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When data are poor, we resort to theory modeling. This is a two-step process. We have
first to identify the appropriate type of model for the system under consideration and then
to tailor it to the specifics of the case. To understand settlement formation, which is the
concern of this article, this involves choosing not only input parameter values such as site
separations but also input functions that characterizes the ease of travel between sites.
Although the generic behavior of the model is understood, the details are not. Different
choices will necessarily lead to different outputs (for identical inputs). We can only proceed
if choices that are “close” give outcomes that are similar. Where there are local differences,
it suggests that there was no compelling reason for one outcome rather than the other. If
these differences are important for the historic record, we may interpret this as sensitivity
to contingency. We re-examine the rise of Greek city-states as first formulated by Rihll and
Wilson in 1979, initially using the same “retail” gravity model. We suggest that, although
cities like Athens owe their position to a combination of geography and proximity to other
sites, the rise of Thebes is the most contingent, whose success reflects social forces
outside the grasp of simple network modeling.

Keywords: spatial modeling, networks, Ancient Greece, urban centers, Geometric Greece, Archaic Greece

1. INTRODUCTION

Data are never perfect. However, when they are good, as is often the case in the physical sciences,
there are various programmes for tackling data deficiency (e.g., Kennedy and O’Hagan, 2001; Babtie
et al., 2014). In social science, and in archeology in particular, data are often too poor for these
approaches to be applicable as they stand. The information we have is incomplete and fragmentary,
biased by what has survived and by what has been investigated and what has been made publicly
available. We have to supplement the data that we possess with informed guesswork of various
levels of detail and reliability. In the light of this, to make the best use of our limited knowledge or,
complementarily, the best use of our ignorance a good starting point is to adopt the fall-back position
of answering the question “All other things being equal, I would expect . . . to have happened?”

This is where modeling can add to the debate. How to make the best use of our ignorance is
an old problem and we shall not attempt to document its history much beyond the observation
that economists, who popularized the approach in the 20th century, refer to it [see (Keynes, 1921),
chapter 4] as Laplace’s “Principle of Indifference,” although Laplace himself termed it the “Principle
of Insufficient Reason” (Laplace, 1825). However named, the basic idea (which precedes Laplace) is
simple in principle and is exactly how a wise card player would have played at the gambling tables of
the ancient regime. List all the “worlds” (in this case, hands of cards), which are compatible with
your knowledge/ignorance. Each world is equally likely (or information is being withheld), and
the most typical of these is the way in which the system is most likely to behave. In the language
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of Bayesian statistics (Laplace’s analysis rather subsumed the ideas
of Bayes, but it is Bayes whose name is invoked by statisticians), we
have assumed a flat Bayesian prior. Necessarily our conclusions
will have a large degree of uncertainty about them, and our main
aim in this article is to attempt to show how this uncertainty can
be estimated.

There is a basic issue here that sets us, as archeologists, apart
from historians, particularly where data are poor. This is that
modeling of the type that we are discussing applies only to generic
societal behavior, behavior that arises when “history is idling.”
While it is easy to discount the historical staples of major social
unrest, famine, and disease, it is less easy to estimate those aspects
of local alliances that lead to one decision rather than another.
That is, in the context of the above, we are less interested in
an enraged gambler overthrowing the table than in the presence
of organized card sharps. To take the example of this paper
that we shall develop at greater length later, the formation of
Greek city-states in ninth and eight century BC, we shall see that
there is a contingency to the presence of Thebes that does not
apply to Athens. Indeed, it is hard to get Thebes to appear as a
major site. We would see this as a consequence of social forces
(not necessarily dramatic) that modeling of this type, based on
the broad statistical inference, cannot accommodate. Although
to a historian the absence of Thebes in its historical position is
nonsense, a Bayesian is happy with a local proxy, which differs in
detail and position from the original, provided something sensible
is said about Athens, Korinth, and other important sites.

Jaynes (1957, 1973) reformulated the Bayes/Laplace approach
as the Principle of Maximum Ignorance (or Principle of Epistemic
Modesty), and this is the view closest to the methods we will
use in this work, in that it can be reformulated as the Principle
of Maximum Entropy. Here, we are thinking of entropy in the
context of information theory, in which it is simply related to the
number of questions with whichwe need to interrogate the system
to have complete knowledge of it. Maximum entropy states are,
roughly speaking, the ones that have the largest number of ways of
creating a result with the specified macroscopic observables (our
limited knowledge), and this fits in with Bayes/Laplace. As always,
there are certain caveats that we shall not address and leave to the
interested reader (Neapolitan and Jiang, 2014).

Our focus here is on models for networks of exchange in the
protohistoric past where the primary information contained in
the model is spatial. Our worlds are patterns of exchange, and a
typical use of such models is to see to what extent spatial features
alone can account for these. The entropymaximizing that we shall
discuss here is only one of several approaches that have evolved in
part fromurban planning,migration/commuting, and economics,
for all of which exchange is a key component. We have delineated
some of the alternative lines of approach elsewhere (Evans et al.,
2012) and will not pursue them further.

To examine the issues with quantifying levels of expectation
with their concomitant uncertainty and ambiguity, we will build
on a classic study using entropic methods demonstrated by Rihll
and Wilson (1987, 1991). They examined how spatial models,
based on models for siting retail outlets (Huff, 1964; Lakshmanan
and Hansen, 1965; Harris and Wilson, 1978), can be used to study
the rise of city-states in centralmainlandGreece around the eighth

century BC. Specifically, the question is to understand to what
extent spatial features can explain why certain settlements out of
the many in the region came to dominate it. The success of the
model led to its adoption for understanding city-state formation in
other times and other places: secondmillenniumBCCrete (Bevan
and Wilson, 2013), Middle Bronze Age and Iron Age NE Syria
(Davies et al., 2014), early second millennium BC Central Ana-
tolia (Palmisano and Altaweel, 2015), and late first millennium
Latenian urbanization (Filet, 2017).

Our aim is, using the data of Rihll andWilson as the example, to
show how to improve the treatment of uncertainty in such spatial
modeling. This lies behind the title of this article. We shall show
that some sites, like Athens, are likely to be significant despite
our poor knowledge, whereas some, like Thebes, are much more
contingent on information that we do not possess. Unlike Athens,
its historical importance is likely a consequence of social forces
that models like ours cannot accommodate. We had suggested
this previously (Rivers and Evans, 2014), and this current article
provides an extensive development and analysis of this earlier
proposition. However, our focus in this article is less on the
archeology of Late Geometric/Early Archaic Greece (Coldstream,
2003) and more on the nature of uncertainty in such approaches.
As such it is equally applicable to the other case studies, and some
preliminary work on Latenian urbanization is under way.

As we have said, these studies of urbanization are framed in the
language of exchange networks. In the first instance, “exchange”
means the physical transportation of things and people, with
secondary meanings in terms of power and culture that these
things and people embody, the details of which we know very
imperfectly. Uncertainty comes in many forms, but, roughly, it
can be divided into uncertainty in “physical” parameters and
uncertainty in “calibration” (Kennedy and O’Hagan, 2001). For
the former, a major source of uncertainty lies in our imperfect
knowledge of site locations. In this regard, we take the sites of the
Rihll and Wilson model as given. Even then, further uncertainty
lies in the nature of the paths taken (we are thinking here of land-
based and riverine travel), e.g., to what extent do existing roads
and waterways determine long-distance exchange? We consider
the effect of adopting different definitions. A third problem arises
in estimating the effort/cost/time involved in the transportation
along these routes. These, in addition to the ambiguity in the
site carrying capacities or resource bases, constitute the major
uncertainties in the physical parameters of the model. As for
calibration, there is the question of how to characterize the ease
of exchange for different “costs” or distances. This is encoded
in the so-called deterrence function, a calibration function, with
its own calibration parameters, which imposes cost penalties on
long-distance single transactions. We consider the effect of differ-
ent choices of this deterrence function. In fact, what began our
analysis of this data set (Rivers and Evans, 2014) was our inability
to replicate the results of Rihll and Wilson when using a different
choice of deterrence function from them.

Superficially, our conclusions concerning significant sites seem
very plausible just on geometric grounds from the distribution of
sites. This leads us to question whether we needed the apparatus
of entropy and Bayesian analysis. Could we have reached good
enough conclusions with a ruler and compass? To test such a
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FIGURE 1 |Mainland Greece and the Aegean. The box shows the region
containing the 109 sites of Rihll and Wilson [Figure 1 of Rihll and Wilson
(1987)], which are used in the analysis here, see Figure 2. Map from
Wikipedia Commons.

null approach, we compare the results of this model to the results
obtained using more traditional data clustering methods, which
rely on geography alone.We find that the answer is no. As a part of
this programme, we produce an open source list of site locations
and distances used, which allows future researchers to test their
ideas on this data set.

There is the caveat that even seemingly epistemic approaches
like this can have a manifestly ontic realization in terms of sites
as actors in their evolution. For example, Wilson (2008) rephrases
the model in terms of dynamical Lokta–Volterra (predator–prey)
equations, and Altaweel (2015) has re-examined Syrian city-state
formation from an agent-based approach. Such approaches pro-
vide useful complementary perspectives.

