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As the implementation of artificial intelligence (AI)-enabled tools is realized
across diverse clinical environments, there is a growing understanding of the
need for ongoing monitoring and updating of prediction models. Dataset
shift—temporal changes in clinical practice, patient populations, and
information systems—is now well-documented as a source of deteriorating
model accuracy and a challenge to the sustainability of AI-enabled tools in
clinical care. While best practices are well-established for training and
validating new models, there has been limited work developing best
practices for prospective validation and model maintenance. In this paper,
we highlight the need for updating clinical prediction models and discuss
open questions regarding this critical aspect of the AI modeling lifecycle in
three focus areas: model maintenance policies, performance monitoring
perspectives, and model updating strategies. With the increasing adoption of
AI-enabled tools, the need for such best practices must be addressed and
incorporated into new and existing implementations. This commentary aims
to encourage conversation and motivate additional research across clinical
and data science stakeholders.
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Introduction

As the implementation of artificial intelligence (AI)-enabled tools is realized across

diverse clinical environments, there is a growing understanding of the need for ongoing

monitoring and updating of prediction models (1–5). Beyond initial validation and local

tailoring of models transported across settings, temporal deterioration in model accuracy

after development has been documented across clinical domains and settings (6–10).

Neither regression nor advanced machine learning algorithms are exempt from these

temporal changes in performance (8, 11). Such performance drift degrades the clinical

utility of AI-enabled tools, jeopardizes user trust, and poses safety concerns when

insufficiently accurate predictions are used in decision-making (1, 6, 12, 13).
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2022.958284&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2022.958284
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2022.958284/full
https://www.frontiersin.org/articles/10.3389/fdgth.2022.958284/full
https://www.frontiersin.org/articles/10.3389/fdgth.2022.958284/full
https://www.frontiersin.org/articles/10.3389/fdgth.2022.958284/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2022.958284
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Davis et al. 10.3389/fdgth.2022.958284
Dataset shift (14)—temporal changes in clinical practice,

patient populations, and information systems—is well-

documented as a source of performance drift and recognized as

a challenge to the sustainability of AI-enabled tools in clinical

care (6–8, 15–17). Model developers and system managers have

access to a variety of approaches to address performance drift

and underlying dataset shift in order to restore model

performance to clinically acceptable levels. In some cases,

model performance may be restored by correcting technical

errors introduced by structural changes in information systems,

such as implementation of revised data standards. However, in

many cases where dataset shift is more nuanced and

multifaceted, model updating through recalibration, retraining,

or revision will be required. While best practices are well-

established for training and validating new AI models (18),

there is limited guidance on prospective validation and few best

practices for model monitoring and updating.

In this paper, we highlight the need for maintaining clinical

prediction models and discuss open questions regarding this

critical aspect of the AI modeling lifecycle. First, we illustrate

performance drift across models implemented in the

production electronic health record (EHR) system at an

academic medical center. Second, we discuss several open

research questions and describe the nuances required for best

practice guidance. Despite advances in continuous learning

algorithms that evolve models as data accrue, such algorithms

are subject to additional challenges and healthcare applications

still predominantly rely on static models that will require

periodic updating (19). Although we focus our discussion on

updating static models, similar questions may arise around

surveillance practices for continuous learning models.
Performance drift in operational
models

Most studies documenting temporal model performance

have been conducted in registry or research datasets rather

than with operational data from models running in real-time

clinical settings (7–9, 16). However, the transition from a
TABLE 1 Prediction models evaluated for temporal validation of real-time sc

Details LACE+

Outcome 30-day readmission

Intended use Quality benchmarking using predicted risk of readmission calcula
discharge

Development
setting

Patients from multiple hospitals in Ontario, Canada

Modeling approach Logistic regression

Evaluation period January 2018 through March 2022

VUMC, Vanderbilt University Medical Center.
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retrospective research frame to real-time operational

implementation may impact performance as input mappings

change and the timing data availability shifts (20–22). To

explore performance drift in an operational setting, we

evaluated the performance of two models currently

implemented in the production EHR system at Vanderbilt

University Medical Center (VUMC): a non-proprietary,

externally developed model predicting readmission (LACE+)

(23) and a locally developed model predicting suicidal

behaviors (Vanderbilt Suicide Attempt and Ideation

Likelihood model, VSAIL) (24).

Table 1 provides an overview of each model, highlighting

differences in modeling methods, training cohorts, and

intended use. We extracted stored predictions calculated in

real-time and outcomes associated with each prediction using

data available in VUMC’s EHR. For the LACE+ model, we

note that this approach may undercount readmissions if

patients were readmitted to a different medical facility.

