
TECHNOLOGY REPORT
published: 26 November 2018
doi: 10.3389/fdigh.2018.00027

Frontiers in Digital Humanities | www.frontiersin.org 1 November 2018 | Volume 5 | Article 27

Edited by:

Mark Brian Sandler,

Queen Mary University of London,

United Kingdom

Reviewed by:

Charalampos Saitis,

Technische Universität Berlin,

Germany

Franziska Schroeder,

Queen’s University Belfast, United

Kingdom

*Correspondence:

Chris Chafe

cc@ccrma.stanford.edu

Specialty section:

This article was submitted to

Digital Musicology,

a section of the journal

Frontiers in Digital Humanities

Received: 02 March 2018

Accepted: 08 November 2018

Published: 26 November 2018

Citation:

Chafe C (2018) I am Streaming in a

Room. Front. Digit. Humanit. 5:27.

doi: 10.3389/fdigh.2018.00027

I am Streaming in a Room
Chris Chafe*

Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, United States

Internet Acoustics is the study of sound traveling through the Internet, treating it as

an acoustical medium just like air or water. Real-time streaming of sound, something

commonplace nowadays, can be exploited for its own “physics” of propagation. In a

digitally-connected telecommunication world, rooms of the kind which will be described

enclose remotely collaborating musicians in their own reverberated sound. The ambience

which results is the product of an acoustical loop which creates room-like resonances

created between internet endpoints which recirculate sound echoes on the paths

between them. These are synthesized acoustical spaces engineered to resemble actual

rooms and distinct from other kinds of online rooms where “room” is used metaphorically

for gatherings of users participating in teleconference or chat applications. The present

article describes room-like internet reverberation for local area and wide area networking,

respectively named LAIR and WAIR. Aspects of the medium, algorithms used and initial

musical experiments are detailed. To support these topics, the article also presents a

theory of operation for jacktrip, the low-latency internet streaming software which was

modified for the project.

Keywords: network music performance, internet acoustics, jacktrip, internet reverberation, Schroeder-style

reverberation, freeverb, echo construction

1. INTRODUCTION

Internet reverberation requires at least two hosts to create an acoustical loop. Closer endpoints—in
terms of network audio round-trip time (RTT)—are associated with the sound of smaller-sized
rooms. Auditorium-sized reverberation results from longer distances, for example, between
continents.

Multiple rooms may coexist and opening acoustical portals between them is a matter of
interconnecting the audio streams of different rooms. Each new participating endpoint joins the
acoustical space by becoming a node in an interconnected mesh. All sounds entering the mesh are
reverberated by the mesh.

Echoes often plague voice and music telecommunications systems. Squelching annoying
feedback with echo cancellation algorithms becomes necessary when delays are long enough
and echoes are loud enough to be perceptible. It’s the same with real rooms. Depending on its
intended application, a listening space may need acoustical treatment to dampen wall reflections
or conversely loudspeakers may be used to enhance the direct sound of the sound being listened
to. Reverberation which is completely appropriate for a choir singing in a cathedral may obscure
intelligibility of someone speaking to the audience. Management and manipulation of room
resonances is an age-old tool in creation of good sounding spaces for music and speech. Passive
modifications use curtains, acoustical absorbers and diffusers and are generally subtractive. Active
electronic systems use real-time digital signal processing (DSP) and are generally additive.

The technique presented here, a form of echo construction, does the opposite of echo
cancellation. Software is used to create “internet walls” which are additive in nature. To see how

https://www.frontiersin.org/journals/digital-humanities
https://www.frontiersin.org/journals/digital-humanities#editorial-board
https://www.frontiersin.org/journals/digital-humanities#editorial-board
https://www.frontiersin.org/journals/digital-humanities#editorial-board
https://www.frontiersin.org/journals/digital-humanities#editorial-board
https://doi.org/10.3389/fdigh.2018.00027
http://crossmark.crossref.org/dialog/?doi=10.3389/fdigh.2018.00027&domain=pdf&date_stamp=2018-11-26
https://www.frontiersin.org/journals/digital-humanities
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-humanities#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cc@ccrma.stanford.edu
https://doi.org/10.3389/fdigh.2018.00027
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00027/full
http://loop.frontiersin.org/people/495844/overview