2. DATA

2.1. Sites
The primary data we use is that of Rihll and Wilson (1991) (pp.
68–71), namely the choice and location of sites. The sites cho-
sen come from a region roughly 130 km across from the Greek
mainland as shown in Figure 1. The sites used constitute 109
population centers of the Late Geometric period, the ninth and
eight century BC, as specified in Figure 1 of the study by Rihll and
Wilson (1987) and shown here in Figure 2. We assign the same
index to each site as in the study by Rihll and Wilson (1987), and
this index will be given in the text along with the site name. A full
list of site names and indices is given in the Table A1 in Appendix
or see Evans (2016a) for full details.

Some of the hypotheses behind the choices of sites are outlined
in the study by Rihll andWilson (1987), e.g., using the existence of
a temple or the size of a site as a marker of importance. Relying on
such expert judgment is inevitable, but this approach immediately

provides a largely unquantifiable source of uncertainty. Inevitably,
some sites will be missing from the current archeological record,
a gap that is difficult to fill without modeling. One systematic
approach to such missing sites is to take a subset of existing sites
and a knowledge of the geography. Extra sites are then added
using some stochastic model, and results are then produced for
this mixture of real and artificial sites. Repeating this many times
for many possible missing site configurations will allow us to see
whether we can draw any general conclusions about our system
independent of our uncertainty about sites; Bevan and Wilson
(2013) or Paliou and Bevan (2016) provide examples of this proce-
dure. Another approach to the uncertainty around our selection of
sites could be to try different randomsubsets of known sites. Again
repeating measurements several times will allow us to judge how
site location uncertainty effects our conclusions, for example, see
the study by Davies et al. (2014).

A further judgment comes when we draw the boundary. The
109 sites chosen here lie within about a days walk from one of the
four key centers: Argos, Korinth, Thebes, and Athens. This pro-
vides one rationale for the boundary of the region considered here.
However, there are clearly strong links in this period between the
sites in this study and the wider Greek world (Coldstream, 2003):
Thessaly, Sparta and the rest of the Peloponnese, the Aegean
islands, colonies founded in Sicily, and elsewhere. Commerce
provided vital links with Italy and the Eastern Mediterranean for
key ores if nothing else (Coldstream, 2003). In principle, we could
look to include more and more sites in our study.

However, in this work, we will not try to address such uncer-
tainties in the choice of sites, and we will take the set of 109
sites in Figure 2 as given. See the study by Evans (2016a) for
these data and further information on our implementation of this
information.

Some models can accommodate some sense of the size of the
site. However, Rihll and Wilson judge that this information is very
uncertain in this period, and it is more reasonable to assume that
all sites were roughly equal in size and importance at the start of
the period [see Rihll and Wilson (1991) (pp. 69–70)]. This reflects
an entropy viewpoint that this is the least-biased assumption to
make when there is no other information available.

There is one obvious feature about the spatial arrangement of
these 109 sites. There is a natural and obvious division into three
regions: Boeotia, Attica, and the Isthmus-Argolid region. We will
comment further on the properties of the spatial arrangement of
these 109 sites below, see Section 2.3.

2.2. Distances
The only other explicit information used here, and in the original
papers, is the distance between every pair of sites [see Rihll and
Wilson (1991), pp. 63–65]. There aremany different ways to assess
the effective separation of two sites: effort, time of travel, financial
costs, distance of the actual route followed, etc. For our context,
only the distance of the actual route followed can be measured
with any accuracy using modern GIS methods, but lack of
knowledge about the details of exchange and the way landscapes
were actually used still leaves unquantifiable uncertainties. Again
the best response is to make few assumptions, so in the first
instance, like Rihll and Wilson, we use a straight line distance
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FIGURE 2 | The approximate locations of the 109 sites used as the starting point for this study, derived from Figure 1 of Rihll and Wilson (1987). The
index of each site is the same as in the study by Rihll and Wilson (1987) and is indicated by the number on the associated site. These indices are used in the text,
usually in parentheses after the site name. The index of site numbers and the precise locations used in this study are given in full in Table A1 in Appendix along with
this map using site names not site indices (Figure A1 in Appendix). Note that site 64, Vouliagmeni, was not labeled in the original figure; see Evans (2016a) for more
details. The “normal” distance set are the direct straight line distances between these sites. The edges are a subset of those given by Delaunay Triangulation and are
used to calculate a second set of distances (denoted DTMedit). Each edge is linked to the straight distance between the end points. The distance between other
pairs of points is found by taking the length of the shortest path along the edges where the path distance is the sum of the distances associated with the edges
traversed in the path. The full data set and further details are given in the study by Evans (2016a).

between sites. In fact the choice of significant sites may well
contain some implicit information about the landscape, e.g., an
area of difficult terrain is likely to have fewer settlements. We will
try to judge the effect of the uncertainty of distance as a part of
our study, one aspect where we extend the original work of Rivers
and Evans (2014).

One complication when comparing our results to the original
studies is that the distances used in the latter are not provided. To
obtain a comparable set of distances, we have digitized Figure 1 of
Rihll and Wilson (1987); our coordinates for the sites are given in
the Table A1 in Appendix. The distance between sites is then the

length of a straight line between these sites in these coordinates.
This comprises what we will call our “normal” distance data set.
These distance data are given in the study by Evans (2016a), and
the process is discussed there in more detail. The scale is that
roughly six of our units are equivalent to 1 km. If we look at
the nearest neighbor to each site, we find that the closest pair
are 8U apart (Nauplia—106, Pronaia—100, and south east of
Argos—101), and the furthest distance between nearest neighbors
is 75U (between Sikyon—109 and Akraia—74 on the coast north
of Korinth—82). These minimum distances have a first quartile
of 20.0, a median of 28 (such as Kopai—5 and Olmous—6 in
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northern Boeotia), and a third quartile of 39.0. Themean is 30.9U
implying a short distance scale of around 5 km.

Perhaps the most obvious problem with these data is that the
shortest path between many pairs of points includes paths that
are over the sea. Traveling on water in the ancient world was,
where it was available, the most effective method of long-distance
communication, both in terms of speed and in terms of bulk.
However, land-borne and waterborne transports have different
advantages and disadvantagesmeaning that we cannot simplymix
these two modes of travel. This issue largely affects long-range
links across our region. We shall see later that the bulk of the
results seem to be sensitive to smaller scales, say 30 km or less (the
maximum walking distance in 1 day). We might reasonably hope
that sea travel is likely to have little impact on our results and have
used this to produce a second set of separations based purely on
routes that (largely) avoid the open sea.

From the above, we see sites are so close that a determined
individual could visit several sites in a day, most likely making
use of an existing system of tracks/roads, which we assume occur
between nearest neighbors. Thus, if going from site A to site C
takes us near an intermediate site B, the traveler is more likely
to go from A to C via B than strike off a direct route to save a
short distance. Given the uncertainty in assigning useful distances
between these ancient sites, we judge that any differences in the
distances used here compared to the original studies should be no
more significant than many of the other sources of uncertainty.
To test this, we applied Delaunay Triangulation to the same 109
sites so as to produce a set of non-intersecting edges between
“nearest neighbor” sites. Again, for sites around the edge of the
region, this produces several long-distance links, which cut across
the sea. We choose which links to remove using our judgment,
endingwith a set of largely land-based links. The distance for every
remaining link was exactly as before, with a typical separation
between nearest neighbors of around 5–10 km. We then found
the distance between each pair of sites by assuming that the
path between sites will always be along the links between nearest
neighbors, using the path with the shortest total path length. This
Delaunay Triangulated-derived distance set (labeled “DTMedit”
in figures) is shown in Figure 2.

In practice, this means that sites that are not nearest neighbors
are actually slightly further apart than in our normal data set.
Again this process is not precise, but the differences between the
set of Delaunay Triangulation-derived distances and our normal
distance set (direct paths) can serve as a proxy for the sort of errors
we might expect in our estimations of effective distance between
sites. The differences between our two different sets of distances
and the Rihll and Wilson direct path distances will serve as a test
of the robustness of results against uncertainty in travel.

2.3. Regional Structure of the Data
It is worth looking at our distance sets for obvious features.
By using hierarchical agglomerative clustering [for example, see
Manning et al. (2008)], a standard method to cluster the data,
we find that there are only really three main scales in either
distance data set. The typical intersite separation marks the onset
of clustering, the overall size of the data set (around 130 km)marks
the end. In between, there is only one characteristic scale in the

dendrogram of Figure 3 (see also Figure A2 in Appendix). This is
a region of three clusters, which reflect the regions delineated by
clear gaps in themap of sites, as seen in Figure 2. They correspond
to Boeotia in the north (containing Thebes—25), Attica in the east
(containing Athens—70), and the Isthmus/Argive region in the
south west (containing Korinth—82 and Argos—101). While the
two distance data sets produce different dendrograms in detail,
the large-scale picture is broadly similar for both.

3. THE RIHLL AND WILSON MODEL

Themodel used byRihll andWilson (1987, 1991) and later authors
(Wilson and Dearden, 2011; Bevan and Wilson, 2013; Rivers and
Evans, 2014) to describe urbanization and state formation in
historical contexts was originally devised to study the emergence
of dominant retail centers (Huff, 1964; Lakshmanan and Hansen,
1965; Harris and Wilson, 1978). The model differs from several
other well-known spatial models, such as Gravity Models, in that
it is a “zone-of-control” model in the terminology of Evans et al.
(2012). That is the model produces a structure of dominant sites,
called “terminal sites,” surrounded by a cluster of smaller nearby
satellite sites, see Figures 10 and 11.

