± 0.06

FIGURE 7

Principal component analysis (PCA) results for six parameters, namely, magnitude of short-time body movement, frequency of long-time body
movement, magnitude of long-time body movement, rest time, elapsed time, and frequency of short-time body movement. The horizontal axis
is the first principal component, and the vertical axis is the second principal component.

Kamon et al. 10.3389/fdgth.2022.877234
40.5 ± 2.2% and a kappa coefficient of 0.19 ± 0.04, which are

considered to reflect an equivalent or a better performance.

We believe that this is caused by the normalization of the

parameters. This may have reduced the effects of differences

in body size and total sleep time.

Another reason for the improved accuracy is attributed to

the fact that we changed the classifier from an SVM to Extra

Trees. Figure 7 shows the results of the principal component

analysis (PCA) for the six parameters used for visualization

(27). The repeatability of the PCA was 66.8%. The results

show that Extra Trees is more suitable than SVM (which uses

boundaries) because the difference between the features of

each stage is very small in the sleep stage.

Liang et al. (28) proposed a method to estimate sleep stages

using Fitbit. In this study, they reported that the estimation

accuracy of the four sleep stages for adults was 73.1 ± 11.9%.

Although the accuracy of our method was lower than that of

the study by Liang et al. (28), it is sufficient to be able to

conduct complete measurements without contact, and to be

applicable to children. In this study, a simple PSG was used

as the reference for actual sleep stages. However, even the
Frontiers in Digital Health 08
clinically used PSG tests are not completely consistent among

specialist technicians (29, 30).

The estimated results for the age group of 0–2 years were

lower than those for the age group of 3–6 years. This is

because the sleep cycle of children with ages in the range of

0–2 years is less stable than that of children with ages in the

range of 3–6 years. This is also confirmed by the variance,

which shows that the estimation accuracy and variance of the

kappa coefficient are greater for children with ages in the

range of 0–2 years.

Although our system is less accurate than contact devices, it

is useful because it can be used for children with ages in the

range of 0–6 and because it is noncontact. However, our

system also has limitations. The system does not measure

autonomic nervous system activity. Thus, these indicators are

also needed if high-estimation accuracy is desired. Therefore,

it is possible to reduce the misclassification of Deep and REM

to Light.

Extra Trees was used in this study. However, as there are

many types of classifiers, it is necessary to compare the

performance with other classifiers.
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Conclusions

The estimation of sleep stages in children has not been

studied as comprehensively as studied in adults owing to

difficulties in measurement and PSG scoring. In this study, we

developed a sleep monitoring system for children with the use

of an infrared camera. The developed system extracted body

movements from a video and calculated six parameters from

body movements. The system then used Extra Trees to

estimate the four stages of sleep from the parameters. The

accuracy of the developed system was approximately 45% on

average compared with that of the simple PSG. However, the

average estimation accuracy for Deep, where growth hormone

is said to be secreted, was more than 75%. The performance

of this system was comparable to or better than those

reported in previous studies. For these reasons, it is suggested

that this system can be used as a noncontact sleep monitoring

system for children at home.

Our system can estimate four sleep stages, but not the REM/

NREM sleep cycle. It is known that children’s growth can be

confirmed by the REM/NREM sleep cycle [26]. Therefore,

developing a method to estimate the REM/NREM sleep cycle

is necessary.
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