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In this mini-review, we discuss the fundamentals of using technology in mental
health diagnosis and tracking. We highlight those principles using two clinical
concepts: (1) cravings and relapse in the context of addictive disorders and (2)
anhedonia in the context of depression. This manuscript is useful for both
clinicians wanting to understand the scope of technology use in psychiatry
and for computer scientists and engineers wishing to assess psychiatric
frameworks useful for diagnosis and treatment. The increase in smartphone
ownership and internet connectivity, as well as the accelerated development
of wearable devices, have made the observation and analysis of human
behavior patterns possible. This has, in turn, paved the way to understand
mental health conditions better. These technologies have immense potential
in facilitating the diagnosis and tracking of mental health conditions; they
also allow the implementation of existing behavioral treatments in new
contexts (e.g., remotely, online, and in rural/underserved areas), and the
possibility to develop new treatments based on new understanding of
behavior patterns. The path to understand how to best use technology in
mental health includes the need to match interdisciplinary frameworks from
engineering/computer sciences and psychiatry. Thus, we start our review by
introducing bio-behavioral sensing, the types of information available, and
what behavioral patterns they may reflect and be related to in psychiatric
diagnostic frameworks. This information is linked to the use of functional
imaging, highlighting how imaging modalities can be considered “ground
truth” for mental health/psychiatric dimensions, given the heterogeneity of
clinical presentations, and the difficulty of determining what symptom
corresponds to what disease. We then discuss how mental health/psychiatric
dimensions overlap, yet differ from, psychiatric diagnoses. Using two clinical
examples, we highlight the potential agreement areas in assessment/
management of anhedonia and cravings. These two dimensions were
chosen because of their link to two very prevalent diseases worldwide:
depression and addiction. Anhedonia is a core symptom of depression,
which is one of the leading causes of disability worldwide. Cravings, the urge
to use a substance or perform an action (e.g., shopping, internet), is the
leading step before relapse. Lastly, through the manuscript, we discuss
potential mental health dimensions.
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Introduction

The saying, “knowledge is power”, widely credited to Sir

Francis Bacon (Meditationes Sacrae (1597)), is very aptly

suitable to today’s data-rich landscape. Data collected from

phones, apps, and other technology is staggering in extent. If

knowledge is power, then data is king. In this review, we will

present an interdisciplinary overview of how data can be used

for the assessment and betterment of mental health.

Smartphone ownership and internet connectivity have been
increasing worldwide. It is estimated that 77% of adults in the
US have an internet-enabled smartphone, with rates close to
100% for the age group 18–29 (1). Rates of smartphone
ownership and internet connectivity seem to follow general
trends: younger individuals have the highest smartphone
ownership, and the age gap is closing since 2015, with older
adults also acquiring smartphones. The ubiquitous presence of
technology allows an unprecedented glimpse into an
individual’s life from privately spent moments to those spent
with other people. Smartphones often play the role of a
wearable and can be used to track behavioral patterns
throughout the day, as discussed below.

Wearables/apps can measure human behavioral patterns
that can be predictive of symptom resurgence, and can,
hypothetically, provide diagnostic adjuncts and potential
treatments. However, to achieve full potential, data has to be
translated into meaningful, actionable input that links to what
is currently known about mental health and psychopathology.
In this paper, we will discuss how data collected from
wearables/smartphones can be leveraged for a better
understanding of mental health conditions and used to
improve mental health. We will start by outlining what data
can be collected (section II), what it could correspond to in
current psychiatric terminology (section II), and what to seek
as a ground truth reference for collected parameters, such as
functional imaging (section III). We will then apply the
outlined principles, as examples, to concepts such as cravings
and anhedonia (section III). These two concepts were selected
because they exemplify the spectrum of feeling to behavior
that is challenging to define, yet perfectly suited for the kinds
of technology we will be discussing.

We would be remiss if we did not mention socio-economic
disparities and mental-health-based disparities, by which any
patients with mental illness are in the bottom rungs of society
and do not have the means to have a smartphone/wearable.
Additionally, individuals in emerging countries may have less
access to smartphones and internet connectivity. Thus, this
review focuses on those who already have access to this
technology, and how to optimize the use of their available data.

It is also of note that the field of behavioral sensing and

using app/wearable data is much better developed in

specialties related to medical conditions and surgical

procedures than to mental health conditions. For instance, in
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planning discharge from hospital post-surgical procedures,

using a smartphone app helps better management by

improving pain management, early detection of complications,

and reducing unscheduled visits (1). The field of wearable/app

use in mental health is still developing because of (1)

diagnostic challenges, (2) lack of concordance between

patient-generated and clinician-generated assessments, and (3)

lack of objective biomarkers for measurement and tracking of

mental health conditions. These points are elaborated in the

next paragraphs.