In all that follows, we consider a network of N sites labeled
i= 1, 2, . . ., N. As mentioned in Section 2.1, we take the sites to
be equal, differing only in terms of their locations relative to one
another. The output of the model will be a set of “flows” Fij, each
of which describes a flow from site i to a distinct site j, separated by
an appropriately defined distance dij. In many spatial models, this
flow Fij represents the transmission of goods, people, influence,
ideas, etc. from site i to site j. Here, however, we will use it to
represent the “pulling power or attractiveness” (Rihll and Wilson,
1987, p. 8) of site i to site j. This is, of course, very abstract and
unquantifiable, but in most ancient contexts, it is nearly always
impossible to quantify exchanges of any type between sites, even
where they are physical goods, so this is not a particular weakness
of this study.

3.1. Construction of the Rihll and Wilson
Model
In Appendix, we outline the derivation of the model through the
maximum entropy approach of Wilson (1967). The key assump-
tion is that if all other things are equal, then every possible
exchange counted by the flows is equally likely. Of course in
reality, there are strong constraints. We impose these here in three
steps, producing first the simple gravity model, then the out-
put constrained gravity model, and finally, the Rihll and Wilson
model. We shall avoid algebra as much as possible here and refer
the reader to Appendix, where it is given in a greater detail.

3.1.1. The Simple Gravity Model
Exchange between sites i and j requires some effort, and we imag-
ine that this can be roughly quantified as a “cost” cij. For instance,
the effort to maintain a link between two sites will generally
increase with separation dij, so we might choose to capture this
with the simple choice that our costs are equal to the distances,
cij = dij. Our single constraint is that the total cost/effort that can
be expended on exchange is capped. This is natural given that
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FIGURE 3 | Hierarchical agglomerative clustering for the normal distance set using the average criterion for agglomeration.

any society has limited resources. Making the best use of this
knowledge (maximizing the entropy of the exchange flows subject
to this constraint) gives the most likely distribution as

Fij = A f(dij/D) , i ̸= j. (1)

Here, the constant A is determined by the total cost we allow,
but it can be fixed more easily by specifying the total amount of
exchange, Ftotal =

∑
i,j Fij. The function f (x) is known as the

deterrence function, and it expresses the effect of the costs incurred
on a trip from i to j in terms of the distance. The likelihood of

a single exchange occurring over distance dij is proportional to
f (dij/D). The new parameter D is a calibration scale for the effect
of distances on travel. Often f (x) is chosen such that f (0)= 1. The
appropriate form for the deterrence function is rarely known, so
another source of uncertainty comes from its choice. Note that we
have swapped our lack of knowledge about the costs cij for the lack
of knowledge about the function of distance f. Distances are more
accessible quantities than costs, and we have some knowledge, or
at least intuition, about the effect of distance on exchange. For
instance, we imagine that the deterrence function should always
decrease as distance gets larger, and indeed all our examples have
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this simple feature. Part of our study is to see how resilient the
results from our modeling are to different choices.

A common form for the deterrence function corresponds to the
simplest choice that costs are proportional to distances. This leads
to the simple exponential form (labeled EXP in figures):

f(dij/D) = exp(−dij/D). (2)

This is also the form used in the study by Rihll and Wilson
(1987, 1991).

In general, the deterrence function can depend on additional
calibration parameters that alter its shape, as we see in the second
form shown in Figure 4. This ariadne deterrence function [or
ariadne edge potential, labeled AEP in figures, and as used in the
studies by Evans et al. (2006, 2012) and Knappett et al. (2008,
2011)] takes the form

f(dij/D) = (1 + (dij/D)α)−γ . (3)

When compared to the exponential form [equation (2)], what
we term the ariadne form [equation (3)] has low penalties for
short-distance exchange but with a sharper change around dis-
tance scale D to a region where long-distance exchange is heavily
penalized. For instance, we imagine that ifD represents the typical
distance traveled in a day overland in this region for our era, then
it seems reasonable to impose a sharper difference between 1- and
2-day travel. This seems to us to bemore appropriate for the case in
hand, but translating qualitative expert judgments about the costs
of exchange into a specific form for the deterrence function in our
model is clearly another source of uncertainty. We can change of
deterrence functions to try and evaluate how important this source
of uncertainty is, and that is whywe use two forms, the exponential
form [equation (2)] and the ariadne form [equation (3)].

However, while the ariadne form [equation (3)] has the cali-
bration distance scale D as one parameter, this form also has two

FIGURE 4 | The exponential deterrence function (exp, solid line) of (2)
and the ariadne deterrence function of [equation (3)] (dashed lines) in
terms of x=d/D, the distance d scaled by the distance parameter D.
The ariadne deterrence functions [equation (3)] shown for three of the nine
parameter value combinations (α, γ) used in this work.

further parameters, α and γ, which alter the shape of the function
rather than the scale of the function. We will work with α= 3.6,
4.0, and 4.4 and while we will use γ values of 0.9, 1.0, and 1.1.
We choose these particular shape parameter values because they
represent a 10% variation around the standard choice made in
our earlier work (Evans et al., 2006, 2012; Knappett et al., 2008,
2011). This ensures that the shape of these deterrence functions
remains similar to our standard choice, little penalty for short-
range exchange and heavy penalty for long-range exchange, but
this allows us to probe uncertainty in the details of this particular
modeling choice. We limit ourselves to just nine slightly different
forms, so we can get a feel for the effect of this source of uncer-
tainty in the deterrence functionwhile keeping our study relatively
simple. A full study of these additional parameters, and indeed
of other deterrence function forms, is an avenue for future work,
but even adding just twomore parameters makes interpretation of
outputs much harder.

3.1.2. The Output Constrained Gravity Model
The Simple Gravitymodel as given above can also be derived from
a manifestly ontic, agent-based approach (Jensen-Butler, 1972).
However, the Simple Gravity model is deficient in many ways.

One clear limitation is that there is no particular limit on the
level of exchange emerging from each site in the Simple Gravity
model; only the total amount of exchange is limited. By way of
comparison, we note that some of the earliest and most success-
ful examples of spatial modeling in archeology have employed
Proximal Point analysis (for example, Terrell, 1977; Broodbank,
2000). Proximal Point analysis posits that each site only has
interactions/exchanges with a fixed number of their closest sites,
i.e., outflows are constrained. This has parallels in the idea that
individuals only have the capacity to really interact with a limited
number of other individuals (Dunbar, 1992).

Adding to the Simple Gravity model, the constraint that indi-
vidual site outflows are fixed to be a given value Oi produces
the Output Constrained Gravity model where the most likely
exchange flows are found to be

Fij = AiOif(dij/D) , A−1
i =

∑
j

f(dij/D) , i ̸= j. (4)

The normalization factors Ai ensure that the output from each
site is indeed Oi, that is, Oi =

∑
j Fij.

3.1.3. The Rihll and Wilson Model
Unless we extend these models to accommodate strongly unequal
site sizes initially, they have no mechanism for generating a hand-
ful of dominant sites as outputs, as identified in the archeological
record. The presence of dominant sites requires the inclusion of
non-linear behavior in the model constraints. Drawing on ear-
lier work modeling retail outlets (Huff, 1964; Lakshmanan and
Hansen, 1965; Harris and Wilson, 1978), Rihll and Wilson do
this by constraining the entropy of the site inflows Ij =

∑
i Fij

although the motivation for this is best provided post hoc from the
form of the final model. In the absence of this input entropy con-
straint, inflows over similar distance scales tend not to have wide
variation as seen in either of the two previous models. The effect
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of this input entropy constraint is to give non-linear feedback so
that sites that develop an advantage build on that advantage to
become even more important, suggestive of the synoikism and
urbanization that is expected to lie behind the appearance of
regionally dominant sites. It is the inflow Ij outputs determined
by the model that are used by Rihll and Wilson to assign an
importance or “attractiveness” to a site.1

The result (see Section B2 in Appendix) is that the flow Fij from
site i to site j (i ̸= j) now takes the form2

Fij = AiOiIβj f(dij/D) , A−1
i =

∑
k

Iβk f(dij/D) , i ̸= j.

(5)
As before, the normalization factors Ai ensure that the output

from each site is indeed Oi. We stress that the total flows into
each site j, the Ij, are not parameters of the theory but are all
specified by the solution. The cost of each exchange is encoded
in the deterrence function, f (dij/D), as before. Again, the model
demands that the outputs are fixed. Given our limited informa-
tion, we are unable to specify the outflows on a site-by-site basis,
and we follow our usual response to a lack of information and take
the outflows to be equal. Rihll and Wilson also set the output from
each site to be equal as they suggest that it is most reasonable to
assume that all sites were roughly equal in size and importance at
the start of the period (see Rihll and Wilson, 1991, pp. 69–70).

The feature that distinguishes this model from other gravity
models is the factor of Iβj in equation (5). The Iβj leads to solutions
where for most sites Ij is zero or close to zero, so that all the
available flow is input to a few sites, the “terminal sites,” which
have significant input flows. These terminal sites send their output
flows to a variety of other terminal sites. Roughly speaking, if
the deterrence function becomes negligible for sites separated by
distance scale D or more, then a site T with a large input flow
(or attractiveness) IT will suppress the attractiveness of sites within
a radius of D or so through the normalization factor Ai. Basically
a first guess is that in this model [equation (5)], the system will
split up into patches of radius D, each with one dominant site.
Indeed this is the typical pattern of solutions to the Rihll and
Wilsonmodel; a series of stars where all the flow leavingmost sites
is directed to just one site in their neighborhood, as can be seen in
Figures 10 and 11.