Chafe I am Streaming in a Room

it works, let’s think of sound propagating in any medium. A
sound source emits a sound (in air, it’s a pressure disturbance
and on the internet, it’s a stream of packets of non-silent audio
data) which for illustration’s sake we can simplify by imagining as
an impulse like a balloon pop. The balloon’s impulsive pressure
disturbance expands outward as an increasing sphere until it’s
energy is entirely dissipated. But what if it hits a wall along the
way? The impulse bounces off the wall and creates an impulse
reflection. For simplicity, we’ll observe the reflection from the
point of view of the source (balloon) position. Out to the wall
and back again at the medium’s speed of sound. A second wall
inserted right behind the source position will create a train of
echoes. Any sound emitted will create a diminishing series of
copies of itself—a bounce of a bounce of a bounce, until fully
dissipated.

The DSP version of this is the filtered delay loop (FDL) which
is an infinite impulse response (IIR) “unit reverberator” first
mentioned by Moorer (1979). It’s a comb filter modified to have
a low-pass filter in its feedback loop with which “The purpose
of placing a filter in the loop is to simulate the effect of the
attenuation of the higher frequencies by the air.” As shown in
Figure 1, it’s a feedback circuit in which the time taken around the
loop determines the base frequency of the repetition. Inserting
the attenuating low-pass filter causes the recurring train of echoes
to die out and completes the approximation of what happens in
air between two parallel walls.

Internet echo construction uses FDLs. Taking the place of two
walls, the two hosts of a streaming connection act as reflectors
which transmit back what they receive. The FDL low-pass filter is
inserted somewhere in the acoustic loop. For example, this could
be at one or even both of the hosts’ loopback algorithms. Sounds
can be emitted into the loop from either host, as if from either
side of a room.

Real rooms have complex geometries with many walls,
reflection paths and resonances. We’ll see how internet
reverberation can be made similarly complex by cloning acoustic
loops to create banks of them and adjusting the banks to
approach the necessary density and variety of resonances.

The final section of this article is devoted to a theory of
operation which explains and differentiates in detail the three
modes of the peer-to-peer streaming system “jacktrip” (Cáceres
and Chafe, 2010a). These are its standard two-way connection

FIGURE 1 | A filtered delay loop (FDL) which is an infinite impulse response

(IIR) “unit reverberator.” The output signal Y is the result of mixing the input

signal X with feedback from T(z) which has been delayed by m samples and

multiplied by gain g.

mode, its hub and spoke mode, and lastly, its mode supporting
internet reverberation over wide area networking.

2. BACKGROUND

Early study of internet acoustics at CCRMA required the
development of a system for low-latency, uncompressed audio
streaming over IP. That software evolved into jacktrip and is
shared today as an open-source application widely used for
jamming, rehearsing and concerts. Similar systems are discussed
in a comprehensive review of network music performance
technologies in Rottondi et al. (2016). The present project revisits
jacktrip’s original use as part of an experiment to treat acoustical
loops in the internet as sound-producing objects. This idea relates
to certain methods for physical modeling sound synthesis the
earliest of which is the Karplus-Strong plucked string, an efficient
computer algorithm consisting of delay lines and loop filters
(Karplus and Strong, 1983). The KS string became ubiquitous
in computer music with memorable compositions (for example,
David Jaffe’s Silicon Valley Breakdown) and numerous extensions
to the technique (Jaffe and Smith, 1983; Sullivan, 1990; Smith,
1993).

A KS-like algorithm entered the realm of internet acoustics
through experimentation between two hosts (Chafe et al., 2002)
and by 2003 had produced a distributed algorithm for “plucking
the internet.” The algorithm’s delay memory was no longer local

FIGURE 2 | Depiction of a single full-duplex (SFD) jacktrip connection

streaming stereo uncompressed audio bi-directionally between two network

hosts. Software on both sides packetizes incoming local audio and sends it to

the cloud with minimal delay, likewise playing back audio from received

packets with minimal delay.

FIGURE 3 | KS-like algorithm in which audio recirculates between two hosts.

The SFD software, Figure 2, has been modified on both sides to include audio

loopback and a loop filter (not shown). Aka “SoundWIRE” for Sound Waves on

the Internet from Real-time Echoes, this circuit can be excited or “plucked” to

sound like a guitar string.

