
GENERAL COMMENTARY
published: 20 May 2022

doi: 10.3389/fdgth.2022.923944

Frontiers in Digital Health | www.frontiersin.org 1 May 2022 | Volume 4 | Article 923944

Edited by:

Daniel B. Hier,

Missouri University of Science and

Technology, United States

Reviewed by:

Karthik Seetharam,

West Virginia State University,

United States

*Correspondence:

Anne A. H. de Hond

a.a.h.de_hond@lumc.nl

Specialty section:

This article was submitted to

Health Informatics,

a section of the journal

Frontiers in Digital Health

Received: 19 April 2022

Accepted: 03 May 2022

Published: 20 May 2022

Citation:

de Hond AAH, van Calster B and

Steyerberg EW (2022) Commentary:

Artificial Intelligence and Statistics:

Just the Old Wine in New Wineskins?

Front. Digit. Health 4:923944.

doi: 10.3389/fdgth.2022.923944

Commentary: Artificial Intelligence
and Statistics: Just the Old Wine in
New Wineskins?
Anne A. H. de Hond 1,2,3*, Ben van Calster 3,4 and Ewout W. Steyerberg 1,3

1Clinical Artificial Intelligence Implementation and Research Lab, Leiden University Medical Centre, Leiden, Netherlands,
2Department of Medicine (Biomedical Informatics), Stanford University, Stanford, CA, United States, 3Department of

Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands, 4Department of Development and

Regeneration, KU Leuven, Leuven, Belgium

Keywords: artificial intelligence, machine learning, statistics, methodology, discrimination

A Commentary on

Artificial Intelligence and Statistics: Just the OldWine in NewWineskins?

by Faes, L., Sim, D. A., van Smeden, M., Held, U., Bossuyt, P. M., and Bachmann, L. M. (2022). Front.
Digit. Health 4:833912. doi: 10.3389/fdgth.2022.833912

We write to expand on Faes’s et al. recent publication “Artificial intelligence and statistics: Just
the old wine in new wineskins?” (1). The authors rightly address a lack of consensus regarding
terminology between the statistics and machine learning fields. Guidance is needed to provide a
more unified way of reporting and comparing study results between the different fields, as far as
these can be separated.

Prediction models can be based on traditional statistical learning methods, such as regression,
and modern machine learning approaches, such as tree-based methods (random forests, XGBoost)
and neural networks. These models can be evaluated along several evaluation axes. Measures for
discrimination typically quantify the separation between low vs. high-risk subjects, independent of
the event rate (2). Classification is often grouped under discrimination, but classification measures
are dependent on the decision threshold used to define subjects as high-risk vs. low risk. Moreover,
classification performance is affected by calibration, which relates to the reliability of the estimated
risks (3). Overall performance measures are also available, including Brier score and measures for
explained variability (R2), which reflect both discrimination and calibration performance. Lastly,
measures for clinical utility have been proposed, which consider the clinical context with respect to
the event rate and the decision threshold to define high vs. low risk (4, 5). Major differences can be
observed in the measures commonly used across these axes to evaluate predictive performance in
the statistics and machine learning fields.

We here highlight key measures focusing on discriminative ability and clinical utility [or
effectiveness (6)].Table 1 provides a non-exhaustive overview. All measures relate to the evaluation
of probability predictions for binary outcomes. They are derived from the 2 × 2 confusion matrix
for specific or consecutive decision thresholds. We reflect on these measures below:

The precision recall-curve and F1-score are often described in the machine learning field as
“superior for imbalanced data” (9, 10). Indeed, recall (sensitivity) and precision (positive predictive
value) are evenly weighted in the computation of the area under the precision recall-curve
(AUPRC) and the F1-score. However, imbalanced data is usually not considered problematic for
classic statistical learning (such as logistic regression), except for edge cases where the event rate
is exceptionally low. Because the precision recall-curve and F1-score are event rate dependent,
we cannot directly compare model performance for settings with a different event rate. Also, the
precision recall-curve ignores true negatives and therefore is not a measure of discrimination
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TABLE 1 | Evaluation measures from statistics and machine learning fields.