3.2. Terminal Sites
The difference from gravity models with input and output con-
straints [for instance, see Evans et al. (2012)] is that outflows Oi
are still input parameters of the theory, but now the inflows Ij
are outputs determined by the model. These are used by Rihll and
Wilson to assign an importance or “attractiveness” to a site.

To identify the most important sites, Rihll and Wilson use a
particular implementation of a scheme of Nystuen and Dacey
(1961), and we will follow suit. We define a terminal site to be a

1In a second self-consistent version, Rihll and Wilson set the outputs equal to the
inputs in a self-consistent manner Oi = Ii, so the number of arrivals is the number
of departures. Themodel parameters then include an initial value for Ii for each site.
We will not consider this self-consistent variant further.
2Note that it is standard to ignore the internal flows, the entries Fii. Equivalently we
choose f, so that f(dii/D) = f(0) = 0.

site where the total flow into that site is bigger than the largest flow
out of that terminal site along any one edge. That is a terminal site
T satisfies

IT =
∑
i

FiT > FTj ∀ j ̸= T. (6)

Rihll and Wilson then compare the terminal sites found from
the results of the model with the archeological record. In fact the
nature of the output of the model, one dominated by obvious star
like formations, which naturally define “zones of control,” means
that we can pick these terminal sites out by eye from visualizations
of the complete flowmatrix inmost cases, as in Figures 10 and 11.

4. RESULTS

4.1. Assessing the Results
The basic idea in the original studies is to find the sites that emerge
from the initial equal-sized settlements to dominate a region,
based purely on the relative geographical positions.

In this context, there are certainly four cities that dominate
the history of subsequent periods in this region: Thebes (25),
Athens (70), Korinth (82), andArgos3 (101).Wewill use these four
well-known sites as our key measure of the effectiveness of our
various modeling attempts. Of course other sites play important
roles; Rihll and Wilson provide commentaries on several other
sites, both important and less so [throughout Rihll and Wilson
(1987) and Rihll and Wilson (1991), but see p. 71 of the latter in
particular]. Undoubtedly scholarship about the settlements in this
region at this time will have moved on, but our focus is on the
methodology and the role of uncertainty in modeling, so we are
content to remain with a data set that captures the broad picture.
It also enables us to build directly on the specific results present in
the original articles.

Rihll and Wilson looked at several parameter values in their
1987 and 1991 papers for the exponential deterrence function of
equation (2). Outcomes are determined by two parameters: the
distance scaleD of the deterrence function and the “attractiveness”
exponentβ. Their results for these four significant sites, as derived
from their figures, are shown in Table 1. Thebes (25) and Athens
(70) were always identified as terminal sites. Korinth (82) is iden-
tified in four of these figures, but sometimes the terminal site was
not Korinth (82) itself but a close neighbor. There was also always
a terminal at Argos (101) or a close neighbor.

In terms of robustness, Rihll and Wilson look at a range of
parameter values, producing between eight and thirteen terminal
in the Figures 4–6 of the study by Rihll andWilson (1991). The key
results are given in Table 1. We repeat this in the first stage of our
study by looking at how sensitive our results are to changes in the
calibration parameters D and β for a given deterrence function.
In Figure 5, we show the sensitivity of the terminal number to the
distance D and β parameter values, for the standard exponential
deterrence function and for the normal (direct) distance set. This
is broadly similar to Figure 6 of the study by Rihll and Wilson

3To this list Rihll andWilson add a fifth site, Khalkis (40) (seeRihll andWilson, 1991,
p. 71), which is about 30 kmnorth east of Thebes at the narrowest point between the
mainland and the large island of Euboea. Khalkis was significant enough to found
several other Greek cities.
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TABLE 1 | The list of results for the seven different parameter values shown in the two Rihll and Wilson papers from 1987 and 1991.

Paper Figure number β DRW Number terminals Thebes (25) Athens (70) Korinth (82) Argos (101)

1987 2 1.010 6.667 7 Y Y Y (98)
1987 4 1.025 5.714 8 Y Y Y Y
1987 9 1.025 6.667 8 Y Y Y (98)
1987 7 1.010 6.667 8 Y Y (78) (98)
1991 6 1.050 5.714 8 Y Y Y Y
1991 5 1.005 5.714 10 Y Y (78) (98)
1987 11 1.025 4.000 13 Y Y (78) (98)
1991 4

For each of the four main sites considered, a “Y” indicates that site was a terminal site in the corresponding figure. A number indicates the index of the terminal site closest to the given
city when the latter is not a terminal site in that figure. Site 78 is Kromna, which is very close to Korinth (82), a distance of 36 in our units. Site 98, the Argive Heraion, is close to Argos
(101), a distance of 37 in our units, roughly 8 km in reality. Athens (70) and Thebes (25) are always identified correctly. The distance scale DRW is terms of the unspecified units used in
the original papers. This DRW is simply the inverse of γRW, the scaling factor of distance in the exponential form of the potential [equation (2)] as it is this γRW value that is quoted in the
original papers.

FIGURE 5 | The number of terminal sites as the distance scale D and
the non-linearity parameter β are varied. The contours are placed at half
integer values as the actual terminal numbers are integers. For exponential
potential [equation (2)] and normal distance set.

(1987). Essentially the only solutions that are relatively stable are
those with three terminals. This is clear from the dendrograms
of Figure 3 [see also equation (A7) in Appendix], where as the
distance scale is raised, clusters start to form at around the mini-
mum separation scale and then grow without any characteristics
scale until they reach three clusters. There is then a long range
of the distance scale where the dendrograms are stable with three
clusters. Normally when clustering data, such a large region of
stability is taken to indicate that this is a “good” clustering, and
the user is confident that these clusters represent a significant
feature in the data. Here, this stability with three clusters reflects
the only clear spatial feature of our sites, the geographical gap
that separates them into the three regions of Boeotia, Attica, and
Isthmus/Argolid.

4.2. Fixed βββ
Both here and in the original articles, changing the non-linearity
parameter β in the range 1.05–1.25 does not seem to change the
qualitative nature of the results for choices of D; the pattern of
terminals is qualitatively the same. So we will fix β, and then look

FIGURE 6 | The number of terminal sites for various parameter values.
The black triangles pointing right are for the normal distance set, while the red
left pointing triangles are for the Delaunay Triangulation-derived distances,
both using the exponential deterrence function. The green stars represent the
normal distance used with the ariadne style deterrence function [equation (3)]
using all nine possible combinations of α= 3.6, 4.0, or 4.4 along with
γ = 0.9, 1.0, or 1.1. These are all for β = 1.05.

at the remaining uncertainty in further detail. We chose to fix
β = 1.05 as a typical value from the earlier studies. Initially we
adopt the normal distance data set and the exponential deterrence
function of equation (2) corresponding to the case where cost
equals distance. The sensitivity to distance scale can be seen clearly
for this fixed beta value in Figures 6 and 7.

We have also repeated the analysis for our Delaunay
Triangulation-based distances. The change of the distances
from normal to Delaunay Triangulation-derived values has only
a small effect. Generally, the latter reproduce the same number of
terminals at a slightly higher distance scale. This is to be expected
as the distances between any two points in the Delaunay-derived
distances are always equal to or greater than the same points in the
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FIGURE 7 | The number of terminal sites for various parameters. The
black circles are for the normal distance set, while the red squares are for the
Delaunay Triangulation-derived distances, both using the exponential
deterrence function. These are generally below the other points, which are for
the normal distance sets used with the ariadne style deterrence function (3)
using all nine possible combinations of α= 3.6, 4.0, or 4.4 along with
γ = 0.9, 1.0, or 1.1 as indicated by the legend. These are all for β = 1.05.

normal distance set. The main feature is that both these two cases
using the exponential deterrence function show the instability
in solutions with respect to small changes in the parameters as
seen from the contour plots in Figure 5. So solutions with a given
number of terminals T, when T is bigger than three, are only
produced for very limited ranges of D, typically less 10 or less,
roughly the nearest neighbor site separation.

As a separate exercise, Figures 6 and 7 illustrate the effects of
changing the deterrence function to the ariadne form [equation
(3)] with the values of its two further calibration parameters α
and γ varied by 20%. We see the same instability as seen in the
contour plots in terms of small changes in parameter D until we
get to large distance scales with six or less terminal sites in their
solution. Again the most stable solution has three terminals. The
most interesting effect is that when we compare the solutions with
the same number ofT terminals and the same normal distance set,
we see that changing the shape of the potential changes the value
of the distance scale D.

This leads to an important conclusion. We should not try to
compare two different theories at the same distance scale directly,
even though in some qualitative way, they correspond to the
mode of transport. The relationship between a parameter of a
theory, here D, and the actual physical properties it corresponds
to, perhaps the typical physical separation of our terminals, is
highly non-trivial and depends on the details of the theory. This
is a simple example of what is called “renormalization” in physics.
What we must do is to pick a physical property, say the number of
terminals, and then find the values of a theoretical parameter such

FIGURE 8 | The number of terminal sites found using exponential
deterrent function with β =1.05. For normal (direct) distances and for
distances based on modified Delaunay Triangulation (DTMedit).

as D where different models give similar physical results. Here,
the exponential potential distances scales can be as little as half
the ariadne deterrence function distance scales for results with the
same number of terminals.