Monthly performance was evaluated using metrics relevant to

each model’s intended use. We measured the mean calibration

of the LACE+ readmission model with the observed to

expected outcome ratio (O:E) and clinical utility of the VSAIL

suicidality model with the number needed to screen (NNS;

the inverse of positive predictive value).

The LACE+ model, locally calibrated to the VUMC

population, sustained performance over the evaluation

period (Figure 1A). Monitoring highlighted the importance

of distinguishing noise from both informative local change

in performance and true model deterioration. Over the first

2.5 years, variability in observed O:Es did not follow a

significant trend. In the last year of evaluation, however,

there may be a trend toward lower O:Es. Depending on the

use case, this declining O:E could be seen as indicating

improved local quality (i.e., reducing readmissions) or

increasing miscalibration. We note that O:E, a crude

measure of calibration, may conceal calibration drift within

clinically important risk ranges (25). VSAIL maintained a

relatively stable NNS during the first year of implementation

(median monthly NNS = 19), with the NNS abruptly

increasing in February 2021 (median monthly NNS = 136);
ores generated within a production electronic medical record system.

VSAIL

30-day suicidal ideation or attempt

ted at Clinical decision support delivered at arrival for inpatient and outpatient
encounters

VUMC patient population

Random forest

December 2019 through January 2022
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FIGURE 1

Temporal performance at Vanderbilt University Medical Center of the (A) LACE+ readmission model in terms of mean calibration (O:E); and (B) VSAIL
suicidality model in terms of number needed to screen (NNS).
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Figure 1B). This shift corresponds to operational changes in

implementation, with the model being applied to a much

broader patient population. Within the original population,

VSAIL’s NNS remained stable (median monthly NNS = 22).

The higher NNS in the broader population may still be

feasible but should be considered in the implementation

team’s cost-benefit analysis and may warrant further

investigation of performance in select clinical settings or

subpopulations. These findings illustrate performance drift in

a single health system’s EHR and contribute to the mounting

evidence that AI-enabled tools require long-term strategies

to understand performance trajectories and maintain utility.
Research and best practice gaps in
model maintenance

Despite concerns over the long-term stability of model

performance, health systems lack generalizable guidance for

operationalizing post-implementation maintenance strategies.

To develop guidance and establish best practices, additional

research and debate are needed in three focus areas: model

maintenance policies, performance monitoring perspectives,

and model updating strategies (Table 2).
Maintenance policies

Oversight policies at the health system level could facilitate

the maintenance of a portfolio of models by defining a

consistent, systematic groundwork for sustaining both new

and existing AI-enabled tools. System-level policies can also

inform use case parameters to consider when establishing

model-specific maintenance plans.
Frontiers in Digital Health 03
How should model ownership impact local
control over maintenance?

Health systems certainly have a right and duty to monitor

the local performance of the AI models they implement,

regardless of where those models originated. However, how to

address deteriorations in performance is complicated by

model ownership and licensing restrictions. For models

developed in-house and local implementations of models in

the public domain, health systems have full control over

maintenance approaches and may consider the full spectrum

of updating methods. At VUMC, the local VSAIL model will

be retrained using more recent data and subsequently

maintained through a tailored data-driven surveillance

approach. When models are developed in collaboration across

health systems, best practices could guide collaborative

updating and establishment of parameters for local model

adjustments.

Updating proprietary models is particularly challenging,

despite locally documented drift having required the

deactivation of proprietary AI-enabled clinical tools (6).

Licenses may restrict updating by not permitting local model

recalibration or retraining. Updating options may be further

limited by inadequate documentation of training methods

(26). Proactive updating of proprietary models by model

owners, such as semi-annual updates of the National Surgical

Quality Improvement Program (ACS NSQIP) risk models,

may alleviate some, but not all, of the need for local

updating options. Health systems, national organizations, and

policymakers should advocate for more complete

documentation of proprietary models and increased access to

updating options. This may include the relaxation of local

updating restrictions; clear documentation of owner-driven

maintenance plans; and proactive, transparent dissemination

of updated models to all customers. Enabling such

expectations of model owners will require more detailed and
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TABLE 2 Overview of gaps in best practices for model maintenance.

Domain Gaps/Needs

Maintenance policies

How should model ownership impact local control over
maintenance?

• Policies establishing updating expectations of proprietary models
• Clarity and fairness of local updating opportunities of proprietary models
• Prototypes for establishing collaborative updating of multi-system owned models

How do we ensure comparable performance across demographic
groups is sustained during the maintenance phase?