Psychiatric diagnoses follow different frameworks; the

Diagnostic and Statistical Manual, first edition, was released in

1952 and has gone through multiple iterations to reach the

current DSM-5 (2), whereas the International Classification of

Disease (ICD) started in 1893. The current ICD-11 (3) has

about 55,000 diagnostic codes. Despite attempts at

reconciliation, DSM-5 and ICD-11 still diverge on some

mental illness definitions. With the advent of big data,

collected from wearable technology and smartphones, there is

a need to reconcile data interpretation with diagnostic

categories as well, otherwise achieving usefulness in diagnosis,

follow-up, and treatment for mental illness would not be

possible.

Dimensional hierarchical classifications in psychiatry seem

to offer a reasonable counterpart to technology-based data

collection, but the discussion about dimensional categories to

adopt, the pros and cons of each system, is still ongoing. Well

stated by Arseneault et al (4), “A productive debate about the

appropriateness of a categorical diagnostic system is still

ongoing, and concerted scientific efforts have resulted in

proposals for sophisticated models as alternative approaches

to psychiatric nosology, including the Hierarchical Taxonomy

of Psychopathology (HiTOP), the transdiagnostic approach

and the Research Domain Criteria (RDoC)”. The widely used

DSM-5 has been harshly criticized as the categorical disorders

are simply groups of symptoms that tend to go together. For

example, in major depressive disorder (MDD), there are 9

categories (depressed mood, anhedonia, suicidal thoughts,

poor sleep, either too much or too little, etc.) and if a patient

answers yes to 5 of those 9 (and those 5 include anhedonia

and/or depressed mood) then the patient is diagnosed with

MDD. The advantages are that DSM provides a common

language and that it provides a categorical diagnosis so

clinicians can prescribe antidepressants and insurances will

pay for such treatments. The disadvantages are that MDD is

not a real disorder, as two patients may share no symptom,

yet they will likely receive the same treatment. The RDoC

tries to fill this gap by studying psychiatry dimensionally and

by symptoms instead of diagnoses. In addition, the RDoC

created a “matrix” in which constructs (such as positive

valence, negative valence, cognition) and units of analysis

(cells, genes, behavior, etc.) are suggested as possibly

important to be studied. However, the RDoC is a framework
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for research, not yet the start of new psychiatry.

Interdisciplinary research is needed in this area, to bridge

psychiatry and computer sciences/engineering.

Therefore, to properly utilize the vast amounts of data

available to researchers, a first step, as covered in the next

section, is to understand (1) what information sensors

provide, (2) how this meshes with patients’ self-reports, and

(3) how this data links to observable, detectable actions.

Psychiatry has long dealt with the discrepancy between self-

report and objective assessments. The answer has been

combining self-report measures (e.g. PHQ-9 for depression)

and clinician-assessed measures (e.g. Hamilton Depression

scale), but as a whole, the discipline lacks objective, widely

used disease biomarkers. Hierarchal, dimensional models are

suited for studying psychiatric symptoms with a combination

of social aspect, neurobiological aspect (imaging+ genetic/

epigenetic markers), and approximate clinical descriptors.

Technology-based data would then be the added piece in this

puzzle, and can bridge the gap between feelings (collected by

ecological momentary assessment, EMA), and actions,

detected by sensors or reported by the patient.
Usefulness of technology- what do
we measure and how?

Recent advances in Internet-connected wearable and mobile

technologies allow individuals to monitor their daily lives while

researchers passively collect long-term real-time physiological
FIGURE 1

Example of a layered, hierarchical sensor-based framework.
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and behavioral data without disrupting human routines. Data

from personal digital devices may be used to understand

users’ mental health and behaviors and suggest actions and

contents to enhance mental health states. For example,

current emotional status, behavior history, and potential

future emotion trajectories information might help (1)

individuals become more aware of their risk profiles and

enable them to make better informed decisions and take

actions to change their behaviors to reduce potential negative

physical and mental outcomes, and (2) computers to suggest

actions or contents that might help users to enhance users’

mental health.
Biobehavioral data for mental health

Different kinds of bio-behavioral data have been used to

study the relationships with mental health symptoms

(Figure 1). These objective measures have potential to help

screen, diagnose, and track mental health disorders. The data

include (1) non-verbal behavior such as facial activities, body

gestures, eye moments, posture, pupil dilatation, (2) speech

features, (3) text, and (4) mobile or wearable sensor-based

physiological and behavioral signals.
Non-verbal visual information

Automatic depression assessment has been studied using

facial expression, action units, eye movement, and head post
frontiersin.org
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and orientation (5–13). There are some public audio-visual

databases with self-report or clinical depression assessments
(e.g., Diagnostic and Statistical Manual of Mental Disorders

fourth edition (DSM-IV), The Hamilton Depression Rating

Scale (HAM-D)). These data were collected during (1)
interactions with a clinical psychologist or family members, or

(2) experimental sessions for eliciting emotions using stimuli
such as video clips or images selected from the International