So for the next stage of investigation, we fixβ and find solutions
with a specified number T of terminal sites.

4.3. Eight Terminals
We choose to focus on model outputs with β = 1.05 and eight
terminals, to see to what extent we can replicate Rihll and Wilson
and how to take the analysis further. These are typical values
considered in the original paper (Rihll and Wilson, 1991), with
Figure 6 satisfying the criteria exactly. To do this, we start with
our best representation of the distances between sites as outlines
in Section 2.1. We set β = 1.05 and, initially, adopt the same
exponential form for the deterrence function as shown in equation
(2). We have to find our own distance scale D as the units used in
the original papers are unknown. To do this, we scan through all
possible value for D, other parameters fixed as described, looking
for solutions with 8 terminals. We also repeated this exercise for
the distances derived from our modified Delaunay Triangulation.
The results are shown in Figure 8.

We found three distinct solutions with eight terminals at
D= 80, 85, and 90 for our normal distance matrix and only one
at D= 90 for our modified Delaunay Triangulation (DTMedit)
distance set. The precise sites are shown in Tables 2 and 3.

The results show a lot of consistencywith variations on the scale
of about 10 km. That is, all our examples give Athens (70) as one
of the dominant sites, as Rihll andWilson also found. There is also
at least one terminal site close to Argos (101) and another close to
Korinth (82), but often it is one of their close neighbors and not
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TABLE 2 | The eight terminal sites found for β = 1.05 using an exponential deterrence function, ordered by the strength of the terminal flow.

Data set DTMedit D= 90 Normal D= 90 Normal D= 85 Normal D= 80 RW91 Figure 6

Top site Potniai 26 Kabirion 24 Kabirion 24 Kabirion 24 Thebes 25
2nd Medeon 17 Athens 70 Onchestos 18 Onchestos 18 Akraiphnion 7
3rd Berbati 96 Prosymnia 97 Athens 70 Athens 70 Koroneia 23
4th Koropi 57 Koropi 57 Prosymnia 97 Koropi 57 Athens 70
5th Athens 70 Argive Heraion 98 Koropi 57 Prosymnia 97 Argos 101
6th Korinth 82 Onchestos 18 Argive Heraion 98 Argive Heraion 98 Kalyvia 59
7th Argive Heraion 98 Kromna 78 Kromna 78 Kromna 78 Korinth 82
Weakest terminal Mykalessos 15 Aulis 14 Aulis 14 Aulis 14 Khalkis 40

One using our modified Delaunay Triangulation (DTMedit)-derived distances, one with out direct distances (normal), and the last taken from Figure 6 of Rihll and Wilson (1991). The
full results for the “Normal D= 85” case are shown in Figure 10, while the “RW91 Figure 6” results are shown in Figure 11. The number refers to the index for each site as shown in
Figure 2.

TABLE 3 | The eight terminal sites found for β = 1.05 using an exponential
deterrence function.

DTMedit
D= 90

Normal
D=80, 85, 90

RW91
Figure 6

Region

Mykalessos 15 Aulis 14 Khalkis 40 Near Euboea
Potniai 26 Kabirion 24 Thebes 25 Near Thebes 25
Medeon 17 Onchestos 18 Akraiphnion 7,

Koroneia 23
N. Boeotia

Athens 70 Athens 70 Athens 70 Athens 70
Koropi 57 Koropi 57 Kalyvia 59 S. Attica
Korinth 82 Kromna 78 Korinth 82 Near Korinth 82
Berbati 96, Argive
Heraion 98

Prosymnia 97,
Argive Heraion 98

Argos 101 Near Argos 101

The same results as Table 2 but here organized by location. One using our modified
Delaunay Triangulation (DTMedit)-derived distances, one with out direct distances (nor-
mal), and the last taken from Figure 6 of Rihll and Wilson (1991). The full results for the
“Normal D=85” case are shown in Figure 10, while the “RW91 Figure 6” results are
shown in Figure 11. The number refers to the index for each site as shown in Figure 2.

the sites that became dominant in later times. However, this is on a
relatively small scale of roughly the average site separation, under
10 km. This “error” is emphasized by the fact none of our results
here gives historic Thebes (25) as the dominant site, but rather
we find one of its close neighbors. Looking at Table 2, we see the
order of the sites, as defined by the terminal flow [see equation
(A11) in Section B1 of Appendix], moves around between the
different solutions on top of the actual again emphasizing the level
of robustness of the results.

Perhaps more interestingly, Table 3 shows a clear difference
between the three distance sets, the original (unknown) Rihll and
Wilson distances, our normal direct distances, and the modified
DelaunayTriangulation (DTMedit)-derived distances. Apart from
Athens (70), the dominant site in each region is different in at
least two and mostly in all three cases. So we see that different
choices of distance measures do have an effect. On the other
hand, the changes are small, on this nearest neighbor scale of a
few kilometers. Uncertainty on this scale is to be expected given
the uncertainty of other aspects of the modeling. It is almost
certainly also no worse than the uncertainty coming from our lack
of detailed knowledge of the actual terrain (geographical, political,
and social) of the period.

4.4. Three Terminals
The clustering suggests that three terminal solutions are the only
ones, which are in a noticeably stable region of parameter space.

TABLE 4 | The three terminal sites for normal and Delaunay Triangulation
distance datawith the exponential deterrence functionwhen solutions have
exactly three terminals.

Distance data Distance D Terminal sites

Boeotia Attica Isthmus/
Argolid

Normal 150 24 Kabirion 70 Athens 96 Berbati
Normal 155, 160, 165,

170, 175, 180
31 Eutresis 70 Athens 96 Berbati

Normal 185 31 Eutresis 70 Athens 89 Tenea
Normal 190, 195, 200 36 Plataia 70 Athens 89 Tenea
DTMedit 155, 160, 170, 175 26 Potniai 71 Kallithea 96 Berbati
DTMedit 180, 190, 200 26 Potniai 71 Kallithea 89 Tenea

The number refers to the index for each site as shown in Figure 2.

We are not suggesting that, in this period, there were only three
significant sites. Our purpose is to understand the nature of the
modeling process better when there is less ambiguity. The three
sites found for the exponential deterrence function and the two
different distance sets are given in Table 4. As might be expected
given the noticeable gap visible to the eye in the map of sites
in Figure 2, there is one site for each of the three clear regions:
Boeotia, Attica, and Isthmus/Argolid.

For Boeotia, yet again Thebes (25) itself is never a terminal, but
the terminal site picked is always close to Thebes (25). Unlike the
results for eight terminals, this site is no longer always a nearest
neighbor, e.g., Plataia (36) is about 13 km south of Thebes (25).

For Attica, we find that the Delaunay Triangulation distance
data no longer pick Athens (70) but instead pick an extremely
close neighbor of Athens (70). The difference between the two
data sets reflects the fact that they differ only on longer distance
scales.With three terminals, each site is the center of attraction for
about a third of the sites spread over a much larger distance, so the
differences between the two distance sets will be more important
when we have fewer terminals.

Themost interesting case is the terminal in the Isthmus/Argolid
region, either Berbati (96) or Tenea (89) being chosen. These
sites are somewhere in between the two neighborhoods, that
close to Argos (101) and the second around Korinth (82), which
provided Ishmus/Argolid region terminal sites when there were
eight terminals in total. What this result suggests is that to
a first approximation, the Rihll and Wilson model splits the
space into roughly equal area patches and with one terminal per
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FIGURE 9 | Ranges of uncertainty for the terminal sites. The black dashed ellipses and the arrow indicate the range of possible locations for the eight terminal
solutions of Section 4.3. The red solid ellipses show where we find terminal sites when there are only three in total in any one solution as discussed in Section 4.4.

region, the terminal lying close to the geometric center of its
region.

This has implications for our more general analysis, which we
now test.

4.5. The Cluster-and-Center Method
The typical type of network produced by the Rihll and Wilson
model is shown in Figure 11. It shows a set of connected stars,
zones of influence, where the terminal sites are each the center
of one star, while remaining other sites only have one strong
connection to a nearby terminal site. This effectively defines a
clustering of the sites4 where each cluster contains one termi-
nal site along with all the sites with a strong connection to the
terminal site of the cluster. Looking at the solutions, it appears

4This is called a community of sites in network science, and, more formally, this is a
partition of the set of sites.

that the terminals are often close to the geometric center of the
clusters. This is not surprising as the site closest to the center
is likely to minimize the sum over deterrence function terms in
the denominator of equation (5), which would allow a larger Ii
value in the solutions, and large Ij values characterize the terminal
sites.

This leads us to the conjecture that the Rihll and Wilson model
is clustering close sites and then giving the most central node as
the terminal node. One way to test this is to attempt a different
approach to finding the key sites, which we will refer to as a
“cluster-and-center” method. This is a null phenomenological
approach, relying on geographic data alone, without the trappings
of entropy and Bayesian analysis. First, we use a standard data
clustering method, one which takes distances between data points
(here the sites) as their input. The only parameter of the method
is the number of clusters to be considered. Once we obtain our
clusters of sites, we then find the most central site by looking for
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FIGURE 10 | A solution for the Rihll and Wilson model (5) with an exponential deterrent function, D= 85, β =1.05 using normal (direct) distances. The
darker the color of an edge, the large the flow along that edge. The larger and darker the symbol used for each site, the larger the flow into that site. This produces
eight terminal sites: 14 Aulis, 18 Onchestros, 24 Kabirion, 57 Koropi, 70 Athens, 78 Kromna, 97 Prosymnia, and 98 Argive Heraion. The square sites are the eight
terminal sites shown in Figure 6 of Rihll and Wilson (1991): 7 Akraiphnion, 23 Koroneia, 40 Khalkis, 25 Thebes, 59 Kalyvia, 70 Athens, 82 Korinth, and 101 Argos.

the site, which is closest to the point with coordinates given by
the mean (or the median) of the coordinates of all the sites in the
cluster.