Frontiers in Digital Humanities | www.frontiersin.org 2 November 2018 | Volume 5 | Article 27

https://ccrma.stanford.edu/groups/soundwire/software/jacktrip/
https://www.frontiersin.org/journals/digital-humanities
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-humanities#articles

Chafe I am Streaming in a Room

FIGURE 4 | NPAPW 2016 demonstration of WAIR system. The red, green and blue lines indicate individual freeverb “rooms” which are cross-patched at the summing

site in California. Musicians in New York, Michigan and Florida could hear each other in a conjoined acoustical space.

computer memory (as in the original KS string) but the time of
flight across an internet path. Pitch frequency of a recirculating
“pluck” excitation (which could be had by simply tapping a
microphone on either side) was a direct result of the path’s RTT,
Figure 3. And since the pitch fluctuates as RTT varies, it was
conceived of as a very sensitive means for sonifying network
quality of service (QoS) (Chafe and Leistikow, 2001).

Vibrating guitar strings and echoing parallel walls can both
be modeled with FDLs. For a KS-like guitar string, the loop
filter is tuned to be “ringy” (high Q, with strong resonance). The
parallel wall case is the opposite, typically a very damped (low
Q, weakly resonant) loop. Once an internet implementation of
the guitar string had proved that the requisite time delay could
be obtained using the network, it was natural to contemplate
implementation of internet reverberators using well-known,
FDL-based reverberation techniques (Chafe, 2003). Banks of
FDLs would mimic the complexity of room geometry. Because
each FDL element requires a separate channel, the idea would
capitalize on jacktrip’s support of large numbers of synchronized,
parallel audio channels (extreme tests of streaming capacity have
hit hundreds of channels).

Internet reverberation was demonstrated a decade after
having been described in concept. The period saw changes
to jacktrip’s architecture, adoption of an updated reverberator
algorithm, “freeverb” (Smith, 2010), and incorporation of a
new DSP programming language (Faust1) for coding freeverb
and its FDL banks. In 2013, a LAIR system was implemented

1http://faust.grame.fr/

consisting of three simultaneous freeverb “rooms” running on
Stanford’s campus-wide network. Participants at three endpoints
were interconnected through LAIR portals (Chafe and Granzow,
2013). In 2016, the system was improved for wide area
networking and demonstrated with four endpoints in a nation-
wide WAIR mesh.

LAIR and WAIR are similar in many ways and from here on
the remainder of the article will present details pertaining to the
more recent WAIR system.

3. WAIR

3.1. N-way Mesh of Reverberators
In the four-endpoint WAIR shown in Figure 4, a central server
is in California and three clients are located at points along
the East Coast. Each of the clients sets up its own two-way
freeverb circuit with the central server. The server runs in
jacktrip’s multiclient (audio hub) mode (Cáceres and Chafe,
2010b), a persistent process which listens for incoming client
connections. Figure 5 shows mode’s hub and spoke design.
Clients (or “spokes”) connect at will and on connection begin
bi-directional streaming with the server. The hub’s automatic
system for management of connections was designed as an
improvement over manually maintaining many SFDs from a
central point.

The central hub’s own audio source can be distributed to all
clients and the clients’ streams can remain independent from
one another. In many situations, however, it’s desirable
that audio streams be cross-patched to allow clients to

Frontiers in Digital Humanities | www.frontiersin.org 3 November 2018 | Volume 5 | Article 27

http://faust.grame.fr/
https://www.frontiersin.org/journals/digital-humanities
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-humanities#articles

Chafe I am Streaming in a Room

hear one another. Cross-patching happens at the server
either manually, with a jack patching application (for
example, qjackctl2), or programmatically through APIs
offered by the host’s audio service, such as the jack audio
connection kit.3

WAIR does the latter by incorporating a portal connection
procedure capable of rewiring itself when it senses clients
connecting or disconnecting. The idea is analogous to opening
doors between newly-created rooms. When a new client’s
freeverb is instantiated, the portal algorithm makes the signal
connections required for sharing audio between the new freeverb
and all existing freeverbs. The result is an audio mesh made of
dynamic nodes where each node has its own audio perspective
on the total scene. The impression for a given WAIR participant
is that they’re in a room of their own and from that room they can
hear slightly more distant sounds in all other currently running
rooms. Tuning the cross-talk between freeverbs is sensitive. The
system will go into self-feedback if the portal gain parameter is
too great.