Affective Picture System (IAPS). Machine learning models

have been developed for detection, severity assessment, and
prediction of depression. Multiple contributions to

multimodal computational approaches for automatic

measurement of depression severity in clinically relevant
participants have been proposed. Most previous efforts in

automatic assessment of depression severity have focused on
facial expression (7, 8), voice quality and timing (9), head

pose (7, 8, 10), and body movement (11, 12). For instance,

Hdibeklioglu and colleagues (7) proposed a state of the art
multimodal (face, head, and voice) deep learning based

approach to detect depression severity in participants
undergoing treatment for depression. The dynamics of facial,

head, and vocal prosody was important for the measurement

of depression severity, but one could not say whether the
dynamics of those measures was increasing, decreasing, or

varying in some non-linear way. To overcome that limitation,
Kacem and colleagues (8) proposed a method to measure

depression severity from facial and head movement dynamics

using affine-invariant barycentric and Lie algebra
representation, respectively. Consistent with clinical data, the

extracted kinematic features revealed that the velocity and
acceleration of facial movement strongly mapped onto

depression severity. Body movement also changes with

depression severity (e.g., inability to sit still, slowed body
movement [DSM-5]). In Joshi and colleagues (11), the

authors investigated body movement for the detection of
depression using the relative orientation and radius of body

parts as well as the holistic body motion measured using

space-time interest points. The two sets of descriptors were
then fused to train a support vector machine (SVM) classifier

for the detection of presence from the absence of depression.
From a clinical perspective, it is also critical to measure

change over time in depression severity. In the continuity

with these efforts, Daoudi and colleagues (12) investigated the
discriminating power of body movement dynamics for

depression severity assessment. To capture changes in the
dynamics of body movement that would reflect the

psychomotor retardation and agitation of depressed

participants, Gram matrices formulation was used for body
shape and trajectories representation. Relevant kinematic

features were then extracted from body shape trajectories (i.e.,

velocities and accelerations). Gaussian Mixture Models
(GMM) combined with an improved fisher vector encoding

were then used to obtain a single vector representation for
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each sequence (i.e., clinical interview). Finally, a multi-class

SVM with a Gaussian kernel was used to classify the encoded
body movement dynamics into three depression severity

levels: severe, mild, and remission.
Speech

Speech features such as prosodic, source, and acoustic

features, as well as vocal tract dynamics signals have been

studied to assess mental health conditions focused on

depression, bipolar disorder, and schizophrenia. Open-access

research data sets have been distributed at Audio/Visual

Emotion Challenge and Workshop (AVEC) machine learning

competitions and promoted the development of machine

learning models (13). In addition, recent work has proposed

two new measures that are computed using modern deep

learning-based analysis of free-living speech. First is social

ambiance (14) that captures the level of background speech

activity as a proxy for types of environments chosen by an

individual. Social ambiance levels are found negatively

associated with Neuroticism personality for depression

patients, and GAD-7 for psychosis patients (p < 0.05). The

second measure is called In-person Social Network (IPSN)

size (15) which measures how many unique speakers an

individual interacts with. IPSN size was significantly

correlated with depression severity assessed using PHQ-9

scores (r =−0.56, p < 0.01).
Text

Digital text data on emails or social media have also been

studied for assessing mental health such as depression, mood

valence, and suicide ideation (16). The data are processed to

extract linguistics features such as emotionally positive,

neutral, and negative words, as well as behavioral features

such as the number and timing of tweets and the number of

connections. If text messages are analyzed in a privacy-

preserving manner, without linguistic analysis, then the length

of the messages and the timing is found to correlate with

anxiety and depressive symptoms (17, 18).
Physiology, environment, behavior, and
patient data

Mobile or wearable sensors or devices have been used for

sensing the following six categories of data:

(1) Physiology: skin conductance, skin temperature, and

photoplethysmography (PPG) using a smartwatch (e.g.,
frontiersin.org
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AppleWatch, Wavelet wristband, Empatica E4) or

electrocardiogram from a chest sensor.

(2) Location and Movement: GPS and accelerometer data to

measure location and movement.

(3) Communication: App usage (which apps were used for how

long), call and text messages (who called/texted when and

the length of the messages/calls, but not the content).

(4) Environment: Ambient audio features such as ambient

sound volumes, frequency, and weather data (e.g.,

temperature and humidity) based on the location data.

(5) Ecological Momentary Assessment (EMA): emotion labels

(e.g. sad-happy, positive and negative affect (19, 20),

depressive mood, and stress) are defined as binary (high/

low), three class (high/mid/low), Likert-scale or

continuous (e.g., 0–100 scale). Other data such as daily

activities (e.g., academic and work schedule, social

interaction, sleep diaries). EMA data are sampled a few

times per day or twice a day (morning and evening)

depending on the studies.

(6) Patient/User profile: this category relies on self-report but

has also been studied in conjunction with some of the

major self-report, validated questionnaires in the field of

psychiatry. Areas covered include gender, personality

type according to the big five personality classification

(21), perceived stress as measured by the perceived stress

scale (PSS) (22), mental health scores according to

HAM-D, PHQ-9, GAD-7, the 12-item short form health

survey (23), and other clinical assessment.

