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Research over several decades has increased our understanding of the nature of

reparative and regenerative processes in the dental pulp, at both the cellular and

molecular level. However, advances in scientific knowledge have not translated into novel

clinical treatment strategies for caries-induced pulpitis. This narrative review explores the

evidence regarding the ability of inflamed pulp tissue to heal and how this knowledge

may be used therapeutically. A literature search and evidence analysis covering basic,

translational and clinical pulp biology research was performed. The review focuses

on (1) the regenerative and defense capabilities of the pulp during caries-induced

inflammation; (2) the potential of novel biomaterials to harness the reparative and

regenerative functions of the inflamed pulp; and (3) future perspectives and opportunities

for conservative management of the inflamed pulp. Current conservative management

strategies for pulpitis are limited by a combination of unreliable diagnostic tools and an

outdated understanding of pulpal pathophysiological responses. This approach leads

to the often unnecessary removal of the entire pulp. Consequently, there is a need

for better diagnostic approaches and a focus on minimally-invasive treatments utilizing

biologically-based regenerative materials and technologies.
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INTRODUCTION

Dental caries remains the most important threat to the dental pulp (1) with current treatments
dependent on the extent and depth of the lesion, its rate of progression, disease activity, related
signs and symptoms, as well as the views of the treating dentist (2). Research investigating caries
progression in enamel and dentine has greatly enhanced our understanding of the nature of
the carious process and improved our management strategies. Caries is no longer considered a
progressive, destructive process, and opportunities exist to reverse its advancement by promoting
an optimal healing environment which encourages remineralisation and repair of the lesion (3).
Notably, however, conservative treatment approaches for caries-induced pulpal inflammation and
its management are yet to be fully developed. Although, appropriate management of caries can
predictably reverse a mild pulpitic response, the current management strategies for more advanced
caries-induced pulpal inflammation are often invasive and technically-demanding procedures
involving pulpectomy and root canal treatment.
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The aim of the caries-induced pulpal inflammatory response
is to defend the tissue from further insult and promote
healing (4). The inflammatory process is therefore closely
linked to regenerative events and the presence of pulpal
inflammation should not be assumed to result exclusively in
tissue degeneration. Traditionally, deep carious lesions (5) were
associated with bacterial invasion of the dental pulpal tissue and
if the resulting pulpal inflammation was irreversible, the removal
of the entire pulp or the extraction of the tooth was indicated (6).
However, this approach to diagnosis and treatment is somewhat
empirical and does not reflect variations in the pulp status found
beneath deep carious lesions. For instance, it has long been
recognized that within deep carious lesions, large variations in
activity is present (7). Therefore, it is reasonable to speculate that
large variations in pulpal responses also exist within deep lesions
and that pulpitis is not necessarily linearly progressive (8).

Maintaining the vitality of the dental pulp is essential
as it possesses important sensory, defensive, nutritional and
functional properties (9). Given our developing understanding
of pulpal biology, the promotion of minimally invasive vital
pulp treatments (VPTs) to retain its viability is now paramount.
This review, therefore, aims to examine the scientific basis for
such therapies by exploring at the cellular and molecular level
the healing potential of the inflamed pulp and to discuss future
perspectives for its’ management.

THE PROCESS OF TISSUE REPAIR IN
PULPITIS

Repair is defined as the restoration of tissue architecture and
function after an injury. It encompasses two separate processes:
tissue regeneration and replacement (10). Regeneration refers
to healing in which new growth restores portions of damaged
tissue to their normal (pre-disease) state. Replacement is a form
of healing in which severely damaged tissues, which cannot
be regenerated, are repaired by the laying down of connective
tissue. The nature of the repair process whether, regeneration,
replacement or both, depends on the type and severity of tissue
damage. Tissues with more proliferative capacities and rich in
a stem cell population, favor regeneration, while tissues that
contain terminally differentiated cells are likely to heal and
repair using tissue replacement. Anatomically the dental pulp,
although populated by terminally differentiated cells, including
odontoblasts, also contains a resident population of adult stem
as well as migratory progenitor cell populations (11) that can

