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Metaphors are commonly used in interface design within Human-Computer Interaction

(HCI). Interface metaphors provide users with a way to interact with the computer that

resembles a known activity, giving instantaneous knowledge or intuition about how

the interaction works. A widely used one in Digital Musical Instruments (DMIs) is the

conductor-orchestra metaphor, where the orchestra is considered as an instrument

controlled by the movements of the conductor. We propose a DMI based on the

conductor metaphor that allows to control tempo and dynamics and adapts its mapping

specifically for each user by observing spontaneous conducting movements (i.e.,

movements performed on top of fixed music without any instructions). We refer to this as

mapping by observation given that, even though the system is trained specifically for each

user, this training is not done explicitly and consciously by the user. More specifically, the

system adapts its mapping based on the tendency of the user to anticipate or fall behind

the beat and observing the Motion Capture descriptors that best correlate to loudness

during spontaneous conducting. We evaluate the proposed system in an experiment

with twenty four (24) participants where we compare it with a baseline that does not

perform this user-specific adaptation. The comparison is done in a context where the

user does not receive instructions and, instead, is allowed to discover by playing. We

evaluate objective and subjective measures from tasks where participants have to make

the orchestra play at different loudness levels or in synchrony with a metronome. Results

of the experiment prove that the usability of the system that automatically learns its

mapping from spontaneous movements is better both in terms of providing a more

intuitive control over loudness and a more precise control over beat timing. Interestingly,

the results also show a strong correlation betweenmeasures taken from the data used for

training and the improvement introduced by the adapting system. This indicates that it is

possible to estimate in advance how useful the observation of spontaneous movements

is to build user-specific adaptations. This opens interesting directions for creating more

intuitive and expressive DMIs, particularly in public installations.

Keywords: HCI, digital music, motion-sound mapping, kinect, conducting, machine learning, digital musical

instruments
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1. INTRODUCTION

Computational Audio deals with the intersection between
Computer Science and Audio Analysis, Processing and Synthesis.
It is, in this sense, a field that involves two possible directions
of study: extracting information and knowledge from audio,
or turning available information and knowledge to acoustic
information for a variety of applications. In an interaction
context, this information can be the actions or movements that
a user or instrumentalist makes when using a Digital Musical
Instrument (DMI). Musical Human-Computer Interaction
(HCI) focuses on developing techniques to make this transfer
from actions or movements to acoustic information in a way
that allows a more intuitive and expressive control of the
resulting music.

Metaphors are commonly used in interface design within
HCI. Probably the most ubiquitous example is the desktop
metaphor (Blackwell, 2006), where elements in the Graphical
User Interface (GUI) are depicted and arranged replicating an
office desktop. The rationale behind using interface metaphors
is to provide the user a way to interact with the computer
that resembles a known activity, giving instantaneous knowledge
or intuition about how the interaction works. The field of
New Interfaces for Musical Expression (NIME) has developed
around the International Conference on NIME1, which started
out as a workshop at the Conference on Human Factors in
Computing Systems2 in 2001. NIME works inherit many of
the practices and methods of HCI, including the common
use of metaphors for the design of DMIs. Fels et al. (2002)
argue that the application of a metaphor to a musical interface
has the effect of increasing its transparency, understood as
the physiological distance, from the perspective of the player
and the potential audience, between the input and output of
a DMI mapping.

Note that these metaphors are not limited to the design of GUI
elements to interact with through traditional computer input
devices, such as mouse and keyboard. HCI, and particularly
NIME, deal with interaction through different modalities such
as touch, movement, etc. A good way to understand how a
metaphor may work in the case of a DMI is through a toy
example.We can imagine a DMI consisting on a control interface
with two sliders controlling an oscillator: the position of the first
controls the frequency of the oscillator, and the velocity at which
the other is moved controls the amplitude. It would be easy to
learn this functioning through experimentation, but we could
expect a user to have an immediate intuition of it if we indicated
her that the instrument is controlled as a violin: the first slider
corresponding to the position of the left hand on the fingerboard,
the second one replicating the action of the bow. Even more,
we could place these sliders in a violin-shaped object and
expect the user to have an intuition of the functioning without
providing any indications. Mimicking real-world instruments as
the violin following this kind of rationale is common (Poepel and

1http://www.nime.org/
2CHI, one of the most relevant conferences on HCI:
https://sigchi.org/conferences/conference-history/chi/

Overholt, 2006; Carrillo and Bonada, 2010). Another widely used
metaphor is the conductor-orchestra one, where the instrument
is designed to work as an orchestra that follows the movements of
the conductor.

The commonly considered first computer music system using
this metaphor is the Conductor Program by Mathews (1976).
Mathews developed different input sensors for the Conductor
Program, including the Daton (Mathews and Barr, 1988) and the
most popular Radio Baton (Boie et al., 1989; Mathews, 1991),
which incorporates low-frequency radio transmitters whose 3D
position over a plate is measured by an array of receiving
antennas. With two Radio Batons, one of them (usually the one
held in the right hand) is used to trigger beats when its distance
to the plate is smaller than a certain threshold; the position
of the other one can continuously control other parameters
such as the overall loudness or the dynamic balance between
different instruments. In this pioneer system we observe some
characteristics shared by interfaces using this metaphor: (1)
they are controlled using gestures that resemble those of a real
conductor, (2) the control consists on the modification of an
existing musical piece—usually by controlling its tempo and
dynamics—and (3) the interaction occurs in real time, with the
user being able to listen to the effects of her gestures on the
musical outcome.

Systems that followed the Conductor Program implement
refinements or modifications in different aspects. On many
occasions, a big effort is devoted to the development of new
input devices (Haflich and Burnds, 1983; Keane and Gross,
1989; Morita et al., 1989; Marrin and Paradiso, 1997; Marrin
and Picard, 1998) or the adaptation of existing ones to this use
(Brecht and Garnett, 1995; Garnett et al., 2001). The complexity
of mapping strategy often varies depending on the context of
each application. This term is used to define how the input
(the movements or actions performed by the user) and output
(the control parameters for the resulting sound) are connected
(Paradiso, 1997; Rovan et al., 1997).

For beat control, as in Mathews’ case, the most commonly
found strategy is to use information directly derived from the
position of the hand or a hand-held device to trigger beats or
control tempo (Haflich and Burnds, 1983; Keane andGross, 1989;
Morita et al., 1989; Borchers et al., 2002; Lee et al., 2004; Bergen,
2012; Rosa-Pujazon and Barbancho, 2013; Toh et al., 2013). In
all of these works, as in Mathews’, the “beat induction” instant in
the gesture (the ictus) is assumed to correspond to the change
from downward to upward motion [except in the case of Lee
et al. (2004), where there is no beat but just tempo control,
and Rosa-Pujazon and Barbancho (2013), who use horizontal
hand movements].

Temporal modeling strategies have also been exploited
to provide control over tempo, for example using Hidden
Markow Models (HMMs) (Usa and Mochida, 1998; Kolesnik,
2004) or neural networks (Brecht and Garnett, 1995; Ilmonen,
1999). Regarding the control of dynamics, the volume is
sometimes controlled with specific gestures such as raising
and lowering one hand (Rosa-Pujazon and Barbancho, 2013;
Toh et al., 2013), but it has been more common to map
parameters derived from the execution of the gesture (e.g.,
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its size) to the resulting loudness (Morita et al., 1989; Usa
and Mochida, 1998; Lee et al., 2004; Toh et al., 2013).
Fabiani (2011) explored mapping semantic qualities extracted
from movement to semantic qualities of the music, such as
the mood.

An important aspect in systems where tempo is controlled by
triggering beats is to provide accurate control on the exact time
when the orchestra plays following the gesture. As previously
explained, most works consider that the ictus corresponds to the
change from downward to upward motion, so beats are triggered
when this change is detected.