Evaluation measures Field

(statistics/machine

learning)

Definition

Discrimination measures (decision threshold independent)

Area under the receiver operating

characteristic-curve (AUROC)

S/ML The receiver operating characteristic (ROC) curve plots sensitivity as a function of 1-specificity. The

baseline is fixed. The area under the ROC-curve can be compared across settings with different event

rates

Area under the precision

recall-curve (AUPRC)

ML The precision recall curve plots the precision (positive predictive value) as a function of sensitivity. The

baseline is determined by the ratio of positive predictions and total predictions. The area under the

precision recall curve cannot be compared across settings with different event rates and ignores true

negatives

Classification measures (decision threshold dependent)

Crude accuracy ML Crude accuracy is the number of true positive and negative predictions divided by the total number of

cases

Sensitivity (recall) S/ML The sensitivity is the number of true positive predictions divided by the number of true positive cases at a

specified probability threshold

Specificity S/ML The specificity is the number of true negative predictions divided by the number of true negative cases at

a specified probability threshold

Positive predictive value

(precision)

S/ML The positive predictive value (PPV) is the number of true positive predictions divided by the total number

of positive predictions at a specified probability threshold

Negative predictive value S/ML The negative predictive value (NPV) is the number of true negative predictions divided by the total

number of negative predictions at a specified probability threshold

Fβ -score ML The Fβ -score is the harmonic mean of sensitivity and positive predictive value controlled by the β

coefficient: Fβ =
(

1+ β2
)

* PPV*sensitivity
β2*PPV+sensitivity

. When false positives are more important than false negatives,

the β coefficient is set to be smaller than 1. When false negatives are more important than false

positives, the β coefficient is set to be larger than 1. Popular installments of the Fβ -score are the F1- and

F2-score. The F1score implies equal weight for false negatives and false positive classifications, which is

“absurd” for most medical contexts (7)

Measures related to clinical utility

Net Benefit S Net Benefit is a weighted sum of true positive (TP) and false positive (FP) predictions at a given decision

threshold (t): NB = (TP−
t

1−t *FP)/N. Net Benefit can be plotted over a range of decision thresholds

resulting in a decision curve (4)

Relative utility S Relative utility is the maximum net benefit of risk prediction at a given decision threshold divided by the

maximum net benefit of perfect prediction. A relative utility curve plots relative utility over a range of

decision thresholds (8)

according to the above definition. In contrast, the classic area
under the receiver operating characteristic curve (AUROC) is
event rate independent, which is a hall mark of a discrimination
measure (2). Similarly, sensitivity (fraction true positive) and
specificity (fraction true negative) can, at least in theory, be
considered as independent of event rate.

Some measures are considered outdated in the classic
statistical learning field, while still popular in the machine
learning field. Such a measure is the crude accuracy (the
fraction of correct classifications). Crude accuracy is event rate
dependent, e.g., a 99% accuracy is the minimum for a setting with
1% event rate and classifying all subjects as “low risk.”

Decision analytical approaches move away from pure
discrimination and toward clinical utility. Net benefit is the most
popular among some recently proposed measures for clinical
utility (4, 5). It is derived from a decision analytical framework
and weighs sensitivity and specificity by clinical consequences.
Net benefit has a clear interpretation when compared to treat-all
and treat-none strategies (4, 5).

In conclusion, measures that are affected by the event rate are
common in the machine learning field, such as the AUPRC, F1-
score, and crude accuracy. They impede the comparison of model
performance across different settings. The medical decision-
making context is better captured in modern measures such as
Net Benefit, which not only consider the event rate but also the
clinical consequences of false-positive vs. true-positive decisions
(harm vs. benefit), rather than arbitrary weighting these costs (7).
We recommend that the aim of the evaluation of a model should
determine our focus at clinical performance (discrimination,
calibration), or clinical utility, with quantification by
appropriate measures.
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