Abbreviations: AP-1, Activator protein-1; CGRP, Calcitonin related peptide;

DPSCs, Dental pulp stem cells; ERK, Extracellular signal-regulated kinase; IL-1α,

Interleukin-1α; IL-2, Interleukin 2; IL-6, Interleukin 6; IL-8, Interleukin-8; IL-10,

Interleukin-10; IL-12, Interleukin 12; IL-β, Interleukin- 1β; IRAK, Interleukin-1

receptor-associated kinase, JNK, The c-jun N-terminal kinase; MAPK, Mitogen

activated protein kinase; MTA, Mineral trioxide aggregate, NFKB, Nuclear factor

kappa b; NLRs, Nod like receptors; PAMPs, Pathogen associated molecular

patterns; PRR, Pattern recognition receptor; ROS, Reactive oxygen species; SOCS,

Suppressor of cytokine signaling; SP, Substance P; STAT, Signal transducer and

activator of transcription; TGFβ, Transformer growth factor β; TLR, Toll like

receptor; TNF-α, Tumor necrosis factor alpha; TNFAIP3, TNF-alpha induced

protein 3; VPT, Vital pulp treatment.

contribute to reparative processes, consequently a combination
of replacement and regeneration could occur in the diseased
and damaged pulp. The terms repair and regeneration have
generally been used interchangeably when describing the nature
of pulp wound healing process (12). In reality, however true
regeneration and reconstitution of the native tissues is seldom
achieved after damage to dentin-pulp complex using current
clinically-approved treatment modalities, therefore the pulpal
healing response is most appropriately described as a repair.

In general, any tissue repair process involves the three
sequential phases of inflammation, proliferation and remodeling.
These phases, which also occur in pulpitis, are shown in Figure 1

and are discussed below.

The Inflammatory Phase
The dental pulp has unique cellular, neural and vascular
elements that play important roles in pulpal homeostasis and
pathophysiology in response to carious injury (13). In pulpitis,
PAMPs trigger a protective inflammatory response characterized
by the dynamic release of inflammatory mediators (14). This
response has molecular and cellular components, the purpose of
which are primarily to combat invading microbes, but critically it
can also support the repair process (15).

A hallmark of this inflammatory process is the activation
of the NFκB and MAPK signaling cascades, following PAMP
binding by immune and non-immune cells. This process
subsequently results in the release of a range of pro-inflammatory
cytokines, including TNFα, IL-1, IL-8, IL-12, IL-6, and, IFN
δ (Figure 1) (14). A range of dental pulp cells, including
odontoblasts, fibroblasts, neurones, endothelial cells and stem
cells express intracellular and extracellular receptors able to
detect bacterial components. The best characterized receptor
family within the pulp are the Toll-like receptors (TLRs), which
can detect PAMPs ranging from bacterial DNA to cell wall
derived lipopolysaccharides (16). The cytokines subsequently
elicited are known to be abundantly expressed in inflamed pulpal
tissue (17, 18). Once released they further exacerbate NFκB and
other signaling pathways, including AP-1 and STAT to amplify
the cytokine response in a paracrine manner. Notably, recent
studies have indicated that the levels of these cytokines are highly
expressed in teeth diagnosed with advanced, irreversible pulpitis
and, therefore their assay has been suggested as a potential for use
as diagnostic biomarkers for pulpitis (19).