In Table A2 in Appendix, we show the results for eight clusters,
so that we can compare them with the eight terminal results
discussed above. We used k-means clustering and five variations
of hierarchical agglomerative clustering (HAC) [for example, see
Manning et al. (2008), for both methods]. The implementation of
k-means clustering that we use is stochastic so we are just showing
one possible result here.

For three of the four flagship sites, we are using to test results;
this approach gives reasonable results, except when using the
method labeled “HAC single.” The “single” version of hierarchical
agglomerative clustering is well known to be an extreme version
and is often not appropriate. It is clearly an outlier here, andwewill

ignore it from now on.5 For the remaining five methods shown in
Table A2 in Appendix, Argos (101) is always picked as a center.
Korinth (82) is only picked out only once, and either Lekhaion
(80, 3 km north of Korinth) or Kromna (78, 6 km East of Korinth)
are chosen instead. However, these are close neighbors of Korinth
(82), and so we are finding the methods choose the same type of
10 km wide region as we did with the Rihll and Wilson model.
Athens (70) is picked out most often in the northern Attica region
(six times from the ten reasonable methods) with Koropi (57,
12 kmnorth of Athens) orMenidi (50, 15 km south east of Athens)
picked otherwise. However, neither of these alternative sites is

5Further discussion and more detailed results supporting this are given in the
Appendix, Section C.
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FIGURE 11 | A solution for the Rihll and Wilson model (5) with an exponential deterrent function, D= 90, β =1.05 using normal (direct) distances. The
darker the color of an edge, the large the flow along that edge.

particularly close to Athens (70), lying outside the range of results
we found with the Rihll and Wilson model.

The big difference comes in the Boeotian region. Thebes (25) is
never picked out. Further, the two close neighbors in the typical
small region picked out in our analysis using the Rihll and Wilson
model, Potniai (26, 3 km south of Thebes) and Kabirion (24, 7 km
west of Thebes), are only picked out in only four of the ten
reasonable results.

Overall, while there is some correlation between the Rihll and
Wilson model and the cluster-and-Center method outlined in this
section, it is not an overwhelmingly strong or clear relationship.
We need more than geography to understand why some sites
develop to become so important at the expense of their neighbors.
The entropic/Bayesian approach of Rihll and Wilson provides a
useful next step to our understanding of state formation.

5. CONCLUSION

In our earlier paper (Rivers and Evans, 2014), we speculated on the
contingent nature of Thebes in the Rihll andWilsonmodel, taking

their results for granted. In this article, we have shown that Thebes
(or, indeed, any site) can only be understood in the much larger
context of uncertainty in spatial network modeling and how this
is reflected in model outcomes, a context which has implications
for all entropic attempts to understand urbanization and city-state
development.

We have highlighted several sources of uncertainty: site choice,
distances, model choice, parameter choice. In this article, we have
looked at the effect on outcomes of some (but not all) of these
sources of uncertainty. We have tried two ways to calculate dis-
tances, our normal andDelaunayTriangulation-derived distances.
By comparing with the results of the study by Rihll and Wilson
(1987, 1991), we have effectively a third set of distances—those
used by Rihll and Wilson. We have tried also two major ways
to encode the costs of distance in the models: an exponential
deterrence function [equation (2)] and the ariadne deterrence
function [equation (3)].

An important requirement of this work is that to evaluate
uncertainties we must make fair comparisons between results
from different variations of the same model or even completely
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different models. The key problem is that we do not know what
parameter values to use in different models to make this fair
comparison. Even when a parameter is apparently linked to a
physically measurable scale, such as our distance scale parameter
D, the relationship between model value and actual measurable
physical quantity is complicated. Should we relate the distance
scaleD directly to the typical daily walking distance, or should that
be 1.5D or 0.9D? Whatever this relationship is, it will change with
differentmodel parameter values and indeed when using different
models. This is the key principle of “renormalization,” which we
must never assume that a model parameter is simply related to
a physical quantity. The answer we suggest is to compare results
from different models only when they are giving the same output
by some suitable measure.

In terms of the data used in this article, we have arrived at
similar conclusions to the original authors, although we put these
within larger but quantified margins of uncertainty. Our results
show that there are regions about 10 km across, which have dis-
tinct geographical advantages for encouraging urbanization and
which can help explain the different roles of sites in later periods.
We do not predict that Thebes, and to a lesser extent Athens, are
always going to be these sites, unlike the original papers, but we do
agree that sites in their close neighborhood are continually shown
to have this advantage. Thebes is not necessary, but something like
it was always likely.

Of course similar links have been made between geographi-
cal locations and the role of sites in history: Delos in the case
of Davis (1982) and Knossos in the case of Knappett et al.
(2008). However, in the latter case, the modeling also sug-
gested that a pair of candidates, Knossos and Malia, had these
spatial advantages, again compatible with the uncertainties in
modeling.

In terms of the method of Rihll and Wilson itself, our work has
highlighted that, qualitatively at least, it seems to divide up the
sites into regions of roughly equal size, each with a terminal site.
To test the hypothesis that the terminals are close to the geometric
centers of these zones, we have compared this “zone-of-control”
spatial ordering against a null “cluster-and-center” method, which
is based on generic clustering methods using geographical data
alone. Specifically, it takes any clustering method to create the
clusters and then finds their geometric centers to locate the dom-
inant site for each cluster. This enables us to come up put “error
bars” on our results, estimates of the range of reasonable results as
illustrated in Figure 9.

For the clustering methods we tried here, we found there
is some correlation between the Rihll and Wilson model and
the cluster-and-Center method. However, it is not an over-
whelmingly strong or clear relationship. It seems that we need
more than geography alone, a need arguably satisfied in part
by entropic/Bayesian analysis. It could be argued that the popu-
lar and generic data clustering methods we used here, k-means
and hierarchical agglomerative clustering, are more effective on
higher dimensional data than our two-dimensional world surface.

However, even if it had been in better agreement with our outputs,
which we do not think is likely, part of the rationale for using
the Rihll and Wilson model is the interpretation it brings. The
Rihll and Wilson model comes with a powerful epistemic inter-
pretation in terms of the entropy of microstates and a natural
interpretation in terms of flows, inputs, outputs, and costs. We
learn from the nature of the calibration. A regular data clustering
method such as k-means brings no intrinsic interpretation to the
table, and it merely hopes to provide reasonable clusterings in a
calibration-free way.

The archeological context has been the Argos–Korinth–
Athens–Thebes region of Greece in the Late Geometric era. This
context was chosen so that we can illustrate general methodolog-
ical principles with a practical archeological example, with the
added benefit that it allows us to make direct contact with the
classic work of Rihll and Wilson (1987, 1991). The last decade
has seen a rise in the use of such modeling techniques on settle-
ment patterns in a wide range of times and other places: Crete
in the second millennium BC (Bevan and Wilson, 2013) or the
Middle Bronze Age (Evans et al., 2006; Knappett et al., 2008,
2011; Paliou and Bevan, 2016), Iron Age NE Syria (Davies et al.,
2014), early second millennium BC Central Anatolia (Palmisano
and Altaweel, 2015), late first Millennium Latenian urbaniza-
tion (Filet, 2017), early Japan (Mizoguchi, 2009), the Maya low-
lands (Ducke and Kroefges, 2008), to give just a few examples.
Similar methods can be used when modeling of other types of
spatial organization, such as lithic assemblages (Wilson, 2007)
to name just one. The range of applications of such modeling
now appearing suggests that this approach is mature enough that
we should look to include uncertainty as an intrinsic part of
such work. Our view echoes that of other authors who tackle
other aspects of the uncertainty problem (e.g., Bevan and Wilson,
2013; Davies et al., 2014; Paliou and Bevan, 2016). Using these
emerging approaches to account for uncertainty will only enhance
the contribution modeling can make to our overall picture of
the past.
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APPENDIX

A. Index of Sites
A list of sites giving their index and name is in Table A1 in
Appendix. The positions are found from the locations of a digi-
tized version of Figure 1 in the study by Rihll and Wilson (1987)
with site coordinates given in our units. For instance, in our “nor-
mal” distance set, which uses the direct distance between sites, we
have that site 1, Laryma, and site 109, Sikyon are separated by a
distance is

√
(469.5 − 190.5)2 + (169.1 − 536.2)2 ≈ 461 U. The

actual straight line distance is about 82 km, and so the distance
scale used in this paper is roughly 6U for 1 km.

B. Technical Details of the Rihll and Wilson
Gravity Model
The model used in the work of Rihll and Wilson (1987, 1991) was
originally devised to determine the best position of retail centers
(Huff, 1964; Lakshmanan and Hansen, 1965; Harris and Wilson,
1978) [see p. 11 of Rihll and Wilson (1987) for further citations].