However, Lee et al. (2005) identified some usability
breakdowns when qualitatively analyzing how people performed
with their systems in public spaces (Borchers et al., 2002; Lee
et al., 2004), and decided to analyze withmore detail the temporal
relationship between users’ conducting gestures and the beat
on a musical piece. In order to do that, they asked professional
conductors and non-conductors to “conduct” a fixed musical clip
from the Radetzky March using up-down movements making
them aware that their movements were not affecting the resulting
sound. They found that conductors tended to anticipate the
music beat by an average of 150 ms, while non-conductors
anticipated by just 50 ms, also showing larger variance in the
placement of the gesture beat with respect to the music beat.
The hypothesis of Lee et al., following the conclusions from
their study, was that incorporating this knowledge to conducting
systems could improve their usability.

In the case of Lee et al. (2005), the comparison between
different expertise profiles was done using a fixed gesture (up-
down hand movements). We believe, however, that in the case
of public installations, it is potentially more engaging to allow
users to freely perform with spontaneous movements. With this
in mind, we performed a study (Sarasúa and Guaus, 2014a,b)
where we analyzed the movements of different participants
when asked to “conduct” on top of a musical excerpt. In our
case, the difference was that we did not ask to perform any
specific gesture like up-down movement, nor did we ask them
to focus on any specific aspect of the performance like the
beat. We just asked participants to perform the movements
they would do to make the orchestra sound as in the recording
and then we analyzed how they synchronized to the beat and
how their movements were related to the loudness of the
piece. We observed different tendencies among participants.
For example, some of them tended to move more energetically
in loud parts (as suggested by a strong correlation between
loudness and quantity of motion computed from the velocity
of all body joints), while others tended to raise their hands
higher (as suggested by a strong correlation between loudness
and the vertical position of the hands). Regarding the timing,
we did not observe general tendencies for different musical
expertise, but we observed that the beats that we extracted
from the participants’ hand movement tended to be lagged with
respect to the annotated beats differently, and consistently, for
each participant.

Similarly to the case of Lee et al. (2005), we hypothesize that
an interactive conducting system that adapts its parameters to the
observations from spontaneous conducting movements can see

its usability improved and also become more intuitive. However,
following the conclusions from the aforementioned study, these
adaptations must be user-specific (and not just based on different
expertise profiles). This is something that cannot be assumed and
needs to be thoroughly tested, provided that it is different to
follow fixed music than actually conducting it. In the context of
this work, we consider that a system has better usability if the user
has better ability to take precise control over it. For the particular
case of interest of our work, where we want to allow users to use
spontaneous movements (as opposed to giving them instructions
on how to perform), we refer to a system asmore intuitive if, in a
similar context where no instructions are given, it provides more
precise control to the user (i.e., the user is better able to learn how
to perform).

In this context, we propose a system that explicitly exploits
the knowledge that users have from the activity that inspires
the interface (in our case, music conducting). The approach we
propose can be defined as mapping by observation. Françoise
(2015) has proposed a framework for building motion-sound
mappings called Mapping by Demonstration that follows the
design principle ofMapping through Listening (Caramiaux et al.,
2014a). This framework considers listening as the starting point
for the design of the mapping, which is learned from a set of
demonstrations where the user explicitly shows the relationship
between motion and sound as an acted interaction. In our case,
taking advantage of the fact that the instrument is based on a
metaphor, we propose to learn the mapping by observing each
user making spontaneous conducting movements such as those
in the aforementioned study. We argue that in the context of
public installations, it is preferable to perform learning in this
transparent way, observing spontaneous movements from the
user, rather than allowing each user to explicitly define her own
mapping in a learning stage.

More concretely, we present a DMI based on the conductor
metaphor that allows to control tempo and dynamics and
learns personalized parameters from user-specific observation of
spontaneous conducting movements. We evaluate the usability
and intuitiveness of the system in a setup where the user
does not receive instructions on how the system works and
instead just learns by experimenting. For comparison, we
also build another system based on the most commonly
found strategies for controlling tempo and dynamics in the
reviewed works as a baseline. The experiment includes a
series of tasks to compare both systems using both subjective
feedback and objective measures about the participants’ ability
to control loudness and the exact time of beats in the
resulting music. In addition, we recruited both musicians
and non-musicians to study possible differences caused by
musical expertise.

2. PROPOSED SYSTEM

In this section, we explain in detail the functioning of the
proposed system. As it has been indicated, it has a predefined
mapping which is tuned specifically for each user. Accordingly,
we first explain the system without adaptation, to which we refer
as BASELINE. Then, we continue with the proposed system, to
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which we refer as TRAINED, highlighting the aspects in which
they differ.

In both cases, the user can control loudness and tempo
on a musical piece using body movements captured by a
Motion Capture (MoCap) device, in this case a Kinect v23.
The Kinect is a motion sensing device developed by Microsoft
for video games, which can track the position of several
body joints.

2.1. BASELINE
Inspired by previous approaches (Haflich and Burnds, 1983;
Keane and Gross, 1989; Morita et al., 1989; Borchers et al., 2002;
Lee et al., 2004; Bergen, 2012; Rosa-Pujazon and Barbancho,
2013; Toh et al., 2013), the system allows to control the
tempo of the performance by triggering beats in changes from
downward to upward hand movement. For this, we use the
vertical velocity (vy) of both hands, computed with low-pass
differentiators of degree one proposed by Skogstad et al. (2013),
as implemented in MoDe4, a library for real-time feature
extraction from MoCap data developed by the authors within
the scope of this research. The ictus is detected whenever a
change from negative to positive sign in vy occurs (change from
downward to upward movement), as illustrated by the red circles
in Figure 1. Notes falling between beats are played according
to the tempo estimated from the time interval between the last
two beats. Two extra rules are applied to avoid false positives in
beat detection:

• If the last local minimum before the current change of sign of
vy is not below a threshold vth, the beat is not triggered. This
avoids detecting beats from almost-still movement.

• Two consecutive beats must be detected separated by at least a
certain number of frames nth from each other. This is done to
avoid detecting beats closer in time thanmusically meaningful,
and is particularly necessary to avoid triggering two beats from
simultaneous movements from both hands.

Loudness in the performance is controlled by means of the
gesture size, similarly to Morita et al. (1989), Usa and Mochida
(1998), Lee et al. (2004), and Toh et al. (2013). When a beat
is detected at time tB using the method above, the gesture size
is computed as the cumulative squared distance traveled by the
hand where the beat has been detected since the detection of the
previous beat, tPB5:

size(tPB, tB) =

i=B−1
∑

i=PB

(xk(ti+1)− xk(ti))
2 + (yk(ti+1)− yk(ti))

2

+ (zk(ti+1)− zk(ti))
2, (1)

where i denotes the frames from times tPB to tB. The mapping
from size to MIDI velocity values is set in preliminary user
tests, in order to cover the whole MIDI velocity range. We

3https://developer.microsoft.com/en-us/windows/kinect
4https://github.com/asarasua/MoDe
5We use the squared distance instead of the distance as it requires less
computation.

used MIDI velocity values provided that, as we explain below,
we are considering a MIDI sound engine. MIDI velocity
values can range from 0 to 127. In the following, we refer to
MIDI velocity units (mvu) for loudness values represented in
this scale.

2.2. TRAINED
The proposed system adapts its mapping individually to
each user by performing a previous analysis of spontaneous
conductingmovements. By “spontaneous” we refer to conducting
movements that the user performs on top of a musical excerpt
without having received any specific instructions. In this sense,
the system needs the user to “conduct” on top of a musical
piece for which there is available information on the loudness
and location of beats, just as in the case of previous observation
studies (Lee et al., 2005; Sarasúa and Guaus, 2014a,b) (in this
case, since the music is rendered from a symbolic musical score,
the location of the beats and the loudness are known). More
concretely, this system takes into consideration how the user
tends to anticipate or fall behind the beat, and which body
movement descriptors are best correlated with loudness. We
focus on this descriptor since it is the one to be controlled
afterwards. For this, we need to store the time position of
beats in the music and beats detected from hand movement
(using the same method we detailed for the BASELINE

system), as well as the value of different body movement
descriptors together with the corresponding loudness values at
different instants.