• Guidance on whether and when changes in model fairness warrant pausing AI-enabled tools
• Methods for addressing performance fairness drift when model performance deteriorates

differentially across subpopulations

How do we communicate model changes to end users and promote
acceptance?

• Design of effective communication strategies for warning end users of model performance drift
and informing users when updated models are implemented

• Guidance on aligning messaging with end-user AI literacy

Performance monitoring

At what level should model performance be monitored and
maintained?

• Guidance on aligning monitoring and maintenance with use case needs
• Recommendations for handling monitoring in smaller health systems, including determining

minimum sample size and methods for collaborative monitoring
• Policies supporting collaborative model maintenance in low data resource settings
• Guidance on managing interim periods of local performance drift between releases of

proprietary models that cannot be locally updated

What aspects of performance should be monitored? • Generalization recommendations on frequency and sample sizes for measuring performance
across a variety of metrics

• Customizable and expandable tools to monitor a matrix of metrics
• Guidelines for aligning metrics of interest with use case needs

How do we define meaningful changes in performance? • Framework for selecting drift detection methods
• Guidance on establishing clinically acceptable ranges of performance and defining clinically

relevant decision boundaries
• Methods for tailoring drift detection algorithms to detect a clinically important change

Are there other aspects of AI models that we should monitor, in
addition to performance?

• Approaches to systematically surveil external features that may impact model inputs and for
monitoring input data distributions

• Guidance on when to update in response to changes in model inputs if performance remains
stable

• Systems for disseminating information on changes anticipated to affect common AI models

Model updating

What updating approaches should be considered? • Approaches to optimizing update method selection based on performance characteristics most
relevant to use case needs

• Expanded suite of testing procedures options for more updating methods and increased
computational efficiency

• Guidance on defining acceptable performance and methods to determine which updating
methods, if any, restore acceptable performance

Should clinically meaningful or statistically significant changes in
performance guide updating practice?

• Guidance on whether to update models when statistically significant improvement is possible
but updating would not provide a clinically meaningful improvement

• Methods for comparing updating options that incorporate tests for both statistical and clinical
significance

• Recommendations for decision-making in cases where available updating methods do not
restore performance to acceptable levels

How do we handle biased outcome feedback after model
implementation?

• Recommendations for assessing feedback from effective AI-enabled interventions
• Methods for model development, validation, and updating that are robust to confounding by

intervention

Davis et al. 10.3389/fdgth.2022.958284
consistent guidance on model updating practices covering the

concerns described throughout this paper.

How do we ensure comparable performance
across demographic groups is sustained during
the maintenance phase?

Model fairness is now recognized as a critical element of

clinical AI models (27, 28). While model fairness comprises a
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broad set of concerns regarding implementation practices,

user uptake and application, and sociotechnical contexts of

use (29), fairness also requires models to perform similarly

across demographic groups. Establishing initial comparable

model performance across subpopulations and subsequently

maintaining comparable performance within these groups is

thus critical to ensuring model fairness. Novel metrics for

evaluating algorithmic fairness across subpopulations are
frontiersin.org
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providing insight during model validation and selection of

models for implementation in clinical tools (30, 31). A clear

next step is to incorporate these new metrics and performance

within subpopulations into model monitoring to evaluate

fairness over time. This poses new questions regarding how to

handle the potential for fairness drift, defined as differential

performance drift across subpopulations. Researchers and

policymakers will need to address tests for temporal changes

in fairness metrics; methods for updating models experiencing

fairness drift that prioritize equitable utility for all patients;

and whether and when changes in model fairness warrant

pausing AI-enabled tools to avoid creating or exacerbating

disparities.
How do we communicate model changes to
end users and promote acceptance?

Open communication between modeling teams and

clinical end users is essential to the monitoring and

maintenance phase of the AI lifecycle. End users may

identify failing AI-enabled tools before performance

monitors detect changes in accuracy. They may also provide

insight when models are no longer useful from a clinical

perspective even with sustained performance, allowing tools

to be de-implemented or revised as needed. At the same

time, modeling teams should establish policies for

disseminating information about model updates to end-

users, whether updating is driven by end-user concerns,

local model maintenance efforts, or new releases of

proprietary models. Such communication, while particularly

important for reestablishing trust in models updated in

response to end-user concerns, is relevant for all updates.