3.2. Freeverb in Jacktrip—Implementing an
Internet Reverberator
An implementation of the freeverb reverberator is included as
a library function in distributions of the Faust DSP language.
Freeverb is a high-quality example from a class of reverberators

FIGURE 5 | jacktrip’s multiclient (audio hub) mode. The main server (on the

left) spawns multiple dedicated servers for an arbitrary number of clients (on

the right). Audio input and output cross-patching happens at the main server, if

needed.

FIGURE 6 | Freeverb’s 2 × 8 FDLs and 2 × 8 All-Pass delays.

2https://qjackctl.sourceforge.io/
3http://www.jackaudio.org/

with elements and structures proposed by Schroeder (1962)
and further described in Moorer (1979). Freeverb’s well-known
antecedents from the 80’s are exemplified by JCRev and NRev4.
Across this class of reverberators, there are differences in
quality due to the number of elements and channels used,
their sequential arrangement and the exact parameter tunings
applied.

Freeverb’s parameters offer control of damping, room size
and dry/wet mix. Freeverb’s 16 FDLs, Figure 6, have delay
lengths tuned to time delays ranging from approximately 25ms
to 37ms. Like all Schroeder-style reverberators, coincident
fundamental resonances (and their harmonics) are avoided by
ensuring that delay times are mutually prime. For use in the
WAIR system, freeverb has been modified so that its bank of
FDL elements are the product of looping audio between two
network endpoints. The substitution of network delay starts with
subtracting 1100 samples from the original delay lengths (an
equivalent of 23ms of round trip delay). In cases where more
delay is desired than the network path provides, an additional
amount can be added back in at the client host (by command line
specification).

Freeverb is shown in Figure 7 with two DSP blocks,
recirculating FDLs and inline APs. For the WAIR
implementation these blocks are installed in the client using
jacktrip’s DSP plug-in architecture (Cáceres and Chafe, 2010a).
“ProcessPlugin” modules are programmed in Faust. The
language is especially well-suited for generating complex
multichannel circuits which can be emitted as C++ and then
compiled into the ProcessPlugin format.

The WAIR system is a combination of hub mode, WAIR
servers, WAIR clients, portals and plugins. Figure 8 illustrates
the components involved in creating a room with the client in
Florida and hub in California. Additional clients inMichigan and
New York function like the one in Florida (components omitted
in the figure). The portals which are cross-patched in California
allow the 3 WAIR rooms to hear each other. A “DCB” plugin
is installed on each server in the signal path to its portal. This
plugin computes a DC-blocking filter and applies the portal’s gain
factor.

FIGURE 7 | Freeverb depicted as blocks.

4https://ccrma.stanford.edu/software/stk/

Frontiers in Digital Humanities | www.frontiersin.org 4 November 2018 | Volume 5 | Article 27

https://qjackctl.sourceforge.io/
http://www.jackaudio.org/
https://ccrma.stanford.edu/software/stk/
https://www.frontiersin.org/journals/digital-humanities
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-humanities#articles

Chafe I am Streaming in a Room

FIGURE 8 | A 3-room WAIR system with hub in CA and clients in FL, MI, and NY.

3.3. Implementing WAIR in Jacktrip
3.3.1. Theory of Operation
The following theory of operation begins with describing
the way jacktrip’s two original modes operate. The SFD
jacktrip connection mode is documented first because it is a
component of hub mode. The latter system spawns multiple
instances of the former. More information on both modes
can be found in Cáceres and Chafe (2010a) and Cáceres and
Chafe (2010b), respectively. The detailed sequences presented
here have not been documented elsewhere and while making
for somewhat tedious reading, are needed to prepare the
presentation of WAIR mode and its various extensions to
hub mode.

3.3.1.1. jacktrip single full-duplex connection (SFD) session
Standard jacktrip operation sets up a single full-duplex audio
streaming between two hosts, a server and a client. The only
actual difference between server and client is the server’s
need to have a public IP address and its initial function of
listening for incoming connections. Otherwise, they consist of
identical sequences of setting up network-related and audio-
related processes. The order of events is transcribed below. It
is initiated and ended by underlined commands issued by the
hosts’ operators (either human or script). All other steps proceed
automatically.