The mean difference in seconds between beats in the
music and beats detected in hand movement, lag, provides an
estimation of the tendency of the user to anticipate or fall behind
the beat. Negative values indicate that beats detected in hand
movement tend to appear before the beat in the music, while
positive values indicate that beats detected in hand movement
tend to appear after the music beat. From lag, we compute nant as
the number of frames at the device sampling rate, fs (in the case of
the Kinect V2, 30 fps), that corresponds to the time closest to lag:

nant = round(lag · fs) (2)

Tempo in the TRAINED system is controlled exactly the same
way as in the BASELINE system, but including this additional
parameter nant . If nant = 0, there is no difference with respect
to the BASELINE. If nant < 0, the beat is triggered −nant
frames after the change of sign in vy. Figure 1 illustrates the
method for for nant = −2 (green circles). If nant > 0,
beats are no longer detected looking at changes of sign in vy.
Instead, beats are triggered when two consecutive values of
vy are, respectively, smaller and greater than a new threshold
vtrigger 6= 0. The value for vtrigger is computed after every
change of vy from positive to negative sign (upward to downward
movement). It takes the value of vy, nant frames after this
change of sign. This is summarized in Algorithm 1 and depicted
in Figure 1. In this figure, blue circles illustrate the samples
where the beat would be triggered in the case of nant = 2,
while blue crosses show the samples that determine the different
values of vtrigger .
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FIGURE 1 | Beat triggering from vy with BASELINE (red circles) and TRAINED systems (green circles, nant = −2; blue circles, nant = 2). Samples highlighted as blue

crosses set the vtrigger values for nant = 2 in the TRAINED system.

Algorithm1:Correction of beat triggering for the TRAINED
system.

if nant == 0 then
no correction ;

else if nant < 0 then
trigger beat nant frames after vy change from negative to
positive sign ;

else if nant > 0 then
define new threshold vtrigger every time vy changes from
positive to negative sign, taking the value of vy nant
frames after this change ;
trigger beat when two consecutive vy values are,
respectively, smaller and greater than vtrigger ;

Loudness is controlled through a linear combination of three
different MoCap descriptors:

loudness = ωs · size+ ωQ · QoM + ωY · Ymax + β (3)

• Gesture size, using the same method as for BASELINE and
defined in Equation (1).

• Quantity of Motion QoM, computed by averaging the
mean speed values of all tracked joints J during N
frames as

QoM(tn) =
1

N

N−1
∑

i=0

1

J

∑

j∈J

√

v
j
x(ti)2 + v

j
y(ti)2 + v

j
z(ti)2, (4)

v
j
x(ti), v

j
y(ti), v

j
z(ti) are the x, y, and z components of the

velocity of joint j, i frames before n, and J is the number of
tracked joints. We use N = 30 (1 s at 30 fps).

• Highest hand position Ymax, a simple descriptor that in every
frame looks at the vertical position y of both hands and takes
the maximum value.

The descriptors and loudness values recorded during the
execution of spontaneous movements are later used to compute

the weights assigned to each descriptor (ωS for size, ωQ for
QoM, ωY for Ymax and β for the intercept) using least squares
linear regression.

3. MATERIALS AND METHODS

3.1. Materials
We built a dedicated Windows application with
OpenFrameworks6 to be used with a Kinect v2. It uses
ofxKinectForWindows27 (an OpenFrameworks wrapper for
Kinect for Windows SDK) to track skeleton data and MoDe for
real-time feature extraction and event triggering.

The application allows to control the experiment procedure
using a set of keyboard commands and records all necessary data
(training results, tasks results and MoCap data) into text files.
It implements the conducting systems introduced in section 2,
BASELINE and TRAINED, to conduct a musical piece using
movements captured by the Kinect v2. For synthesis, it reads
a music score in MusicXML or MIDI format and outputs
MIDI events which can be rendered by any external software.
For the experiment, we used Native Instrument’s Kontakt with
Session Strings library and a simplified 8-bar long score for
strings from the Ode to Joy theme from the fourth movement
in Beethoven’s 9th Symphony, shown in Figure 2. We chose
this excerpt for two reasons: first, it is a very popular melody
that all participants in the study knew in advance (as they
later confirmed); second, the selected melody mostly contains
quarter notes. This makes the beat and rhythm of the melody
equivalent and avoids possible confusions with participants
tending to conduct to the onsets of the predominant melody
instead of the beat (this effect was observed by Lee et al.,
2005). We used symbolic score material for the synthesis since
it simplifies the control of the performance in terms of event
triggering and loudness manipulation, as compared to the
case of using a real pre-recorded performance to manipulate.
The application also provides visual feedback consisting on
the mirrored image captured by the Kinect v2 and specific
visualizations for each of the phases in the experiment. The

6http://openframeworks.cc/
7https://github.com/elliotwoods/ofxKinectForWindows2
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FIGURE 2 | Excerpt from Beethoven’s 9th symphony used in the experiment.

content and design of these visualizations is explained with more
detail below.

The experiment took place at an audiovisuals room in
Universitat Pompeu Fabra, Barcelona. During the experiment,
participants used over-ear headphones to avoid distraction
from other sound sources and stood approximately two
meters away from a 46-inch TV screen showing the visual
feedback from the application. The Kinect v2 sensor
was placed below the screen, using a flat speaker stand,
approximately 1.4 m from the floor. The experimenter
read instructions to the participants and controlled the
application from a laptop to which the screen, Kinect v2
sensor and headphones were connected. Another laptop was
placed close to the participants for them to provide some
demographic information and feedback after each task on a
Google Form.

3.2. Hypothesis and Experiment Design
As previously indicated, we hypothesize that observed user-
specific tendencies in spontaneous conducting movements can
be used to build user-specific mappings in a DMI based on the
conductor metaphor, improving its usability. Provided that we
deal with the concrete case of loudness and beat control, this
main hypothesis can be separated in two:

• H1: Computational analysis of spontaneous conducting
movements can be used to design user-specific mappings
between motion and loudness in a DMI based on the
conductor metaphor, the resulting system having better
usability and beingmore intuitive than one where themapping
is fixed.

• H2: Computational analysis of spontaneous conducting
movements can be used to build a DMI based on the
conductor metaphor where tempo control considers user-
specific tendencies to anticipate or fall behind the beat, the
resulting system providingmore precise control over beat than
a system not considering these tendencies.

To test these hypotheses, we designed an experiment to
compare the TRAINED and BASELINE conducting systems.
The concrete procedure of the experiment is explained

with detail below, but we first enumerate the factors
we controlled.

In the experiment, participants use both systems to perform
a series of tasks in which we retrieve objective measures of
the performance, as well as subjective feedback provided by
participants. The most relevant factor we investigate in the
experiment is thus the SYSTEM (TRAINED / BASELINE) being
used for each of the tasks. All participants use both systems, so the
order in which they use them is counterbalanced to compensate
the possible effect of learning. Because of this, we also consider
the SYSTEM INDEX (first / second) factor.

We retrieve objective measures and subjective feedback
related to the control over loudness and beat separately. In
addition, we minimize confounding by creating tasks that
challenge participants to only control loudness, beat, and both at
the same time. More specifically, participants are presented with
the following tasks:

• Loudness tasks. The participant is asked to make the orchestra
play following a pattern of loudness variation (e.g., “first play
loud, then soft, then loud...”).