From data to biobehavioral markers and
mental health

The data collected in daily life settings can be sampled every

few milliseconds to every few days. These data can be noisy and

include missing segments due to various reasons (e.g. paused

sensor data collection, sensor power outage) and they require

preprocessing such as filtering noise, interpolating missing

data, or extracting features/markers effectively. Some tools

have been developed to automatically detect noise on

physiological data such as electrocardiogram, photo-

plethysmogram, and skin conductance (24). Checking the data

quality while collecting the data is crucial to collect higher

quality data (25).

Data collected can be a snapshot into a short event in a person’s

day, or aim to capture more complex interactions. Establishing a

physiological or behavioral baseline for each patient or a group

of patients becomes the stepping stone/ basis for recognizing

signs and symptoms of mental illness via deviations from

established patterns possible. Researchers developed algorithms

or machine learning models to detect behavioral and

physiological markers from sensor samples. These markers

include autonomous responses (heart rate, time domain or

frequency domain heart rate variability index, in person or call,
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email, or SMS social interaction, app usage, conversation

duration, sleep duration and regularity, work hours, hours home,

cyberslacking, distance traveled. Previous studies have analyzed

the relationships between these markers and the symptoms or

severity of mental health disorders or develop machine learning

models to detect or predict the severity of mental health

symptoms using markers or sensor signals (26).

Here, we introduce two examples of biobehavioral markers

and the relationship with mental health in order to progress

from sensor-based data to higher-order concepts

encompassing several data modalities linked in an attempt to

understand human behaviors.

Behavioral rhythmicity
When blending results from multiple sensor modalities, it is

essential for each person to become their own reference, or

baseline, as each individual has different baselines and

routines (e.g. meal intake, sleep, exercise, work schedules).

Sensor-based data collection is suited for this type of

assessment that can later be analyzed by machine learning

algorithms. This type of data collection can easily exceed self-

report in usefulness as one of the main issues in mental

illness remains lack of insight and lack of proper objective

assessment of one’s won symptomatology.

As an example, we quantified sleep regularity index as a

probability of being in the same state (asleep or awake) at any

two points 24 h apart and daily routineness based on GPS data

and found that these markers are related to mood (25, 27). In

addition, we quantified behavioral rhythms from mobile phone

sensor data for schizophrenia patients and found that we can

predict schizophrenia patients’ self-reported symptoms and

relapse events using behavioral rhythmicity features (e.g.

ultradian rhythm: rhythm shorter than 24 h, circadian: around

24 h, and infradian: longer than 24 h) (28–30). This type of

analysis is truly transdiagnostic, as it reflects an individual risk

of symptom resurgence regardless of diagnostic category.

Sociability
Sociability is the tendency an individual has to affiliate with

others. In the field of psychiatry, sociability is rarely examined as

an objective quality and is rather looked at from a pathological

perspective (31–34) (loneliness, isolation due to depression or

negative symptoms of schizophrenia, etc.). Recently, research

has turned to examine the social network of an individual,

rather than their assessment of it, a crucial step into

dimensional hierarchical psychiatric conceptualization.

Gianfredi et al (35), for instance, have found a link between

annually assessed depressive symptoms and the size of an

individual’s social network in the Maastricht Study, a

population-based prospective cohort study, suggesting an

impoverished social network may be linked to more depression.

The author’s team has taken the approach of examining the

number of individuals a person spends time with and their
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proclivity to crowded versus quiet places as measures of

sociability, with the goal of delving further into the unique

contribution of the speaker and how it links back to the

development of psychopathology.

We have quantified sociability as a proxy for overall social

activity in the environment based on the number of

simultaneous speakers by processing unconstrained audio

recordings collected from wrist-worn audio-bands (36). We

compared sociability patterns and time spent at four different

ambiance levels between patients with depressive or psychotic

disorders and healthy controls. Our analysis showed that

patients with depression/psychosis spent less time in diverse

environments and less time in moderate/active ambiance

levels; they also spent more time alone. In addition, social

ambiance patterns were related to the severity of self-reported

depression, anxiety symptoms, and personality traits. Machine

learning has already allowed some insight into how two

people connecting in a therapy session can be used to help

predict therapy outcomes (37). This type of research is an

example of how objective measurements can later provide a

larger framework for developing future treatments, such as

evidence-based social skills training, or may even the far-

reaching goal of mitigating the development of negative

symptoms in first-episode psychosis.

To effectively map sensor data to mental health constructs,

there are some challenges to overcome (Figure 2). The main

two are the absence of a pre-illness baseline, and the need to

account for individual differences. Different patients manifest

various signs of their symptoms and mood in different

behaviors. Our previous studies have shown that one big

machine learning model does not adapt to the heterogeneity

of different users. The author’s team has built personalized

models to map sensor-based markers and some self-reported
FIGURE 2

The role of big data in understanding mental health symptoms.
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data into mood by considering individual similarities and

differences in the relationships between contributing behaviors

and physiology and mood and finetuned pre-trained machine

learning models (38, 39), but this work needs to be

reproduced on a larger scale that would allow treatment

development and implementation in the future.
Brain imaging for mental health and
its relation to technology use

The use of several in vivo human brain imaging techniques

(PET, MRI, etc.) has resulted in tremendous advances in our

understanding of brain function and dysfunction. The

examples are too many to list, but specifically in depression,

we now understand the importance of the default mode

network, specific sub-regions of the prefrontal cortex, and the

anterior cingulate. This knowledge is slowly resulting in

possible actionable results, such as optimizing antidepressant

choice, and improving transcranial magnetic stimulation

protocols. However, for several reasons, in the field of mental

health, the application of these techniques to the clinic is still

mainly in the promise stage.