Consider a network ofN sites labeled i= 1, 2, . . .,N. Themodel
produces the link strengths Fij, which describe the flows from sites
i to sites j. As a result, the total outflow from the site i isOi =

∑
j Fij

and the total incoming flow to site j ps Ij =
∑

k Fkj. Here, we will
outline the derivation of the model using an entropy viewpoint
pioneered by Wilson in the context of generic spatial modeling
(Wilson, 1967). The key assumption is that if all other things are
equal, then every possible exchange counted by the flows is equally
likely. Put another way, if there is no other information about these
exchanges, then the best we can do is to assume all exchanges
are equally likely. The maximum entropy framework provides a
rigorous mathematical basis for this simple idea.

Of course in reality, there are strong constraints and different
models add in different types of extra information in an attempt
to provide amore realistic description of the individual exchanges.
Equivalently, they can be understood as the most likely con-
figurations of a microcanonical ensemble subject to these same
constraints.

For the shoppingmodel (Huff, 1964; Lakshmanan andHansen,
1965;Harris andWilson, 1978) used by Rihll andWilson, the flows
defined by the model maximize the entropy S, more conveniently
understood as minimizing the HamiltonianH =− S, where, after
some rewriting (Harris and Wilson, 1978), Equations (30)–(33).

H =
∑
i,j

Fij(ln(Fij) − 1) −
∑
i

αi

Oi −
∑
j

Fij


− β

C −
∑
i,j

(Fijcij)

+ β

X −
∑
j

Ij(ln Ij − 1)

. (A1)

The solutions are the most likely pattern for exchanges given
the constraints [given in the square brackets in equation (A1)]
imposed in the model. For simplicity, we are assuming that every
site i has the same number of potential origins or destinations for
a trip. The first term reflects the assumption that the probability
that an exchange occurs on any given edge is independent of the

edge if all other things are equal. The second term, with coefficient
α imposes a constraint that the total output of site i, the total
flow leaving site i, is equal to a parameter Oi, which we must
specify. The third term supposes that the cost of each exchange
from i to j is cij and that we demand that the total cost is C,
another parameter wemust satisfy. This “cost” is not necessarily in
terms of money. Rather it is generally expressed in terms of some
characteristic fixed by the geography of the site, typically some
measure of the distance between two sites. All of the first three
terms are frequently seen in this type of entropy approach. It is the
last term, which is distinctive and is a key feature of the model of
Rihll and Wilson. It involves the total incoming flow, Ij =

∑
k Fkj,

but it is not a simple constraint on the total input to each site.
Rather, it is a constraint on the entropy of site outflows that,

in the absence of this (and other constraints), would be uniform.
To understand what type of effect this last term is giving, and
indeed to get a better understanding of what all the terms lead
to, it is easier to quote the solution for the pattern of flows,
which maximizes the entropy, which can be expressed in a simple
algebraic form as

Fij = AiOiIβj fij , A−1
i =

∑
k

Iβk fik Ij =
∑
i

fij. (A2)

The parameters αi have been fixed by the requirement that the
outputs for each site are fixed to be are Oi from, which the nor-
malization factors Ai are determined in terms of other quantities
in the theory. The total cost C and the cost of each exchange cij are
equivalent to specifying what is known as the deterrence function
fij,

fij = exp(−cij/D), (A3)

where D is a distance scale against which “costs” are measured.
More generally, we write

fij = f(dij/D), (A4)

where f (x) relates costs to the separation variables dij between sites
i and j. For instance, if the costs are just the distances, cij = dij, then
we arrive at a simple exponential form

fij = exp(−dij/D). (A5)

We stress that the outflows Oi are input parameters for the
Rihll and Wilson model [equation (A2)], whereas the inflows
Ij =

∑
i Fij are to be determined from equation (A2) as outputs

from the model. The inflows are interpreted as the attractiveness
or importance of a site and as used to determine the dominant
city-state sites.

In this case, varying site size can be accommodated. The obvi-
ous extension to include site size [that has its counterpart in the
work of Alonso (1978)] is to take

H =
∑
(i,j)

Fij
[
ln
(

Fij
SiSj

)]
−
∑
i

αi

Oi −
∑
j

Fij


− β

C −
∑
i,j

(Fijcij)

− β

X −
∑
j

Ij
(
ln
(
Ij
Sj

)
− 1
).
(A6)
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TABLE A1 | Index of 109 sites used here.

# Name X Y # Name X Y # Name X Y

1 Larymna 469.5 169.1 37 Hysiai 511.5 387.2 73 Eleusis 616.9 492.6
2 Ay.Ionnis 435.8 200.4 38 Erythrai 553.5 374.1 74 Akraia 258.0 502.5
3 Meg.Katavothra 459.7 207.0 39 Skolos 571.6 353.5 75 Perakhora 314.0 508.2
4 Ay.Marina 426.7 220.2 40 Khalkis 645.7 234.2 76 Loutraki 324.7 535.4
5 Kopai 404.5 217.7 41 Lefkandi 693.4 258.0 77 Krommyon 406.2 567.5
6 Olmous 380.7 232.5 42 Eretria 746.1 269.5 78 Kromna 309.9 582.3
7 Akraiphnion 441.6 235.8 43 Pagai 419.3 477.8 79 Isthmia 334.6 574.9
8 Aspledon 338.7 203.7 44 Tripodiscos 466.3 521.4 80 Lekhaion 277.8 566.7
9 Orchomenos 295.1 218.5 45 Megara 509.9 519.8 81 Ay.Gerasimos 261.3 564.2
10 Lebedea 255.6 244.0 46 Nisaia 522.2 535.4 82 Korinth 273.7 584.8
11 Anthedon 566.7 214.4 47 Oropos 752.7 316.5 83 Kenchraia 337.0 588.1
12 Schoinos 477.8 251.4 48 Marathon 852.3 440.7 84 Solygeia 325.5 615.2
13 Hyria? 625.9 239.1 49 Kephisia 772.4 470.4 85 Athikia 300.8 640.7
14 Aulis 636.6 254.7 50 Menidi 725.5 476.1 86 Philious 135.4 624.3
15 Mykalessos 602.9 258.8 51 Loissia 697.5 463.8 87 Nemea 179.0 639.9
16 Glisas 533.7 277.8 52 Koukouvaones 738.7 467.9 88 Kleonai 216.9 634.2
17 Medeon 411.1 279.4 53 Draphi 836.6 501.6 89 Tenea 259.7 651.4
18 Onchestos 396.3 296.7 54 Spata 801.2 544.4 90 Zygouries 231.7 649.0
19 Haliartos 373.3 287.7 55 Brauron 856.4 566.7 91 Sch.Melissi 142.8 719.8
20 Askra 365.8 323.9 56 Markopoulo 841.6 574.1 92 Orneai 100.0 664.6
21 Itonion 288.5 287.7 57 Koropi 800.4 579.8 93 Hysiai 110.7 830.9
22 Alalkomenai 309.9 286.0 58 Merenda 821.8 593.0 94 Kenkhraia 131.3 808.6
23 Koroneia 289.3 300.0 59 Kalyvia 819.3 622.6 95 Mykenai 207.0 688.5
24 Kabirion 455.6 319.8 60 Keratea 867.1 639.9 96 Berbati 235.0 697.5
25 Thebes 487.7 319.8 61 Kaki_Thalassa 900.0 658.0 97 Prosymnia 211.9 707.4
26 Potniai 489.3 337.9 62 Thorikos 885.2 681.1 98 Argive_Heraion 218.5 717.3
27 Eleon 577.4 300.8 63 Anavysos 835.0 692.6 99 Dendra 251.4 740.3
28 Dramesi 656.4 281.9 64 Vouliagmeni 742.0 639.1 100 Pronaia 233.3 788.1
29 Tanagra 640.7 323.9 65 Vari 763.4 628.4 101 Argos 193.0 744.4
30 Thespiai 405.3 349.4 66 Aliki 728.8 607.0 102 Kephalari 160.9 766.7
31 Eutresis 434.2 351.9 67 Trachones 719.8 574.9 103 Magoula 177.4 774.1
32 Khorsia 263.0 370.8 68 Phaleron 695.9 565.0 104 Tiryns 235.0 774.9
33 Thisbe 300.8 363.4 69 Kokkinia 658.0 542.0 105 Prof.Elias 251.4 768.3
34 Siphai 351.9 405.3 70 Athens 716.5 532.1 106 Nauplia 229.2 794.7
35 Kreusis 378.2 393.8 71 Kallithea 707.4 542.0 107 Lerna 186.4 807.0
36 Plataia 466.3 388.9 72 Aigelaos 673.7 509.9 108 Asine 267.9 817.7

109 Sikyon 190.5 536.2

The coordinates are based on the digitization of Figure 1 of Rihll and Wilson (1987). The distances in this article are based on these coordinates. For more details, see Evans (2016a).

Extremal solutions now take the form

Fij = SiS1−β
j e−αi Iβj fij. (A7)

Consistency then requires that

Fij = AiOiS1−β
i Iβj fij , A−1

i =
∑
k

S1−β
j Iβk fik. (A8)

We said that, in the absence of further evidence, we had taken all
the Si to be identical. We note that explicit dependence on site size
is very weak, going as S1−β

i , where 1−β ≈ 0.05, with negligible
effect. However, there is implicit dependence in the way the given
outputs depend on site size (e.g., Oi ∝ Si).

B.1. Non-Linearity in the Rihll and Wilson Model
The factor of Iβj in the Rihll and Wilson model is the key differ-
ence from most other gravity models. This term introduces non-
linear feedback based on the inputs through the self-consistent
normalization factors.