– Objective measure: Loudness error, εL. At each beat, we
define εL as the difference between the target and achieved
loudness levels, both represented in MIDI velocity units
(mvu).

– Subjective feedback: Loudness control rating, rL. At the
end of the task, the participant rates her ability to control
loudness in a 5-point scale ranging from “Could not control
loudness at all” to “Could perfectly control loudness.” For
the analysis, values in the scale were coded from 1 (“could
not control”) to 5 (“could perfectly control”).

• Metronome tasks. The participant listens to a metronome at a
fixed tempo and has to make the orchestra play in synchrony
with it.

– Objective measure: Beat error, εB. Every time a beat is
triggered, εB corresponds to the difference in seconds with
respect to the closest metronome beat.

– Subjective feedback: Beat control rating, rB. At the end
of the task, the participant rates her ability to control the

Frontiers in Digital Humanities | www.frontiersin.org 6 February 2019 | Volume 6 | Article 3

https://www.frontiersin.org/journals/digital-humanities
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-humanities#articles


Sarasúa et al. A User-Tailored Conducting System

exact moment in which the instruments sound in a 5-
point scale ranging from “Instruments played much sooner
than I intended” to “Instruments played much later than
I intended,” with the middle value corresponding with
“Instruments played exactly when I intended.” For the
analysis, values in the scale were coded from 1 (“much
sooner”) to 5 (“much later”).

• Combined tasks. A combination of the previous tasks (i.e.,
the participant listens to a metronome and has to make the
orchestra play in synchrony with it while following a loudness
variation pattern).

In order to test our hypotheses, we investigate the
following effects:

• For H1, we expect significantly lower values of |εL| and
significantly higher values of rL for the TRAINED system with
respect to the BASELINE system.

• ForH2, we expect significantly lower values of |εB| and values
of rB (beat control rating) significantly closer to 3 (which
corresponds to “Instruments played exactly when I wanted”)
for the TRAINED system with respect to the BASELINE

system. In this case, however, we only expect to observe
this effect when the number of frames for anticipation nant
estimated for the user is different from 0. Recall that the
BASELINE and TRAINED systems are equivalent for beat
control when nant = 0. We explore this with an additional
factor ANTICIPATION that codes, for each participant, whether
nant = 0 or nant 6= 0.

Tasks with a different TARGET are presented. In the case of
loudness tasks, the TARGET corresponds to different loudness
levels, coded by the corresponding MIDI velocity. In the case
of metronome tasks, the TARGET corresponds to different
tempi. We also investigate the influence of the TASK TYPE

(simple or combined). Finally, we investigate whether themusical
EXPERTISE of participants influences the results.

3.3. Participants
Participants were recruited via convenience sampling through
department members and their students in Universitat Pompeu
Fabra, Barcelona (Spain). Given the nature of the experiment,
a prospective ethics approval was not necessary according to
the Universitat Pompeu Fabra’s8 guidelines and Spanish national
regulations. Participants signed an informed consent granting
the authors to exploit the data recorded during the experiment
(including MoCap and video) for analysis and publication,
following the procedures for privacy and personal data protection
established in the PHENICX FP7 framework project (grant
agreement no. 601166) funded by the European Commission.

3.4. Procedure
After signing the consent form, participants were informed about
the general setup for the experiment.

Once the participant agrees to start, she fills a form with
information about her age and musical expertise. Then, a

8https://www.upf.edu/web/cirep/

procedure consisting on three phases is repeated twice, once
for each SYSTEM (BASELINE and TRAINED), counterbalancing
the order across participants. These phases are (1) Warm up:
the parameters for the TRAINED system are adjusted and the
participant familiarizes with the set up; (2) Adaptation: the
participant is allowed to explore how the SYSTEM works;
(3) Tasks: the experimenter asks the participant to perform
the tasks introduced above. The concrete procedure was
the following:

• Warm up phase. In this phase we learn the parameters for
the TRAINED system. We only use the information from
the first time this phase appears (regardless of the order in
which the systems are presented to the participant). We do
this because we are interested in learning from “spontaneous
movements,” and these only occur at the beginning of the
experiment. In this sense, the information from the second
Warm up phase is not considered, but we still make it
to provide the same set up for both systems. There are
two steps:

1. The experimenter informs the participant that she will
listen to the musical excerpt used throughout the
experiment, preceded by four metronome counts. In this
phase, the excerpt (8 bars, 32 beats) is played once at
a fixed tempo (90 Beats Per Minute or BPM) and with
loudness changing on every bar, following the patternMID-
LOUD-MID-LOUD-MID-SOFT-MID-SOFT. This pattern
was chosen to facilitate the ability to remember it, and it
does not based on any actual loudness progression from
the piece. The MIDI velocities corresponding to each of
the loudness levels, based on preliminary tests, was set to
60 mvu for “MID,” 127 mvu for “LOUD” and 30 mvu for
“SOFT.” The visualization of the pattern consists on a set of
red parallel lines separated proportionally to the loudness.
The space between the lines is filled with red color as the
music advances. This visualization, for which a snapshot
is shown in Figure 3, is designed to be self-explanatory
and to allow participants to memorize and anticipate
loudness changes. The excerpt is played as many times
as necessary until the participant correctly understands
the visualization.

2. The experimenter asks the participant to imagine she has
to conduct this excerpt exactly as it sounded, and to
perform those conducting movements while listening again
to the same excerpt. The fact that no actual conducting is
occurring during this phase and the excerpt plays exactly
the same way it did before is remarked to avoid confusion.
After allowing the participant to rehearse her movements as
many times as needed to feel comfortable, the experimenter
asks her to perform it again. Here, the application computes
the necessary information to compute the parameters for
the TRAINED system. More specifically, it stores the exact
time at which beats occur in the played excerpt and, for
each beat detected in the participant’s movement, the exact
time at which it is detected, the MIDI velocity at which
the music plays, and the MoCap descriptors (size, QoM
and Ymax) values at that time. This information is used
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FIGURE 3 | Visualization shown during warm up phase. All participants gave written informed consent for the publication of all the recorded material during the

experiment, including images.

to determine the parameters of the TRAINED system as
explained in section 2.

• Adaptation Phase. During this phase, the participant is
allowed to experiment with the conducting system. The
experimenter does not give any information about possible
motion-sound mappings; he only indicates that the system
should allow to control tempo and loudness using conducting
gestures and that these are not necessarily related to what the
participant did in the warm up phase (and, in the case of it
being the second tested system, also not necessarily similar
to the previous one). A maximum of three trials (each of
them consisting of two repetitions of the excerpt) is given to
the participant to optimize her control of the performance.
Note that the participant is not given the possibility to re-
train the model, since the intention is to test the training as a
transparent step based on observing spontaneous movements,
as opposed to allowing the user to consciously train the model.

• Tasks Phase. Here, the participant performs the tasks
introduced above. For all tasks, the participant must conduct
the excerpt twice in a row (16 bars, 64 beats). The order
in which the loudness and metronome tasks are presented
is counterbalanced across participants; the combined tasks
always come last. After every task, the participant rates the
perceived sense of control over loudness and/or beat. The
specifics of the presented tasks are the following:

– There is one single Loudness task where the participant
must make the orchestra play with the same loudness
variations from the Warm up phase (represented in
Figure 3) at any tempo. The application shows an
equivalent visualization during the task. The red parallel
lines now illustrate the target loudness on every bar,
and the color fill between the red parallel lines is green
and corresponds to the loudness at which the participant

is actually making the orchestra sound. Note that in a
single loudness task there are three different TARGET levels
(LOUD, MID, and SOFT). For every loudness task, we have
64 values of εL and one rL rating.

– There are twoMetronome tasks at 80 and 100 BPM. In this
case, the only visualization is a red progress bar. For each
task, we have 64 values of εB and one rB rating.