Before launching a jacktrip job, the host’s audio service needs
to be running and accepting clients so the job can connect to the
local audio system. An example of an audio server which allows
dynamic connections from jacktrip is the jack audio connection
kit mentioned above.

3.3.1.2. SFD sequence
server host (begins session, listens for any client)

A jacktrip server application is started on a
host by issuing the command jacktrip -s

The application instantiates a jacktrip instance
with mode set to SERVER

step 1 The jacktrip instance checks if the
application’s intended network ports are
already in use, sets up the desired audio

interface and installs an audio callback in the
already running audio server

2s server only The instance creates a temporary UDP
receiver socket and starts listening for
incoming datagrams
The application printsWaiting for

Connection From a Client...

client host (waits for server, streams to server)
A client application is started on a host by
issuing the command jacktrip -c <server>

which requires the server’s IP address or name
The application instantiates a jacktrip instance
with mode set to CLIENT

step 1 (same as server)

2c client only The jacktrip instance sets the peer address for
its network receiving and sending processes

step 3 The instance forks the receive process which
binds its socket to the receive port, sets up its
ring buffers, sets real-time priority and starts
listening
The application printsWaiting for Peer...

step 4 The instance forks the send process which
binds its socket to the client host, sets up its
ring buffers, sets real-time priority and starts
transmitting

server host (waits for client, streams to client)
When a datagram is received by the jacktrip
instance, the incoming packet’s IP address is
identified as the client and the temporary
socket is deleted

step 3 (same as client)

step 4 (same as client)

Frontiers in Digital Humanities | www.frontiersin.org 5 November 2018 | Volume 5 | Article 27

https://www.frontiersin.org/journals/digital-humanities
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-humanities#articles

Chafe I am Streaming in a Room

both hosts (start audio, verify incoming stream, run
indefinitely)

step 5 The audio process starts

step 6 The application waits in its event loop

step 7 When the receive socket receives its first
incoming datagram, it checks the packet’s
audio settings
The application prints Received Connection

from Peer!

step 8 Outgoing and incoming datagrams continue
to stream, the receive process keeps track of
timing between incoming datagrams and if
they stall out, the application prints
UDP waiting too long (more than 30 ms)...

UDP waiting too long (more than 30 ms)...

both hosts (end session)
The application is stopped by issuing a
<ctrl>c command

The handshake between server and client relies on connections to
known UDP port numbers, (the pre-determined default is 4464).
If agreed upon ahead of launching both jobs, a port offset can
be specified with -o <offset> added to the above commands, for
example, jacktrip -s -o10 starts a server on port 4474 which is
reached by jacktrip -c <server> -o10.

The similarity of server and client makes it possible to connect
two clients together (in -c mode) if both have public IP addresses.
Furthermore, it’s fine for a server to start after its client (or,
for instance, to stop and restart one side while the other stays
running).

3.3.1.3. jacktrip hub mode
For a server in hub mode whose job is to tend to multiple client
spokes, the story starts with understanding how ephemeral ports
work. Also called dynamic ports, these are unique temporary
ports provided by the hub server in response to connection
requests initiated by hub mode clients. Each ephemeral port
is associated with an automatically spawned SFD server. All
initiation requests are sent to the hub’s common listening port.
Existing SFDs persist while the hub server tends to new clients
wishing to establish connections.

3.3.1.4. hub and spoke sequence
hub server host (begins session, listens for any client, spawns

JackTripWorkers as needed)
A jacktrip hub server application is started on
a host by issuing the command jacktrip -S The
application instantiates a UdpMasterListener
The UdpMasterListener instance opens a TCP
socket on the standard port and begins a loop
listening for connections

step 6 (same as SFD)

The application prints
JackTrip HUB SERVER: TCP Server

Listening in Port = 4464

JackTrip HUB SERVER: Waiting for client

connections...

===============================

client host (initiate connection)
A client application is started on a host by
issuing the command jacktrip -C <server>

which requires the server’s IP address or name

step 1 (same as SFD)

The application instantiates a jacktrip instance
with mode set to CLIENTTOPINGSERVER.