Model maintenance programs need to include specific

strategies for this bidirectional communication. Such

engagement and transparency regarding model maintenance

may also increase acceptance of AI more broadly by

assuring users that models are actively being curated,

monitored, and assessed with an eye to promoting utility

and safety.

The appropriate mode of communication and level of

detail provided about model updates are likely to use case-

dependent. The ACS NSQIP surgical risk calculator, for

example, displays a banner message highlighting recent

updates, setting expectations for any noticeable changes in

predictions, and eliciting feedback if concerns arise (32).

Extensive model revisions or reimplementation of a paused

model with restored performance may require more

explanation than a banner message can effectively convey.

Workflow and communication experts will be key

collaborators in designing best practices for disseminating

information on model updates. These best practices will

likely need to evolve as the health care workforce becomes

better trained in AI.
Frontiers in Digital Health 05
Performance monitoring perspectives

Ongoing monitoring provides necessary insight into model

stability and can alert model managers to concerning

performance trends in need of intervention (3, 33, 34).

However, insights from monitoring require careful

determinations of how model performance is defined and

evaluated.
At what level should model performance be
maintained?

AI models, even when operationalized to meet the needs of

a specific health system, may need to be monitored and updated

locally, regionally, or nationally. Key features to consider in

determining the appropriate level of model maintenance

include use case goals, model ownership, and data and

analysis resources.

Our understanding of best practices is well-defined in terms

of use case and the level of model maintenance. For

benchmarking models in quality evaluations, maintenance

should be centralized at the largest relevant scope. Stabilizing

the performance of quality-oriented models at higher levels

imbues local performance deviations with information about

variations in care and allows facilities to validly interpret

performance trends as indicating improvement or

deterioration of local performance over time. For AI-enabled

tools aimed at clinical decision-making and population

management, individual predictions should be well-calibrated

to ensure utility and benefit to patients (13). As a result, more

localized monitoring and maintenance are appropriate.

Unfortunately, practical considerations may require

centralized monitoring and updating at regional or national

scales even when local performance would typically be

prioritized. Ownership and licensing requirements of

proprietary models may preclude updating models to optimize

local performance. Guidance on how to assess and handle

local drift in light of such restrictions is necessary to trigger

pauses in model implementations when local monitoring

efforts reveal concerning performance drift; facilitate

communication with end users about paused models and

support end users’ information needs during such pauses, and

promote timely reporting of issues to model owners.

When local updating is permissible, monitoring and

updating remain a challenge for small organizations where

data volumes and analytic resources may be limited.

Insufficient sample sizes can lead to highly variable

performance during monitoring and limit the ability to

distinguish performance drift from noise. Smaller

organizations, as well as their larger peers, should leverage

recent studies by Riley et al. to assess whether sufficient

sample sizes are available to validate binary (35), time-to-

event (36), and continuous models (35). Recalibration,
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retraining, and model revision also require sufficient sample

sizes (37) and dedicated data science teams that may not be

feasible for all organizations. One solution would be to

explore whether health information exchanges could be

leveraged for collaborative monitoring and updating where

local resources are insufficient. Broader research and policy

discussions are needed as we think creatively about such

multi-level, coordinated efforts to ensure the benefits of

predictive tools are available and practical for health care

organizations serving all communities.

What aspects of performance should be
monitored?

While some metrics appear more robust to dataset shift,

performance drift has been documented in measures of

discrimination, calibration, and clinical utility (7, 8, 10, 16,

38). Monitoring metrics relevant to an AI-enabled tool’s use

case is critical to understanding whether changes in

performance warrant updating or whether updating may have

little impact on model use and outcomes. For example, the

number needed to screen was identified by the VSAIL team

as the target metric for monitoring and stabilizing model

performance as this impacts the cost-benefit analysis of clinics

adopting the tool (39). For models deployed in diverse clinical

contexts or across multiple tools, tracking a matrix of

performance measures would provide insights supporting a

variety of user perspectives (12, 40). Monitoring

recommendations should thus include components that are

agnostic to the performance metrics under consideration (e.g.,

selection of measurement), as well as components regarding

metric selection.

How do we define meaningful changes in
performance?

Monitoring performance alone is insufficient; model

managers need to be able to determine when observed

deterioration in performance warrants intervention. Drift

detection methods surveil temporal performance to alert

users to statistically significant changes (41, 42) and have

been applied to monitoring clinical prediction models. (34,

38) Methods vary in their ability to handle multiple forms

and speeds of performance drift, as well as in their

applicability to clinical contexts where calibration is of

interest (43). Best practice recommendations will need to

provide a decision framework for selecting between drift

detection approaches, including considerations of whether

detection algorithms are model-independent; can handle

data streams of individual or batched observations, and are

flexible in their ability to monitor prediction errors using a

variety of metrics.