– There are also two Combined tasks, at 80 and 100 BPM,
and with the same pattern of loudness variations and
visualization from Loudness tasks. For each task, we have 64
values of εL, 64 values of εB, one rL rating and one rB rating.

After completing these three phases with both systems, the
participant is allowed to freely perform with each system.
In this stage, no visualization is presented to the user, who
can just focus on freely performing without any given task.
Then, she provides feedback about her preferred one (“first” or
“second,” as the participant does not know about the difference
between both) by answering three questions: “Did you feel any
difference between both systems?”, “Which one did you prefer
in terms of loudness control?” and “Which one did you prefer
in terms of your ability to make instruments sound exactly
when intended?”

4. RESULTS

Twenty four people (18 male and 6 female) participated in the
experiment. Their average age was 28 years (σ = 5.84), with ages
ranging from 19 to 41. Half of them were musicians (considering
musicians participants with any musical training) and the other
half were non-musicians. No conductors were recruited for the
experiment. The difference between both groups is thus expected
to be related to different abilities to perform musical tasks, not
on the ability to conduct an actual orchestra. The experiment
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FIGURE 4 | Correlation with loudness, dynamic range of MoCap descriptors, and coefficient of determination for each participant computed from first Warm up phase.

(A) Correlation of MoCap descriptors with loudness. (B) Dynamic range of MoCap descriptors. (C) Coefficient of determination (R2adj ) of linear regression models.

was carried out during four different days, taking 35 min for
each participant.

We first analyze the results from the first Warm up phase,
where the parameters of the TRAINED system are learned.
In this phase, participants performed spontaneous conducting
movements on top of fixed music.

First, we focus on the results that determine the loudness
control. Figure 4A shows, for each participant, the correlations
found between each of the three MoCap descriptors (size, QoM,
and Ymax) and loudness (MIDI velocity). In most cases, as

expected, MoCap descriptors show a positive correlation with
loudness. There are a few exceptions where negative correlations
appear, with only two cases where the absolute value of these
correlations are >0.5 (QoM for participants 4 and 15). In most
cases (70%), QoM is the most correlated descriptor, with an
average absolute correlation of 0.48, followed by Ymax (0.38) and
size (0.29). Correlation is not the only factor influencing the
computed linear models. Figure 4B shows, for each participant,
the dynamic range of the threeMoCap descriptors. For consistent
visualization across descriptors, the dynamic range for a
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participant and descriptor is computed by dividing the difference
between the maximum and minimum descriptor values for
that participant by the difference between the maximum and
minimum descriptor values across all participants. As an
illustrative example, participants 11 and 21 show a similar
positive correlation between QoM and loudness, but the former
has a larger dynamic range. This positive correlation indicates
that the mapping for loudness control with the TRAINED system
would assign louder output for more energetic movements for
both participants. The different dynamic ranges indicate that
the difference in QoM of movements resulting in soft and loud
output would be larger for participant 11 than for participant 21.
From the computed linear regression models, we compute the
adjusted coefficient of determination R2

adj
as indicative of how

much loudness variability is explained by theMoCap descriptors.
Computed values for each participant are depicted in Figure 4C.
We use these values below to check whether results during the
tasks are affected by the quality of the learned models.

Regarding beat control, Figure 5 shows, for each participant,
the distribution of the differences in seconds between beats in the
music and beats detected from hand movement. In the figure, we
also indicate the number of frames for anticipation nant estimated
from the mean of this distribution for each participant. There
were 6 participants (2, 6, 12, 14, 17, and 24) for whom nant = 0,
i.e., BASELINE and TRAINED systems were equivalent in terms
of beat control. nant values range from −4 to 4. For participants
with nant = 4, beats are triggered 9 frames (300 ms) before
than for participants with nant = −4. From these distributions,
we also computed F-measure values for each participant as
introduced in Sarasúa and Guaus (2014a). This measure is an
indication of how consistent is the anticipation effect that the
TRAINED system uses for user-specific adaptation. We use
these F-measure values below to check whether this affects
the results.

Both for loudness and beat control, the results indicate
that the TRAINED system was quite different across
participants. In the following, we analyze the results from the
Tasks Phase.

4.1. Loudness Control
Regarding the objective measures taken from the tasks, Figure 6
shows the distributions of absolute loudness error (|εL|) for
each participant across all loudness and combined tasks, with 64
values of εL per task (one per beat). In most cases, we observe
the expected tendency of lower εL values with the TRAINED

system. Participant 8, however, shows clearly worse results with
the TRAINED system than in any other case. Coming back to
the results from training (Figure 4), we see that actually this
participant showed a very strong correlation between QoM and
loudness. Also, the R2

adj
metric of the fitted regression model

is 0.98, which is very close to ideal in terms of the loudness
variability explained by theMoCap descriptors. The low dynamic
range suggests that what may have happened is that the observed
correlation is spurious; the participant performed with very little
variations in QoM that just happened to be very correlated
with loudness, resulting in a model whose functioning the

participant was not able to learn. Given that this is an outlier case,
we removed this participant for the overall statistical analysis
presented below.

In addition, and in order to prevent
pseudoreplication (Hurlbert, 1984), we first averaged values
per run and TARGET (recall that all three targets, “SOFT,” “MID,”
and “LOUD” are present in every run), thus having a single
observation per participant, TASK TYPE, TARGET, and SYSTEM.
We do this because the 64 observations (one value per beat)
per run correspond to one single application of the treatment
(TRAINED or BASELINE) and are therefore correlated. If they
were analyzed separately, degrees of freedom would be artificially
inflated and our results would overstate statistical significance.

We fitted a linear model to SYSTEM, SYSTEM INDEX,
EXPERTISE, TASK TYPE, TARGET and their two-factor
interactions, and ran an ANOVA to study their effect on
the absolute value of εL.

A strong effect was observed for SYSTEM,
F(1,366) = 83.34, p < 0.001. As expected, the absolute value
of the loudness error was significantly lower using the TRAINED
system than using the BASELINE, the average error being of
5.70 mvu for the former and 10.43 mvu for the latter. SYSTEM
INDEX does not cause any main effect, nor does its interaction
with SYSTEM, indicating that the observed effect of SYSTEM does
not depend on the order in which the systems were presented to
the participants.

Results reveal that the performance varies depending on
the TARGET, F(2,366) = 84.75, p < 0.001. Absolute error
is higher for parts where the target was to play “LOUD.”
However, this effect is mostly caused by tasks performed using
the BASELINE system. The interaction between SYSTEM and
TARGET also has a significant effect on the absolute error,
F(2,366) = 59.10, p < 0.001. The errors were similar in the
case of the TRAINED system (4.98 mvu for “SOFT,” 5.74 mvu for
“MID” and 6.37 mvu for “LOUD”), but participants had more
difficulties to achieve louder levels using the BASELINE system,
with 3.49 mvu for “SOFT,” 9.27 mvu for “MID” and 18.53 mvu
for “LOUD.” This suggests that the better performance of the
TRAINED system is due to its ability to provide accurate control
over the whole range of loudness levels. The BASELINE system,
where the gesture size is mapped to loudness, was problematic for
loudest levels.

The effect of EXPERTISE also shows that musicians achieve
significantly better control over loudness than non-musicians,
F(1,366) = 54.15, p < 0.001. This difference is however
significantly reduced when using the TRAINED system. The
difference between musicians and non-musicians using the
BASELINE was 4.30 mvu, while it was 2.64 mvu using
the TRAINED system. This suggests that even though both
groups achieved better performance with the TRAINED system,
musicians were more able to learn the functioning of the
BASELINE and adapt in order to complete the tasks.