2C client only The jacktrip instance connects to the server’s
TCP port and sends its UDP receive socket
port number

hub server host (advertises ephemeral port)
When a connection is made to the
UdpMasterListener instance TCP socket, the
incoming packet’s payload contains the UDP
port which the client wants to use. The
application prints
JackTrip HUB SERVER: Client Connection

Received!

JackTrip HUB SERVER: Client Connect

Received from Address : <client>

JackTrip HUB SERVER: Reading UDP port

from Client...

JackTrip HUB SERVER: Client UDP Port is

= 4464

and sends its ephemeral port to the client

client host (receives the port, closes the TCP connection
and continues as SFD client)

steps 3-8 (same as SFD)

hub server host (spawns a dedicated SFD server, continues the
loop)
The UdpMasterListener spawns a new
JackTripWorker listening in
SERVERPINGSERVER mode, adds it to the
JackTripWorker thread pool and starts it. The
application prints
JackTrip HUB SERVER: Client TCP

Connection Closed!

JackTrip HUB SERVER: Spawning

JackTripWorker...

JackTrip HUB SERVER: Starting

JackTripWorker...

JackTripWorker: PeerNumChannels =

<chans>

Frontiers in Digital Humanities | www.frontiersin.org 6 November 2018 | Volume 5 | Article 27

https://www.frontiersin.org/journals/digital-humanities
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-humanities#articles

Chafe I am Streaming in a Room

steps 1, 2s, 3-5 (same as SFD)
The UdpMasterListener increments the
number of running JackTripWorker threads
and the application prints
JackTrip HUB SERVER: Total Running

Threads: <threads>

=================================

steps 7, 8 (same as SFD)

The UdpMasterListener loop continues and
the application prints
JackTrip HUB SERVER: Waiting for client

connections...

=================================

client host (end session)
The application is stopped by issuing a
<ctrl>c command

hub server host (releases a dead session)

If the client stream stalls out for too long, its
server ends the session and the
JackTripWorker ID and port are freed for
future use. The application prints
UDPWAITEDMORE THAN 30 seconds.

Stopping JackTrip...

JackTrip Processes STOPPED!

____________________ ________________

JackTrip ID = <ID> released from the

THREAD POOL

____________________ ________________

hub server host (end session)
The application is stopped by issuing a
<ctrl>c command

3.3.2. Modifications to Implement WAIR Mode
A third jacktrip mode was added to implement WAIR. The
following are the specific modifications made to jacktrip for this
purpose. Parameters, members and methods are listed for the
classes affected. (jacktrip at the time of these modifications was
version 1.1 and was obtained from the project’s repository in early
2018 5)

WAIR mode extends hub mode and is invoked by adding the
-w argument. Specify -wS or -wC to start, respectively, either a
WAIR server or a WAIR client. The new mode adds a parameter
member to the Settings class (mWAIR).

Two additional parameters, also new members of the
Settings class, can be set by command line: -N (to set
mClientAddCombLen for the addition of extra delay to the
FDLs), and -H (to set mClientRoomSize which overrides the
default value of Freeverb’s room size).

5https://github.com/jcacerec/jacktrip

A fourth new parameter member, mNumNetRevChans, is
set internally to a fixed value of 16 channels. This specifies
the number of FDLs in each WAIR connection, each of which
requires a separate network audio channel.

In the Settings class method startJackTrip, jacktrip instances
created for clients have two ProcessPlugins appended, ap8x2
(for Freeverb’s stereo series of 8 all-pass delays per audio input
channel) and Stk16 (to create the OnePole filters for the 16 FDLs,
extend their lengths to prime relationships, and apply either -N
or -Hmodifications).

The UdpMasterListener class has a new method,
connectMesh, with which the hub server manages audio
connections between spawned WAIR rooms. When a new
room goes live, its audio is cross-patched into other rooms with
connectMesh(true) and when it is released it is deleted from the
mesh with connectMesh(false). The cross-patching functionality
is borrowed from JMess, an application for storing and restoring
jack patches.6

Spawned servers belong to the JackTripWorker class. In
WAIR mode these are given unique IDs (with names like
“WAIR0, WAIR1”) for cross-patching by connectMesh. These
servers have one ProcessPlugin appended, dcblock2gain (for DC
blocking between WAIR rooms and setting the gain between
WAIR rooms).