In mental health, brain imaging parameters are likely to be

used, in the future, as diagnostic and prognostic tools, and as

tools to help personalize therapeutic approaches. To achieve

that stage, it is necessary to find robust biomarkers that will

allow to a) to differentiate between unipolar and bipolar

mood disorder patients (thus helping with commonly

confused diagnoses), b) to predict which patients are at higher

risk of suicide upon leaving a clinic (thus helping with

treatment intensity and resource allocation), or c) to help

clinicians choose among different antidepressants for a
frontiersin.org
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specific patient instead of blindly trying drugs by trial and error

for each patient.

The field of biomarkers in psychiatry is advancing on

different sub-fields, such as genetics (40–42), epigenetics (43),

and brain imaging (40, 44, 45). However, progress is very

slow: Most reasons for death have decreased over time due to

medical advances (cancer being an obvious example) while

death by suicide has not decreased and in some cases has

actually increased considerably (38, 46, 47). As an example,

the likely two biggest pharmacological breakthroughs in

mental health in the last ∼50 years have been the use of

selective serotonin reuptake inhibitors (SSRIs, the first one

was Prozac, which received FDA approval in 1987), and

ketamine, almost 30 years later. Although it is unclear yet

whether ketamine will become a widely used antidepressant, it

rapid form of action has opened the possibility of stabilizing

patients in a very short time, which may be important in

some cases. Several groups are studying the possibility of

chronic or semi-chronic use of ketamine, with promising

results. Regardless of the future of ketamine use in the clinical

setting, the fact remains that it was the major pharmacological

novelty in the treatment of depression since the 80′s. The

drawbacks of ketamine use (short half-life, short action

duration, addiction potential) may make the molecule itself

not sustainable as a first time long term treatment. However,

the discovery and use of ketamine intravenously, intransally,

and now in orla form in clinical trials, has spurred clinical

trials of ketamine metabolites and compounds with similar

GABA and glutamate-based action for depression. There are

several possible reasons why this happens, and why we need

to use wearable and smartphone data to advance biotyping

and endophenotype refinement in psychiatry.

The most obvious reason why psychiatry advances slower

than other medical fields is the fact that there are no

biomarkers robust enough to be used clinically. This is probably

because we don’t understand the functioning of the affected

organ, so we have no way to test how this organ is working in

a patient. Thus, psychiatry relies almost 100% on self-report

which no other medical field does. Accordingly, many labs

across the world are working on finding biomarkers using MRI

and other techniques. A major issue that appears is the fact that

psychiatric disorders are not true disorders but generally, just

collections of symptoms that are at best loosely connected in a

symptom cluster. For example, major depressive disorder

(MDD) is defined in the Diagnostic and Statistical Manual of

Mental Disorders, Fifth Edition (2) as having 5 out of 9

symptoms (with the necessary inclusion of one of the first two

symptoms: depressed mood and/or anhedonia). This makes it

possible that two patients with the same MDD diagnosis have

no overlapping symptoms, and therefore different biotypes.

Using functional imaging can be a way to tackle this diversity

and improve both biotyping and treatment stratification. For

example, biotyping for anhedonia allows linking to transcranial
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magnetic stimulation treatments (48). However as functional

imaging is expensive, we argue that it can be used as ground

truth, but needs to have data-based, sensor-linked correlates

from the field in order to truly be scalable in use.

Another problem that is seldom mentioned is the lack of

appropriate comparison control groups. For example, one of

the most replicated biomarkers in psychiatry research is the

fact that the volume of the hippocampus is smaller in MDD

patients than in healthy controls (49, 50) including a study

from the ENIGMA consortium including several thousands of

participants (44). Although the volumetric difference is not

enough to be used diagnostically, it is statistically extremely

significant given a large number of participants and

manuscripts that studied this question. However, the

comparison between MDD patients and healthy controls is

problematic: the comorbidity of psychological disorders is

common, so it is difficult to describe the fact that these

patients have a small hippocampus with depression, as it may

be an effect of a number of possible (diagnosed or not)

common comorbidities such as alcohol and drug use, high

anxiety levels, etc. A common strategy for this problem is to

recruit MDD patients (or patients of any other disorder)

while excluding patients that have any other diagnosis and

comparing those to healthy controls. This results in two

problems: First, the samples are not tremendously

representative, as comorbidities are common in psychiatry;