Finally, no effect is observed for the TASK TYPE, but its
interaction with EXPERTISE indicates that musicians performed
slightly better in combined tasks, while the opposite happened
for non-musicians, F(1,366) = 14.65, p < 0.001. Recall that
combined tasks always come after simple ones. In this sense,
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FIGURE 5 | Distribution of differences between beats in music and beats detected in hand movement during the first Warm up phase for each participant. The

resulting estimated number of frames for anticipation (nant ) for each participant is indicated between parenthesis.

FIGURE 6 | Absolute loudness error (|εL|) for both systems, averaged across tasks, for each participant.

the improvement in combined tasks for musicians can be due
to learning. In the case of non-musicians, the effect might be
explained by the higher complexity of combined tasks.

Regarding the subjective feedback provided by participants at
the end of each task, Figure 7 shows the distribution of ratings in
a 5-point scale ranging from 1 = “Could not control loudness at
all” to 5 = “Could control loudness perfectly.”With the TRAINED
system, participants rated their ability to control loudness with 4
in most cases, followed by 5. With the BASELINE, ratings were
in most cases evenly distributed between 2 and 4. This suggests
that participants felt they had better control over loudness when
using the TRAINED system.

Again, we fitted a linear model to SYSTEM, SYSTEM INDEX,
EXPERTISE, TASK TYPE, and their two-factor interactions, this

time running an ANOVA to study their effect on rL. Note that
here we do not investigate TARGET, provided that the three
targets appear in all tasks and we obtained one rating per task.

Results confirm that the reported sense of control over
loudness is better using the TRAINED system, with an
average rating of 4.14, than using the BASELINE, with 2.74,
F(1,128) = 91.39, p < 0.001. The analysis revealed no other
significant effects.

We also examine the correlation between the subjective
feedback provided by participants and the objective measures
reflected in the values of εL. We expect a negative correlation
(lower error for higher ratings). In Figure 8, every point
corresponds to the average absolute value of εL and the
rating provided by the participant for a task, with the color
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FIGURE 7 | Ratings for loudness control (rL) provided by participants at the end of loudness and combined tasks.

FIGURE 8 | Control over loudness rating (rL) and absolute loudness error (|εL|) of all loudness and combined tasks.

indicating the SYSTEM being used. The correlation between
rL and |εL| is −0.66. This indicates that, as expected,
participants were able to achieve a better performance in
the tasks when they had a better sense of control over
loudness. One-way ANOVA shows that the difference of
absolute values of εL for different ratings is significant,
F(4,139) = 37.32, p < 0.001.

We also investigate whether the quality of the linear models
computed to adjust the mapping of the TRAINED system for
each participant influences the results. For this, we take the
R2
adj

statistic of each participant’s model, which gives a measure

of how much loudness variability is explained by the MoCap
descriptors. We then compute 1εL for each participant as
the difference between average |εL| values for the BASELINE

and TRAINED systems. Accordingly, 1εL measures how much
improvement the TRAINED system introduces in comparison
with the BASELINE. We have thus one R2

adj
and 1εL value for

each participant. The correlation between both variables across
participants is 0.49. This positive correlation indicates that, as

expected, better models result in higher improvement introduced
by the proposed system.

Another interesting aspect we investigated is the learning
effect that occurs during the realization of each task. Figure 9
shows the evolution of the absolute loudness error along the 64
beats each task lasted, averaged across all participants. A different
curve is shown for each combination of SYSTEM and EXPERTISE.
One of the visible effects in the graph is that the error is in general
higher for every first beat with a new target. In the curves, this is
reflected by the peaks appearing every 4 beats.

It is also clearly visible that the aforementioned effect of the
TARGET using the BASELINE system is particularly higher in
the first two appearances of the “LOUD” target (beats 5–8 and
13–16). This is most likely caused by the fact that these are the
first loudness changes that participants had to perform. Having
observed this effect, we repeat the ANOVA by only using the
information from the second half of every task (i.e., from beat
33), to check that the observed effects are consistent along the
task. Indeed, the largest effect is the one caused by the SYSTEM
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FIGURE 9 | Average evolution of absolute loudness error (|εL|) for different combinations of SYSTEM and EXPERTISE.

FIGURE 10 | Beat error for both systems, averaged across tasks, for each participant.

used in the task, F(1,366) = 68.85, p < 0.001. The absolute
loudness error is still significantly lower with the TRAINED

system (3.43 mvu) than with the BASELINE (6.84 mvu). The
effect of musicians performing better than non-musicians is also
preserved, F(1,366) = 26.75, p < 0.001. The effect of the TARGET

and its interaction with the SYSTEM also appears when looking at
the second half of the tasks, but much more mitigated than when
considering the whole task duration.

4.2. Beat Control
We now focus on beat control, by analyzing metronome and
combined tasks. Regarding the objective performance measures
in these tasks, Figure 10 shows the distributions of beat errors
(distance in time between metronome and performed beats) for
each participant across all metronome and combined tasks, with
64 values of εB per task (one per beat). As for the case of loudness,
we observe that the general tendency is to find these distributions
closer to 0 when the TRAINED system is used.

In the case of beat control, both systems work equivalently
if the estimated number of frames for anticipation nant = 0.
For this reason, the analysis has one more factor than in the
case of loudness control: ANTICIPATION. This factor has just two

levels (nant = 0 —no difference expected between systems— and
nant 6= 0). As before, we aggregate all 64 measurements per run
in a single mean absolute score to prevent overstating statistical
significance due to pseudoreplication. We fitted a linear model
to SYSTEM, SYSTEM INDEX, EXPERTISE, TASK TYPE, TARGET,
ANTICIPATION and their two-factor interactions, and ran an
ANOVA to study their effect on the absolute value of εB.

A significant effect is in fact caused by ANTICIPATION,
F(1,136) = 6.72, p < 0.01. The absolute beat error for
participants with nant 6= 0 (n = 18) is 0.009 s higher than
for participants with nant = 0 (n = 6). The underlying effect
is better explained by the interaction between ANTICIPATION

and SYSTEM (F(1,136) = 3.41, p < 0.01). In the case of participants
with nant 6= 0, the absolute beat error is 0.013 s smaller using the
TRAINED system. For the 6 participants for whom nant = 0, the
error is slightly smaller (0.003 s) using the BASELINE system.
These results indicate that the compensation introduced by the
TRAINED system is indeed useful to improve the performance
of participants who tended to anticipate or fall behind the beat
during the Warm up phase (nant 6= 0), i.e., when they performed
spontaneous conducting movements. These differences are in
the range of a few milliseconds and it could be argued that
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it would be hardly perceivable from the perspective of the
performer (Wessel andWright, 2002). Recall, however, that these
differences are not the differences in how beats are triggered
using each system (e.g., correcting by just one frame introduces
a 33.3 ms correction), but between the actual average achieved
performances. In other words, a 33.3 ms correction does not
imply a 33.3 ms improvement in the absolute beat error; still, in
average, there is an observable significant improvement.

The results also indicate that the error differed depending on
the musical EXPERTISE. Musicians show 0.009 s less absolute
error than non-musicians, F(1,136) = 10.75, p < 0.001.
Interestingly, the TARGET also affects the absolute beat error,
F(1,136) = 6.50, p < 0.001. However, this only occurs for
participants with nant 6= 0 using the BASELINE system. This
indicates that the correction that the TRAINED system applies is
particularly necessary for slower tempi. Indeed, focusing on the
18 participants with nant 6= 0, the TRAINED system outperforms
the BASELINE by reducing the absolute beat error in 0.007 s for
100 BPM tasks and 0.019 s in 80 BPM tasks.

Figure 11 shows the results of subjective ratings of beat
control, where participants rated in a 5-point scale ranging with
1 = “Instruments played much sooner than I intended,” 3 =
“Instruments played exactly when I intended,” 5 = “Instruments
played much later than I intended.” In this case, the best
rating is thus 3 (“exactly when intended”). The figure shows the
tendency of participants to give a better rating when using the
TRAINED system.