The AudioInterface class manages audio signal buffers
for network and audio input/output, and signal processing.
Sizes have been adjusted to accommodate the extra
network audio channels and two buffers have been added
to handle intermediate stages of the signal processing
plugins.

As always, an audio callback function will be installed
in the already running audio server. The following specifies
the normal callback tasks and then provides details on the
extensive modifications necessary for WAIR’s audio callback
function.

3.3.2.1. SFD and hub modes audio callback
The original audio callback comprises 4 steps.

audio input local audio input is transferred from the audio
server (inBuffer)

net output computeProcessFromNetwork calls
receiveNetworkPacket (mOutputPacket→

outBuffer)

net input computeProcessToNetwork calls
sendNetworkPacket (inBuffer→
mInputPacket)

audio output local audio output is transferred to the audio
server (outBuffer)

3.3.2.2. WAIR mode audio callback
audio input (same as above)

6https://github.com/jcacerec/jmess-jack

Frontiers in Digital Humanities | www.frontiersin.org 7 November 2018 | Volume 5 | Article 27

https://github.com/jcacerec/jacktrip
https://github.com/jcacerec/jmess-jack
https://www.frontiersin.org/journals/digital-humanities
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-humanities#articles

Chafe I am Streaming in a Room

net output computeProcessFromNetwork calls
receiveNetworkPacket
(16 chmOutputPacket→ 16 ch
mNetInBuffer)

client DSP client computes 16 ch Stk16 ProcessPlugin
(mNetInBuffer→mInProcessBuffer→

Stk16→mOutProcessBuffer)

server DSP server is a 16 ch straight wire (mNetInBuffer

→mOutProcessBuffer)

net input computeProcessToNetwork calls
sendNetworkPacket after a 2 ch to 16 ch
fan-out and mix
((2 ch inBuffer + 16 chmOutProcessBuffer)
→ 16 chmInputPacket)

client DSP client fans in 16 ch to 2 ch and computes
ap8x2 ProcessPlugin
(16 chmNetInBuffer→ 2 chmAPInBuffer

→ ap8x2→ outBuffer)

server DSP server fans in 16 ch to 2 ch and computes
dcblock2gain ProcessPlugin
(16 chmNetInBuffer→ 2 chmAPInBuffer

→ dcblock2gain→ outBuffer)

audio output (same as above)

4. CONCLUSION

The occasion for the first public demonstration of WAIR was
the 2016 meeting of the Network Performing Arts Production
Workshop. Four endpoints were connected in a nation-wide
mesh as discussed above, with musicians at the New World
Symphony Concert Hall in Miami, the University of Michigan,
Ann Arbor and Rensselaer Polytechnic Institute, Troy. The
WAIR server was running at CCRMA, Stanford University.

The approximately 20 minute improvisation which was
performed7 featured carillon bells (in a studio), saxophone,
daxaphone, fretless electric guitar and cello. Studio engineers
in the audience at the New World Symphony reported that
the acoustical result heard over a stereo PA system in the

symphony hall was attractive and complemented the hall’s own
sound. Performers were able to hear others well and said they
experienced a “composite hall.” During sound check we found
that the portal gain parameter interacted with the freeverb room
size parameter and could lead to self-oscillation (feedback) with
either value being too great.

WAIR mode is included in an upcoming release of jacktrip
with the hope that others may be interested in experimenting
with its possibilities. Additionally, the release includes a new
command line argument -V which turns on “verbose” mode and
prints exactly the step numbers detailed in the sequences for all
modes above.

There have been multiple motivations for providing this
informantion. First, it is hoped that WAIR mode has been
sufficiently documented as a concept, and secondly, that its

jacktrip source code modifications can be more easily followed.
Lastly, the detailed sequences should provide a more precise
understanding of jacktrip execution order, something which has
been somewhat difficult to grasp heretofore and which is needed
if the system is to be ported to other languages and systems in the
future.

AUTHOR’S NOTE

The title “I am Streaming in a Room” is a play on “I am Sitting in
a Room,” a wonderful work by Alvin Lucier hereby appropriated
and unwittingly twisted. I couldn’t help myself.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

Several musicians, led by Rob Hamilton and John Granzow, have
been involved in demonstrating WAIR. My deepest gratitude to
colleague and collaborator Juan-Pablo Cáceres who continues to
support jacktrip. Thanks also to reviewers for very constructive
and detailed suggestions.