and second, “hidden” variables may be driving the results,

such as chronic stress, poor sleep patterns, or feelings of

stigma. These are associated not only with MDD but with

most other psychiatric disorders. To attack this problem, we

studied hippocampal volume in a highly comorbid sample of

psychiatric patients and compared MDD patients, healthy

controls, and “psychiatric controls” (patients in the same

clinic that are not MDD, but matched to the MDD group by

sex, age, and all psychiatric comorbidities). The results

showed that indeed MDD patients had smaller hippocampi

than healthy controls, as published multiple times. However,

we found no difference in hippocampal volume between

MDD and psychiatric controls. Thus, MDD is not associated

with smaller hippocampi, at least not in a specific manner. In

addition, we showed that patients with other diagnoses,

namely alcohol use disorder, borderline personality disorder,

and post-traumatic stress disorder, showed smaller

hippocampi when compared to healthy controls but not when

compared with psychiatric controls (51–53). We postulate that

the comparison between psychiatric patients and healthy

controls is incorrect because it does not take into account

variables either known or hypothesized to affect the measure

of interest (such as hippocampal volume). Being that the

scientific literature and many current projects still rely on

comparing diagnosed patients to healthy controls, we believe

that the chances of finding biomarkers that are specific for a

certain group of patients are extremely small.
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The gap between functional imaging and
technology-generated data is deep

For example, in relation to the clinical application

mentioned below (cravings), findings from habenula research

indicate that habenula connectivity relates to the extent of

opioid use in psychiatric patients (54) through a sample of

305 patients (51 opioid users) from the Menninger Clinic

psychiatric inpatient population. Using the World Health

Organization ASSIST scale (assessing substance involvement

and health risks), the team assessed patients as either opioid

non-users or users (low vs. moderate/high-risk scores

respectively). Given the habenular circuitry and the general

model of addiction in which basal ganglia activity is one of the

main drivers of the cycle of addiction (41), the team

concentrated on the habenula, a small nucleus critical for the

reward system, known to be involved in nicotine addiction.

Since nicotinic and opioid receptors are highly co-expressed in

the habenula, the team tested whether the habenula is a

critical brain locus for opioid abuse. The primary outcome was

resting-state functional connectivity (RSFC) between the

habenula and the striatum. The team then subdivided the

striatum into its parts: the caudate, putamen, and globus

pallidus for further analysis and found increased right

habenula/striatum RSFC in opioid users compared to non-

users, especially in the caudate. The team showed that the

connectivity between the caudate (more related to habits than

to reward itself) and the habenula (control of negative

prediction errors) is increased in opioid abusers. Thus, it could

be theoretically possible to classify opioid users based on

reward sensitivity. However, the link between this kind of data

and behavioral data is not established, and is a missing link in

the current research landscape.

The ability to discern the intensity of craving to establish

“ground truth” for craving responses, using self-reports and

associating fMRI activity that regresses onto self-reports,

would be very helpful in this case and bypass difficulties in

using fMRI on regular basis given the cost and other limitations.

There is, however, a reason for optimism and we believe

psychiatric biomarker research will undoubtedly generate

actionable results in the near future, when combined with

properly analyzed sensor-based data. Research is not only

advancing our understanding of brain mechanisms of

function and misfunction, but also pointing to new and

improved possible therapeutic approaches.
Clinical application #1: Anhedonia

In this example, we will highlight how the spectrum of tools

available from fMRI to wearable-generated data can be applied

to clinical, dimensional hierarchical psychiatric concepts.
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Anhedonia is the reduced ability to feel pleasure, and enjoy

activities (55). It is a core symptom of depression but is also

present in psychotic and addictive disorders. Anhedonia can

be divided into anticipatory/motivational and consummatory

(56), based on effects on reward processing.

Anticipatory anhedonia correlates with poor social

outcomes in depression and can be responsive to

connectivity-based transcranial magnetic stimulation

treatments (48, 57), but may be less responsive to

antidepressant treatments. Imaging studies define anhedonia

as low reward processing, involving altered cortical thickness

(58) with asymmetry in depressive and subthreshold

depressive symptoms.

Anhedonia may be well defined in the mind of clinicians

inquiring about it as a depressive symptom, but needs further

definition and refined quantification as a dimension, and this

is where multi-modal, interdisciplinary characterization can be

particularly well-suited. The sociability techniques mentioned

above, though still experimental, could serve as a bedrock for

a conversation in the clinic discussing perceived social

isolation versus actual social interactions as objectively

measured.

Digital phenotyping of depression, using smartphone

applications and wearables is firmly established as a

developing, promising measure for depressive symptom (17,

42, 59–62), but has not specifically targeted anhedonia. In

contrast to anhedonia, the field of negative symptoms in

psychotic disorders is well developed. Mobility patterns via

smartphones have been found to have discriminatory and

quantification abilities in psychotic disorders, by detecting

anhedonia and negative symptoms (59, 60). Avolition and

anhedonia predict outcomes in social situations (56, 59, 60).