In order to statistically analyze the effect of the different
factors on the ratings, we perform the following analysis. We
define r∗B = 3 − |rB − 3|, which ranges from 1 to 3, being
1 = “Instruments played much sooner/later than I intended,” 2
= “Instrument played a bit sooner/later than I intended” and 3
= “Instruments played exactly when I intended.” r∗B, then, gives a
measure of how good or bad the participant felt the system was in
providing accurate control of beats, independently of whether a
possible bad behavior was caused by instruments playing sooner
or later than intended.

Again, we fitted a linear model on the factors of the
analysis and performed an ANOVA to study their effect on
r∗B. Participants rated their ability to make instruments play
when intended with an average 2.71 for the TRAINED system
and 1.97 for the BASELINE, being this difference significant,
F(1,136) = 743.5, p < 0.001. As expected, the perceived
difference was bigger for participants with nant 6= 0. They rated
the BASELINE with an average 1.72 and the TRAINED system
with 2.72. The 6 participants for whom both systems were
equivalent gave slightly better rating to the BASELINE (2.75
vs 2.67 for TRAINED). The interaction between TARGET and
SYSTEM [F(1,136) = 11.84, p < 0.001] shows that the reported
sense of control was significantly worse for 80 BPM tasks using
the BASELINE. As we saw before, this is the case where the
highest values for absolute beat error appeared. This suggests that
the ability to correctly perform the task (to make the orchestra
play in synchrony with the metronome) influenced the perceived
ability to make instruments play when intended.

As in the case of loudness, we examined the correlation
between the subjective and objective measures. In this case, we

expect a positive correlation, with negative values of εB for low
ratings, positive values of εB for high ratings, and εB values close
to 0 for rB = 3. Every point in Figure 12 corresponds to the
average value of εB and the rating provided by the participant
for a task, with the color indicating the SYSTEM being used. The
correlation in this case is weaker (0.48), but still in the expected
direction. This indicates that those participants who felt that
instruments came too early with respect to their gesture tended to
make the orchestra play in anticipation to the metronome, while
those who felt that instruments came too late tended to make the
orchestra beats fall behind the metronome. One-way ANOVA
shows that the difference of values of εB for different ratings is
significant, F(4,187) = 9.912, p < 0.001.

As we indicated earlier, we computed F-measure values from
the training data as indicative of the consistency of participants
to anticipate or fall behind the beat during the Warm up phase.
In order to test whether this had an effect on the results, we
compute 1εB for each participant as the difference between
average |εB| values for the BASELINE and TRAINED systems,
i.e., 1εB measures how much improvement there is using the
TRAINED system in comparison with the BASELINE. Then,
we compute the correlation between 1εB and F-measure values
across participants, obtaining a high value of 0.81. This indicates
that after the Warm up phase, just by looking at the data used
for adapting the TRAINED system, we can guess whether the
adaptation will introduce an improvement or not. To put it
another way: if time differences between beats in the music and
beats detected from hand movement are not consistent in the
warm up phase, then the adaptation introduced by the TRAINED
system does not guarantee an improvement.

Finally, we explore the possible learning and adaptation effects
during tasks. Figure 13 shows the evolution of the absolute beat
error along the 64 beats each task lasted, averaged across all
participants. A different curve is shown for each combination
of SYSTEM and EXPERTISE. We observe a more stable tendency
than in the case of loudness control. The error is higher
during the first bars, where participants seem to adapt to
make the orchestra synchronize with the metronome. The error
looks much more stable in the second half (from beat 33),
so we also ran the ANOVA again to check if the observed
effects also appear in the moment where participants seem to
have adapted.

The results indicate that there is still a difference of 0.003 s
between musicians and non-musicians, F(1,136) = 1.83, p < 0.01.
This difference is however smaller than when considering the full
task (0.009 s), which indicates that part of the better performance
of musicians is due to their ability to adapt faster. A greater
difference is still observed for the SYSTEM: the performance is still
notably better (0.008 s improvement) with the TRAINED system
than with the BASELINE, F(1,136) = 10.33, p < 0.001.

4.3. Overall Evaluation
As we indicated, participants were able to freely perform with
both systems again at the end of the experiment, after which
they were asked whether they have found differences between
both systems and whether they preferred any of them in terms
of loudness and beat control.
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FIGURE 11 | Ratings for beat control provided by participants at the end of metronome and combined tasks.

FIGURE 12 | Control over beat rating (rB) and beat error (εB) of all metronome and combined tasks.

FIGURE 13 | Average evolution of absolute beat error (|εB|) for different combinations of SYSTEM and EXPERTISE.

All participants indicated that they had indeed noticed
differences between both systems. Regarding loudness control,
all participants preferred the TRAINED system, except for

participants 22 and 8 (the outlier), who preferred theBASELINE.
Regarding beat control, three participants (2, 6, and 14) indicated
that they did not have any preference between both systems, and
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one (12) showed preference for the BASELINE system. All these
four participants were amongst those with nant = 0 (i.e., both
systems were equivalent in terms of beat control). The rest of the
participants showed preference for the TRAINED system.

5. DISCUSSION

Results of the experiment suggest that both hypothesis are
confirmed: the usability of the proposed system, with the
mapping built from the analysis of spontaneous conducting
movements, is better both in terms of providing a more intuitive
control over loudness (H1) and a more precise control over beat
timing (H2). In both cases, results of objective evaluation and
subjective feedback provided by participants are coherent. Note
that, as indicated above, we use intuitive in the sense that users
were not given instructions on how each systemworked, and they
were just learning by performing.

We believe that the proof of these hypotheses is particularly
relevant considering that parameters were learned in
spontaneous movements, i.e., participants where not making
a conscious training of their personalized systems when the
parameters for control were learned. This is important for
public installations where, if the interaction designers want to
take advantage of user customization, it is preferable to make
it in a way that is transparent to the user. Our experiment was
however carried out in a lab setting, so social factors may arise in
such public settings that could condition the direct applicability
of the observed results. We have undertaken some informal
validation during public outreach events that seem to validate the
presented results, but formal validation remains as a necessary
task for future work. Beyond the concrete scope of systems for
music conducting, our conclusions can be relevant for other
interaction design scenarios using metaphors: the knowledge of
the user from the original activity can be explicitly exploited in
the system.

Similar applications can be defined in a context were learning
does not take place by automatically analyzing spontaneous
movements but allowing users to consciously create their
own personal mappings. This would be closer to Mapping
by Demonstration as introduced by Françoise (2015), and can
benefit from Interactive Machine Learning techniques for DMI
building (Fiebrink and Caramiaux, 2016). We have in fact
already considered this approach in the context of conducting
to allow users to define their own space for controlling
articulation (Sarasúa et al., 2016).

Precisely because the focus of this work was to test whether
the information observed in spontaneous movements is useful
to be applied during interaction, the parameters under control
and the systems under comparison were kept simple. The learned
parameters are applied, in the end, to modify the rules of
the system used as baseline (by using appropriate descriptors
and weights to control loudness and by compensating for
the observed anticipation for beat). However, as we pointed
out in the introduction, previous conducting systems have
used more sophisticated techniques to deal with temporal
information from the gesture (Brecht and Garnett, 1995; Usa

and Mochida, 1998; Ilmonen, 1999; Kolesnik, 2004). We believe
that the conclusions from this experiment are not restricted
to the case of simple rule-based systems, nor to just the
control of beat and loudness. Particularly suitable for more
sophisticated and complex gesture-soundmappings to be learned
from few observations would be dynamical models that adapt
dynamically to variations (Caramiaux et al., 2014b) or statistical
models like HMMs that learn spatio-temporal variations from
gesture (Françoise et al., 2014).