7https://purl.stanford.edu/ty997vz5847

REFERENCES

Cáceres, J-P., and Chafe, C. (2010a). Jacktrip: under the hood of

an engine for network audio. J. New Music Res. 39, 183–187.

doi: 10.1080/09298215.2010.481361

Cáceres, J-P., and Chafe, C. (2010b). Jacktrip/soundwire meets server farm.

Comput. Music J. 34, 29–34. doi: 10.1162/COM_a_00001

Chafe, C. (2003). “Distributed internet reverberation for audio collaboration,”

in Audio Engineering Society Conference: 24th International Conference:

Multichannel Audio, The New Reality (Banff, AB: Audio Engineering Society).

Chafe, C., and Granzow, J. (2013). “Internet rooms from internet audio,” in

Proceedings of Meetings on Acoustics, Vol. 19 (Montreal, QC: Acoustical Society

of America), 1–6.

Chafe, C., and Leistikow, R. (2001). “Levels of temporal resolution

in sonification of network performance,” in Proceedings of the 7th

International Conference on Auditory Display (ICAD2001) (Helsinki),

50–55.

Chafe, C., Wilson, S., and Walling, D. (2002). “Physical model synthesis with

application to internet acoustics,” in Proceedings 2002 International Conference

on Acoustics, Speech and Signal Processing (Orlando, FL: IEEE), IV–4056–IV–

4059.

Jaffe, D., and Smith, J. (1983). Extensions of the karplus-strong plucked-string

algorithm. Comput. Music J. 7, 56–69.

Karplus, K., and Strong, A. (1983). Digital synthesis of plucked string and drum

timbres. Comput. Music J. 7, 43–55.

Moorer, J. (1979). About this reverberation business. Comput. Music J. 3, 13–28.

Frontiers in Digital Humanities | www.frontiersin.org 8 November 2018 | Volume 5 | Article 27

https://purl.stanford.edu/ty997vz5847
https://doi.org/10.1080/09298215.2010.481361
https://doi.org/10.1162/COM_a_00001
https://www.frontiersin.org/journals/digital-humanities
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-humanities#articles

Chafe I am Streaming in a Room

Rottondi, C., Chafe, C., Allocchio, C., and Sarti, A. (2016). An overview

on networked music performance technologies. IEEE Access. 4, 8823–8843.

doi: 10.1109/ACCESS.2016.2628440

Schroeder, M. (1962). Natural sounding artificial reverberation. J. Audio Eng. Soc.

10, 219–223.

Smith, J. (1993). “Efficient synthesis of stringed musical instruments,” in

Proceedings of the International Computer Music Conference, 64–71.

Smith, J. (2010). Physical Audio Signal Processing : For Virtual Musical Instruments

and Audio Effects. W3K Publication.

Sullivan, C. (1990). Extending the karplus-strong algorithm to synthesize electric

guitar timbres with distortion and feedback. Comput. Music J. 14, 26–37.

Conflict of Interest Statement: The author declares that the research

was conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of

interest.

Copyright © 2018 Chafe. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Digital Humanities | www.frontiersin.org 9 November 2018 | Volume 5 | Article 27

https://doi.org/10.1109/ACCESS.2016.2628440
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/digital-humanities
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-humanities#articles

	I am Streaming in a Room
	1. Introduction
	2. Background
	3. WAIR
	3.1. N-way Mesh of Reverberators
	3.2. Freeverb in Jacktrip—Implementing an Internet Reverberator
	3.3. Implementing WAIR in Jacktrip
	3.3.1. Theory of Operation
	3.3.1.1. jacktrip single full-duplex connection (SFD) session
	3.3.1.2. SFD sequence
	3.3.1.3. jacktrip hub mode
	3.3.1.4. hub and spoke sequence

	3.3.2. Modifications to Implement WAIR Mode
	3.3.2.1. SFD and hub modes audio callback
	3.3.2.2. WAIR mode audio callback

	4. Conclusion
	Author's Note
	Author Contributions
	Acknowledgments
	References