Throughout the day, an individual will have fluctuations in

emotions, positive and negative, and make decisions about

behaviors based on those emotions. The intensity of the

emotion matters as well as the valence, thus a small

fluctuation in a negative valence might be an adequate,

environmentally-appropriate response to a stressful event (e.g.

getting upset, distracted, maybe a little tearful in a discrete

way after a criticism), but a negative reaction of large intensity

may affect the individual’s ability to function (sobbing

uncontrollably in the bathroom). Negative affect might be

depressive or anhedonic in nature. All these events can be

captured via phone/wearable sensing. Digital markers of

behavioral change (i.e. observable changes in sleep, physical

activity, and social interaction) might become sensitive

measures of meaningful variation in anhedonia, then related

functional status. Did the patient interact with other people?

Did they leave early? Did they end up not sleeping well that

night, report auditory hallucinations, or other issues? All these

EMA elements and sensor-based data can be collected in real-

time, and now wait until a clinic visit, where recall could be

subject to bias.
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Another way digital data collection can serve with the

clinical concept is anhedonia is a further refinement of what

constitutes anhedonia to the assessing clinician versus the

user/patient. Subjective anhedonia assessment may be

culturally modulated (34, 63), and in an exploratory survey of

individuals from various backgrounds, ecological momentary

assessment (EMA) of depressed mood and anhedonia suggests

that EMA of anhedonia and depressed mood are not always

to be taken at face value, as patients may report feeling

depressed as anhedonic, and have a poor distinction of low

mood and the behavioral correlates attached to it, such as

social avoidance, low engagement in activities, or mood

swings. Higher levels of anhedonia relate to anxiety related to

social situations (social anhedonia) (34), a preference to be

alone or with people one is at ease with. Thus, measuring

social interaction is essential to understanding anhedonia both

on a personal and social levels, though the two constructs are

not fully overlapping (dysfunctional reward processing (RDoC

Positive Valence System versus RDoC Affiliation and

Attachment subconstruct within Social Processes, for social

anhedonia).
Clinical application #2: Cravings

Craving is defined as the subjective experience of an urge or

desire to use substances. The intensity of cravings predicts

relapse even when individuals are engaged in inpatient

treatment (64, 65). For opioids, cravings almost universally

precede opioid use, and the intensity and timing of cravings

are associated with the intensity of use (66, 67). When an

individual is addicted to a substance (e.g. opioids, stimulants,

alcohol), viewing a stimulus related to that substance increases

cravings; Myrick showed, for instance, that “after a sip of

alcohol and exposure to alcohol beverage pictures, alcoholics

compared to social drinkers had increased differential brain

activity in the prefrontal cortex and anterior thalamus” (68).

What is craving? Cravings result from the interplay of

internal factors and external contextual/environmental factors.

To define cravings, one must realize it is not a unified

phenomenon but a complex construct, and a reflection of

multiple brain processes (14). Advances in functional imaging

have allowed a better definition of the craving phenomenon,

but not a distinction of craving subtypes. Much is still not

understood about how a craving develops, how it unfolds, and

what factors modulate it. For the purposes of this discussion,

we will divide factors into internal (mood, affect, feeling pain

or withdrawal symptoms, being impulsive, physiological

factors, etc.) and contextual/environmental factors (drug

availability, support system, drug-using friends nearby, legal

issues and other outside factors). Of note, some of these

factors are short-term (where the person is at the moment of

experiencing a craving) to long-term (having experienced
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trauma, having an injury, current stressors). The presence of

co-occurring psychiatric disorders such as depression (69, 70),

Post-traumatic stress disorder (PTSD), or anxiety may

modulate cravings and associated affective intensity. In opioid

users, negative affect induction worsens and promotes drug

cravings (67, 71). Cravings are considered as short-lasting

moments and are subjectively assessed (20), with no objective

markers recognized as a gold standard for assessment and

evaluation. However, it is unknown whether the impact of

mood factors and physiological factors (such as stress and

sleep issues) is cumulative, and if so, how. This could be a

form of medium-term, yet undefined, sustained cravings state.

Most of these changes can be collected and followed by a

combination of EMA and sensor-based (wearable) detection.

Other unknowns include how and when a craving leads to an

actual relapse on the drug of choice for the user, with

impulsivity and impaired temporal discounting being

implicated as proxy measures for weakened self-regulation in

the face of a craving. Other factors include pain, which could

trigger cravings, and misuse or over-use of opioids (72, 73).

Subjective feelings of opioid withdrawal, including anxiety,

have been shown to predict cravings as well. GPS mobility

patterns to predict opioid drug craving or stress 90 min into

the future among patients with opioid use disorder with

buprenorphine or methadone showed a positive predictive

value of 0.93 (67). Thus, introducing wearable technology (or

smartphone) could theoretically be used in real-time for

cravings detection and mitigation.

Interestingly, cravings are often thought of as associated

with stress and negative affect. Much like in the above

example, anhedonia, using objective sensor-based data could

help refine the concept of cravings. While negative affect is

certainly pertinent to a majority of relapse situations given

increased stress vulnerability in addictive disorders in general,

stress is not a necessary requirement for cravings. Some

cravings relapses are thought to occur in the spirit of reward-

seeking (66, 74, 75). In individuals with OUD, for instance,

prevalence of non-substance addictive behaviors such as binge

eating, hypersexual behavior, excessive video gaming, and

gambling is up to 47% and is heavily linked to impulsivity

(76, 77). Wearable technology could also help detect these

behaviors and paint a more complete picture of cravings and

their behavioral correlates. Of note, functional imaging has

been heavily used in craving studies, but not used to biotype

cravings or guide treatment, an open opportunity in this field.