We note small differences in performance may be detected

by the statistical tests underlying drift detection algorithms.

However, statistically significant differences in performance
Frontiers in Digital Health 06
may not directly translate into clinically meaningful

differences. In such cases, users may question the value of

updating or pausing a model in response to detections of

small statistically significant, but not clinically important

performance drift. The magnitude of acceptable inaccuracy

and performance variability likely varies by use case. For

example, performance drift is most likely to impact clinical

utility when the calibration of predictions near clinically

relevant decision thresholds or near classification cut-points

deteriorates. Understanding whether, when, and how

performance drift affects the clinical utility of predictions for

decision-making is key to detecting meaningful changes in

monitored models. Defining and measuring clinically

acceptable performance and defining clinically relevant

decision boundaries remains an open area of research.

Subsequent research and guidance will need to address

tailoring drift detection algorithms to place more import on

clinically important changes in model performance.
Are there other aspects of AI models that we
should monitor?

In addition to performance metrics, the inputs of AI

models could be monitored. This may involve evaluating

data streams for changes in predictor distributions and

associations (17), as well as establishing teams to actively

evaluate external influences in clinical guidelines, software

systems, data standards, and health care policies (6).

Tracking external influences would allow teams to recognize

structural changes that could render a model unreliable and

plan customized updating approaches. Changes in data

stream features, however, may not necessitate updating

unless and until they affect the model accuracy in clinically

meaningful ways. Best practices will need to address

integrating insights from performance monitoring and

evaluations of factors impacting model inputs to promote

stable performance while efficiently and conservatively

updating models. Additional research could investigate

strategies for monitoring these non-performance aspects of

AI models and policies for disseminating information across

health systems when new practices are anticipated to impact

widely adopted models.
Updating strategies

When updating is initiated by pre-established schedules or

detected performance drift, model managers must choose

between a range of updating methods – from recalibration to

retraining to model revision. As not all methods will be

feasible, permissible, or successful in all situations, research

and recommendations are needed to guide updating practice.
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What updating approaches should be
considered?

Although retraining with a cohort of recent observations

may be established practice, this approach fails to build on

the knowledge encoded in existing models, can be susceptible

to overfitting, and may not improve performance above that

achieved through recalibration (11, 44–47). For health systems

with smaller populations, concerns regarding performance

instability when retraining complex models may be more

pronounced. Several methods have been developed to

compare updating approaches on a particular cohort and

recommend the approach that most improves accuracy (17,

45, 46). These methods, however, test for statistically rather

than clinically significant differences across potential updates

and do not consider whether the recommended update

sufficiently restores performance. As methods for establishing

clinically relevant decision thresholds mature, testing

procedures for selecting updating methods could be

implemented with weighted scoring rules to emphasize

accuracy in critical regions. Future research should consider

expanding options for optimizing decisions using varied

performance metrics; increasing test efficiency, particularly for

computationally intensive models; methods for evaluating

whether updating provides clinically meaningful improvement;

and recommendations for cases in which available updating

methods do not restore models to acceptable levels of accuracy.
How do we handle biased outcome feedback
after implementation?

Model updating with current recalibration, retraining, and

model revision methods has been developed, evaluated, and

applied primarily in research databases. In production

systems, interactions between users and AI-enabled decision

support tools will, if successful, alter treatment decisions and

improve patient outcomes. As a result, the observed data in

production systems will be biased and updates using these

biased data may reduce future model utility by updating away

useful signals (48). These feedback loops created by successful

clinical AI tools pose new challenges to updating practice that

requires additional methodological research to better

characterize the problem; to distinguish between dataset shift

and performance changes due to model interventions; and to

develop novel algorithms and updating approaches that are

robust to confounding by intervention.
Conclusion

The clinical AI lifecycle is incomplete without components

to monitor and stabilize accuracy in evolving clinical

environments. Despite the diverse landscape of AI-enabled

tools, common challenges to model maintenance impact new
Frontiers in Digital Health 07
and existing implementations regardless of clinical domain

and underlying modeling algorithms. Methods development

for model monitoring and updating is accelerating, yet open

questions for the design of maintenance programs, those

described here and more, require additional research and

scientific consensus to devise best practices. Establishing best

practices is critical to designing AI-enabled tools that deliver

reliable predictions, promote adoption, and realize the

promise of AI to improve patient care.
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