In the field of NIME, it is often hard to establish a criterion
for evaluating the quality or usability of musical interfaces. In
the concrete case of systems using the conductor metaphor,
evaluations, when provided, are most of the times based on
subjective feedback provided by participants (Lee et al., 2004;
Bergen, 2012; Rosa-Pujazon and Barbancho, 2013) or are focused
on evaluating technical aspects specific to the method being
used (Brecht and Garnett, 1995; Toh et al., 2013). The warm
up and learning phases of the procedure we followed in our
experiment are specific to the scenario where the user receives no
instructions and observation from her spontaneous movements
is required. However, we believe that the kind of tasks we used
are suitable to other cases where it is necessary to objectively
assess the suitability of a musical interface to control some
specific parameters.

In our experiment we also were interested in the effect of
musical expertise in the interaction.We observed that, in general,
musicians achieved better performance than non-musicians.
However, focusing on loudness control, this difference was
reduced with the proposed system. This suggests that musicians
were better at learning how to conduct with the BASELINE

system, while non-musicians probably tried to stick to their
intuitions and were less able to learn by playing. Provided
that this effect (greater improvement for non-musicians) was
not observed for beat control, this might also indicate that
non-musicians, when using the BASELINE system, tended to
focus more on beat control and “forget” about loudness. In
accordance with this idea, non-musicians got worse results in
combined tasks than in simple ones for loudness control, while
the opposite happened for beat control. Results also seem to
reveal that this difficulty of non-musicians to control loudness
with the BASELINE system was particularly noticeable in louder
parts. This might indicate that they were unable to discover that
loudness was controlled with the size of the gesture or that they
were probably unable to perform big enough gestures at a given
tempo. In any case, all results back the idea that non-musicians
were the most benefited by using the proposed system, which
learns its mapping from their spontaneous movements.

In the analysis of loudness control, we removed participant
8, whose results were causing spurious effects for a number of
factors and interactions. However, the case of this participant
must be carefully considered, as it shows the problems that can be
encountered when applying knowledge extracted from analyzing
spontaneous movements on top of fixed music. Even though
the results from the warm up phase, where the parameters for
the TRAINED system are learned, indicate a high correlation
(0.920) between QoM and midi velocity, the resulting model was
clearly not intuitive for this participant to control loudness. In
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most cases, modifications introduced by the TRAINED system
created more intuitive interfaces, but the possibility of learning
wrong clues is present and should be considered. In the context
of public installations, this can be addressed by giving the
user the possibility to perform an explicit, conscious training;
or by providing explicit usage instructions (i.e., explaining the
mapping) when bad performance is detected.

Wewould also like to point out some considerations regarding
the limitations of the input device used in this work: the Kinect
v2. Concretely, the implications of its motion capture frame
rate and latency. The Kinect v2 works at 30 fps (30 Hz).
This control granularity is far from optimal for many real-time
musical applications. For example Jordà (2005) situates 100 Hz
as a reasonable lower limit, while Mulder (1998) considers a
maximum time delay of 20 ms (50 Hz) acceptable. This, of
course, depends on the context of and the application. In our
case, we were using a synthesis engine with bowed strings sounds
and legato articulation. This makes the 33 ms precision of the
device more acceptable than it would be for percussive sounds.
Subjective feedback from the experiment suggests that indeed,
with this device under these conditions, participants felt they
were able to make instruments play when intended despite the
frame rate of the device. Another aspect to take into account
regarding the time granularity of the device is that the average
values of εB (time difference between metronome and played
beats), given in ms, are meaningful because in all cases we are
considering a high number of beats. The program was designed
to guarantee no jitter for consecutive metronome beats at the
millisecond level, and the time between metronome beats always
was the one corresponding to the tempo (750 ms for 80 bpm,
666.6 ms for 90 bpm, and 600 ms for 100 bpm). The Kinect v2
frames are not guaranteed to appear every 33.3 ms as there is
some jitter (Sell and O’Connor, 2014). In this sense, for a single
detected beat in the movement, part of its difference with respect
to the closet metronome will always be caused by this jitter.
However, when we observe differences in two large distributions
of εB, we can assume that these differences are caused by the rest
of the implicated factors.

Latencies around 20–30 ms are commonly considered
acceptable for most musical applications (Lago and Kon, 2004).
The Kinect v2 has a ∼20 ms latency (Sell and O’Connor,
2014), and the computation of velocity from raw positional
data using low-pass differentiators introduces two samples of
delay (Skogstad et al., 2013). This means that this latency is
implicit in observed differences in anticipation to the beat. In this
sense, the observed improvement introduced by compensating
for different tendencies to anticipate or fall behind the beat is also
compensating for the device and computation latencies.

Having these considerations in mind, we can further explore
the results for beat control. BASELINE and TRAINED systems
were equivalent for beat control for participants for whom the
estimated anticipation was nant = 0. Results show how a strong
difference in the performance for beat control between both
systems was just observed in participants with nant 6= 0. Strictly
speaking, however, there is a difference between both systems
when nant = 0: the mapping for loudness control is different.
This could have caused a better performance for beat control

of the TRAINED system, specially in combined tasks, but this
effect was not observed. Interestingly, the results also show how
participants with nant 6= 0 had special difficulties with the
slowest tempo (80 BPM) task that were mitigated when the
estimated anticipation was compensated (i.e., when they used
the TRAINED system). This is unlikely to be caused by the time
granularity limitations of the input device, which in fact would
penalize the faster task. At 80 bpm (750 ms) there are 22.5 Kinect
frames between two consecutive beats, while there are 18 at 100
bpm (600 ms)9. In this sense, the results suggest that observed
differences in terms of anticipation of the beat are particularly
relevant for slower tempos.

In loudness tasks, we added a visual feedback to maximize
the ability of users to remember when they were supposed to
perform the changes in loudness during the task execution.
This means that we cannot separate the effect of the resulting
audio and visualization in the results from the tasks (i.e., users
could be adapting their performance based on the resulting
visuals, audio or both). However, we also have subjective ratings
from the final stage (overall evaluation), where participants
could just freely perform without any required task or visuals.
Results indicate that they indeed preferred the TRAINED

system in terms of loudness control, which indicates that the
preference observed during the tasks (and confirmed by objective
measures) is in agreement with subjective sense of control during
free performance.

An additional consideration to point out from the analyzed
data is that the group of participants was unbalanced in terms of
gender (six female participants out of twenty four) or background
education (the experiment was carried out in the University
facilities with students and University staff). While we do not
expect any effect of gender on the performance, it would be
desirable to perform experiments with more balanced groups in
order to be able to investigate this.

We have not dealt with the underlying mechanisms that may
cause differences between participants. Whether the different
tendencies to anticipate or fall behind the beat are intentional,
caused by different sensorimotor synchronization to the beat
(Aschersleben, 2002) or by different hand gestures is something
we cannot analyze from the acquired data. We could even expect
different results if the music material or chosen sound engine
had been different. Observation studies of sound-accompanying
movements by Jensenius (2007) show that these movements are
influenced, among other things, by action-sound types (impulsed,
sustain, iterative) that depend on the instrument and articulation
with which it is played. In any case, for the goal of this work,
our focus was to compensate an observed effect, regardless of
the mechanisms that cause it. Also, we selected a musical excerpt
where the main melody mostly contains quarter notes, avoiding
possible problems with participants conducting to the rhythm
instead of the beat, as observed by Lee et al. (2005). This is
something to take into consideration, particularly when the goal
is to create a system that users can learn to use by themselves. In

9We can assume that the input device limitations would start to harm the
performance for faster tempo, even though it was not observed for the selected
tempos in our tasks.
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addition, we did not analyze beat misdetections. Again, our focus
was the comparison between both systems; possible errors in the
detection of the ictus are common to both and are outside the
scope of interest in this work.
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