The interaction between external factors (commonly

summed in the literature as external cues, with the process of

cue-induced reactivity as a trigger to relapse), and internal

factors of short, medium, and long-term nature may or may

not result in the use of drugs (relapse). As individuals become

more advanced in drug abstinence/sobriety, they acquire a

better ability to manage cravings and affective correlates of

cravings such as stress while simultaneously learning to
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redirect their energy to non-drug use behaviors. Figure 3

summarizes the spectrum of factors thought to be related to

cravings. A properly designed technology framework ought to

capture the progression of emotional states signaling potential

relapse, detect behavioral changes indicating deviation from

the patient’s baseline, and ideally, suggest an ecological

momentary intervention to prevent a relapse.
Balancing innovation with patient
privacy and comfort

The discussion in previous sections highlights the diversity

of ongoing research to both better understand mental health

conditions quantitatively and use that information to develop

novel targeted interventions. Two large classes of data are

being considered. First is biological data, e.g., brain imaging

discussed in the previous section. Since most healthcare relies

on biological data, ranging from stethoscope use in a doctor’s

office to diverse imaging and blood analyses, most patients

are comfortable with the idea of sharing such information

with their healthcare providers. Clinical workflows are well

established for sharing, storing, analyzing, and reporting

biological data.

However, the second form of data that relates to patient

emotions and behaviors (activity, sleep, sociability, work-

related, location, etc.), as discussed in Section II, has little or

no precedence in current healthcare systems. At a personal

level, we (at least partially) define our identity by our

behaviors—“I am me because of what I do throughout the

day.” Perhaps even more important is that we share a version

of ourselves with others, which is often better than reality and

indicative of how we want others to view us—we want others

to view us positively. By allowing sensors to be attached to us,

tracking our reality without “sugar coating” it, and thereby

exposing what we really do, can be highly unsettling for

many. Coupled with this potential patient barrier is the fact

that these forms of data are so new that we have little well-

formed evidence on how to interpret behavioral data for each
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patient and use them in clinical interventions. Additionally,

there will be a significant practical challenge in training

clinicians to avoid judgement on patient discordance, when

patient sensor data tells a story that is divergent from patient

self-view; e.g., “I exercise regularly” but the data shows

otherwise.

We believe that the solution lies in four layers. First, we

should recognize that potential discordance between

measurable reality and its representation in our brains is

natural. We should recognize that our brains are not designed

for accurately counting large numbers or accurately sensing

time. Thus, if we cannot estimate how much we exercised,

then it is not because we plan to lie about it but because we

are simply not good at it. By recognizing that all humans face

this limitation ensures that no one feels deficient as part of

their health condition. Recognizing this fundamental human

limitation will both lower the barrier in patient acceptance

and at the same time, eliminate any clinical bias. At the same

time, clinicians will find that there is clinical value in

identifying the level of discordance in some conditions. For

example, for patients with psychotic disorders, the level of

discordance may be an indicator of medication effectiveness.

Second, it is important that we standardize how behavioral

data will be processed and we share that information with

patients, so that the patients can form an informed

judgement. For example, “the daily step count will help us

study trends in physical activity, since improved physical

activity is associated with improved response to depression.”

Third, we should investigate analysis methods that can

extract quality-of-life parameters from quantity measures,

which could further improve patient confidence that no

deeply private information is being analyzed. For example,

our recent work on using free-form speech recording to

evaluate social ambiance performs no speech content analysis.

Instead, it uses the number of concurrent speakers to estimate

how socially busy or isolated the patient environment is

throughout the day. The methods thus aim to estimate

sociability from the number of simultaneous speakers and

completely side-steps speech content analysis; as a by-product,
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it is language independent and can be applied to multi-lingual

environments.

Finally, new engineering innovations are increasingly able to

support the above desirable properties of data analysis and

protected storage. For example, wearables like smartwatches

now have powerful computing resources to process raw data

(e.g., bio-markers or speech) on the device itself and extract

only the data features that are needed for clinical analysis.

Combined with end-to-end encryption, these extracted

features can be securely transported and stored, in ways such

that the service provider (e.g., cloud computing provider)

cannot view any of the data.

An overall societal trend is also shaping how future

generations may perceive these advanced techniques. Each

generation seems to be openly sharing more about themselves,

and thereby changing societal norms of what is acceptable to

share. While we lack an individual baseline at this point, the

time may come when every person has a recorded healthy

“digital baseline” that can be used if they fall ill.

This expanding boundary is playing positively towards

supporting the ambitious research agenda discussed in this

paper. However, it does not forego our responsibility to

protect patient data and privacy, as patient confidence is

fundamental in acceptance of medical treatment and overall

adherence.
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