To understand how this works, we will consider a simple way
to find the solution to equation (A2) for a given set of parameters.

The idea is that if we are given a set of input flows at some time
t, say Ij(t), then we specify the next round of values at iteration
number (t+ 1), Ij(t+ 1). To show this iterative process, we first
rewrite the solution [equation (A2)] in terms of just the total
inputs Ij for each site along with the other fixed parameters as [see
Equation 23 of Rihll and Wilson (1987) and appendix of Rihll and
Wilson (1991)]

Ij =

(∑
i

Oifij∑
k Iβk fik

)
Iβj . (A9)

Note that this solution shows explicitly that the model can be
derived from the N different Ij values alone. This is a non-linear
equation, which can be solved using standard methods.

In practice, in this article, we used a simple approach where at
each step of the numerical process we have our current best guess
for the input values Ij(t). The next set of values, Ij(t+ 1), is then
defined to be

Ij(t + 1) =

(∑
i

Oifij∑
k Iβk fik

)
Iβj (t). (A10)
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We start the process using the site output values as initial
values I(t= 0)=Oi. We iterate many times until the changes in
the Ij(t) values are small, as defined by us. For more details on
the convergence and uniqueness of this approach, see Harris and
Wilson (1978).

This iterative form [equation (A10)] is also useful as it helps us
understand the role of the distinctive non-linear factors Iβj found
in the Rihll and Wilson model. If one site, say T, has a large input
flow, so IT(t) ≫ Ij(t) (j ̸= T), it is very “attractive” in the language
of Rihll andWilson. The normalization factor, the denominator in
equation (A10), will then be dominated by the one large factor of
IT(t). This will pull down all values of Ij (t+ 1) except for IT(t+ 1),
which is the only one boosted by a large factor in the numerator,
the (IT(t))β . This creates a feedback loop as at each stage the IT
entry gets larger and the others smaller, reinforcing the process.
The feedback is enhanced the larger β is. The logical end is to have
most Ij becoming zero, so that all the input goes to one site, IT.

In practice, the solutions are a little more complicated. If we
assume that the deterrence function becomes negligible for sites
much more than distance scale D apart, then a site with a grow-
ing attractiveness IT will only suppress the attractiveness of sites
within a radius of D or so. Basically we should expect to see the
system split up into patches of radius D, each with one dominant
site. This is roughly what is normally seen. We have a pattern
of stars where all the flow from most sites, Oi, is directed to
just one site, the terminal site in their neighborhood. The formal
definition of a terminal site used byRihll andWilson is a particular
implementation of a scheme of the study by Nystuen and Dacey
(1961), and we will follow suit. We define terminal sites T ∈ T ⊂
V to be sites, where the total flow into a site is greater than the
largest single flow out of that site along any edge

T ∈ T iff IT > FTj ∀j. (A11)

So for a terminal site, more flow comes in than leaves the site along
any one edge. In practice, for many of the parameter values found
here, we found that terminal sites were the only ones with any
significant flows into their sites so the in-strength, Ii, is usually
sufficient to detect these important sites.

C. Cluster-and-Center Methods and
Results
The Cluster-and-Center algorithm first takes the distances
between the sites and uses these to produce a partition of the sites
using a standard data clusteringmethod. Let us suppose that these
clusters are {Pc} where every site in is one and only one cluster,
i.e.,

∪
c Pc = V , and Pc ∩ Pd = ∅ if c ̸= d. We then define the

center of each cluster c to be at (xc, yc). We will define the center
in two ways, using the mean

xc =
1

|Pc|
∑
i∈Pc

xi , yc =
1

|Pc|
∑
i∈Pc

yi, (A12)

or the median of the coordinates (xi, yi) of sites i in the cluster c,
i ∈ Pc. Finally, we define the central site to be the site closest to
the central point.

The six clustering methods we have used are k-means and
five variations of hierarchical agglomerative clustering (HAC); for

TABLE A2 | Results of partitioning the data into eight clusters and then
finding the geometric center.

Method No. in
cluster

Center by median Center by median

k-means 14 7 Akraiphnion 7 Akraiphnion
k-means 10 22 Alalkomenai 21 Itonion
k-means 12 28 Dramesi 14 Aulis
k-means 11 36 Plataia 36 Plataia
k-means 13 59 Kalyvia 59 Kalyvia
k-means 13 70 Athens 50 Menidi
k-means 16 82 Korinth 80 Lekhaion
k-means 20 101 Argos 101 Argos
HAC average 22 19 Haliartos 19 Haliartos
HAC average 11 26 Potniai 26 Potniai
HAC average 10 28 Dramesi 14 Aulis
HAC average 5 44 Tripodiscos 44 Tripodiscos
HAC average 1 48 Marathon 48 Marathon
HAC average 25 57 Koropi 57 Koropi
HAC average 12 80 Lekhaion 78 Kromna
HAC average 23 101 Argos 101 Argos
HAC complete 10 23 Koroneia 23 Koroneia
HAC complete 23 24 Kabirion 24 Kabirion
HAC complete 10 28 Dramesi 14 Aulis
HAC complete 5 44 Tripodiscos 44 Tripodiscos
HAC complete 9 60 Keratea 59 Kalyvia
HAC complete 17 70 Athens 70 Athens
HAC complete 12 80 Lekhaion 78 Kromna
HAC complete 23 101 Argos 101 Argos
HAC median 27 16 Glisas 12 Schoinos
HAC median 14 22 Alalkomenai 22 Alalkomenai
HAC median 2 42 Eretria 42 Eretria
HAC median 5 44 Tripodiscos 44 Tripodiscos
HAC median 13 59 Kalyvia 59 Kalyvia
HAC median 13 70 Athens 50 Menidi
HAC median 12 80 Lekhaion 78 Kromna
HAC median 23 101 Argos 101 Argos
HAC ward 19 17 Medeon 17 Medeon
HAC ward 10 23 Koroneia 23 Koroneia
HAC ward 14 28 Dramesi 14 Aulis
HAC ward 5 44 Tripodiscos 44 Tripodiscos
HAC ward 12 59 Kalyvia 59 Kalyvia
HAC ward 14 70 Athens 70 Athens
HAC ward 12 80 Lekhaion 78 Kromna
HAC ward 23 101 Argos 101 Argos
HAC single 41 12 Schoinos 12 Schoinos
HAC single 2 32 Khorsia 32 Khorsia
HAC single 1 43 Pagai 43 Pagai
HAC single 3 45 Megara 45 Megara
HAC single 26 57 Koropi 57 Koropi
HAC single 1 77 Krommyon 77 Krommyon
HAC single 34 96 Berbati 96 Berbati
HAC single 1 109 Sikyon 109 Sikyon

The normal distance data set was use to define the distances between sites and then
standard clustering methods were applied: k-means or various versions of hierarchical
agglomerative clustering (HAC). Once these clusters were defined, the geometric center
of each cluster was found by finding the site closest to the mean and closest to the median
of the coordinates of the sites in each cluster. The results for one cluster are shown on
each line.

example, seeManning et al. (2008) for bothmethods. Hierarchical
agglomerative clustering methods work by starting with each site
in a group by itself. A distance scale D is slowly increased, and two
groups are joined together as soon as the distance between these
two groups equals the scale D. The different types of hierarchical
agglomerative clustering differ in the way they define the distance
between two groups of sites. For instance, the single (orminimum)
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hierarchical agglomerative clustering method joins two groups if
just one pair of sites, one from each group, is separated byD, while
the complete (or maximum) method only joins groups when all
pairs of sites (one from each group) are separated by at least D.
The average hierarchical agglomerative clustering method joins
two groups together if the dendrogram scale D is equal to the
average distance between all possible pairs of sites, one site from
each of the two groups.

These central sites of the cluster-and-center algorithm can then
be compared to terminal sites [equation (A11)] defined in the
Rihll and Wilson model. More generally, the partitions {Pc} of
the cluster-and-center algorithm can be compared to clusters {Cc}
formed in the Rihll andWilsonmodel, which we define as follows.
Let T ∈ T be a terminal site as defined by equation (A11). Then
we define a cluster CT for each terminal site T, where

u ∈ CT iff FuT = max(Fuv ∀ v ∈ V). (A13)

Provided the largest flow leaving a non-terminal site is unique
for each site, then this defines a partition, that is each site is in
one and only one cluster, i.e.,

∪
T∈T CT = V , and CS ∩ CT = if

S ̸= T.
In Table A2 in Appendix, we show the results of several

attempts to cluster the data using standard methods followed
by finding the geometric center of each cluster. We note that
the clusters are much more uneven in size for the hierarchical
agglomerative clustering methods with the single method being
particularly poor. That is one reason we do not consider it seri-
ously in the discussions in themain text, but in any case, this single
method is known to produce long thin clusters that do not seem
appropriate for this context.

FIGURE A1 | The approximate locations of the 109 sites used as the starting point for this study, derived from Figure 1 of Rihll and Wilson (1987). The
index of site numbers is given in Table A1 in Appendix. Note that site 64, Vouliagmeni, was not labeled in the original figure, see Evans (2016a) for more details. The
edges are those used to derive the second set of distances (denoted DTMedit) and are a subset of the edges of a Delaunay Triangulation.
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FIGURE A2 | Hierarchical agglomerative clustering for distances based on the edited Delaunay Triangulation network (DTMedit) using average
criterion for agglomeration.
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