The exact role these cytokines play in the repair process is
not known, although evidence suggests their contribution is via
several different mechanisms all of which are likely context-
dependent. For example, IL-8 is produced by immune and
pulp cells to attract neutrophils, but also has pro-angiogenic
properties (20) and can act as a chemoattractant for DPSCs
(21). Similarly, TNFα contributes to the repair process via
multiplemechanisms including promoting DPSC functions, such
as migration and proliferation (22, 23), and osteogenic and
odontogenic differentiation (24, 25). However, these effects are
likely to be more evident in the relatively early acute rather
than the chronic inflammatory phase, where excessive chronic
inflammation is generally understood to cause impaired healing
(26, 27).
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FIGURE 1 | Diagrams illustrating the three phases of the repair process in pulpitis, showing (A) cell and molecular involvement and (B) temporal dynamics. Following

carious infection and lesion progression the inflammatory phase becomes characterized by vasodilation and increased migration of immune cells (e.g., monocytes,

macrophages, dendritic cells, mast cells and neutrophils) in response to cytokines and other chemotactic signals released by tissue resident cells in response to

PAMPs. The cytokines and chemokines act via paracrine signaling (red arrow) to amplify the inflammation. Neuronal tissues also release neurotrophic factors, such as

SP and CGRP, which also influence the course of the inflammatory and healing reactions. When the infection is under control, the inflammatory process begins to

resolve and there is an increase in cells and molecules which act in an anti-inflammatory manner. Many of the cytokines which drove the inflammatory response along

with newly expressed molecules promote proliferative responses as the disease context changes toward a healing response. M2 macrophages are also evident which

promote inflammation resolution. Proliferation and migration of stem/progenitor cells continue to complete the healing process by the differentiation of new pulp tissue

and odontoblast-like cells that produce reparative dentine during the remodeling phase.
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The rich and extensive innervation of the dental pulp
results in pulpal nerves being located at sites able to respond
to injury by mounting a so-called neurogenic inflammatory
response, which is characterized by the release of neuropeptides
(28, 29). Neuropeptides such as SP and CGRP have been
shown to be upregulated in pulps associated with deep
carious lesions as well as in symptomatic pulpitis (30). The
neuronal sprouting associated with pulpal inflammation and
the local release of neuropeptides into the dental pulp tissue,
mediate not only an enhanced protective pain reflex but also
a neurogenic inflammatory response targeted at combatting
infection and facilitating healing and repair (31). Locally released
neuropeptides play important roles in regulating pulpal blood
flow (32) and in the production of angiogenic growth factors
(GFs) which facilitate healing (28). In addition, neuropeptides
display antimicrobial activities against oral pathogens including
those associated with pulpal infection (33).

At the cellular level, pulp cells, such as fibroblasts,
odontoblasts and DPSCs, also play critical roles in regulating
the pulpal response to caries. While odontoblasts are primarily
responsible for dentine formation however due to their
anatomical location in the peripheral region of the pulp, it
is not surprising that these cells display sensory (34) and
immunological properties, which mediate early protective
innate immune functions in response to cariogenic bacteria and
external injurious stimuli (35). Fibroblasts are the most abundant
cells within the pulp and have the ability to sense the external
environment (36). These cells can produce numerous cytokines
and GFs that facilitate healing and repair (28). Furthermore,
pulp fibroblasts have been shown to synthesize functional
complement components that have both antimicrobial activity
and the ability to recruit stem cells in response to bacterial toxins
(37, 38). DPSCs in addition to their key role in tissue regenerative
also provide immunomodulatory functions that enable control
of inflammation to achieve tissue homeostasis (39).

The Proliferative Phase
The proliferative phase often overlaps with the inflammatory
phase. Here cellular activities predominate, including activation,
proliferation, migration, and differentiation of tissue-resident
progenitor cells. Activation and recruitment of these cellular
processes begin to occur when pulp inflammation begins to
subside (40). Indeed, the signals required to mobilize these
cells from their niche are largely products of inflammation as
described above and include cytokines, chemokines, GFs and
complement components (37, 38).

Transition From Inflammation to Proliferation

Although initiated by inflammation, for the proliferative phase
to progress to repair, the inflammatory processes have to be first
controlled and then resolved. In general, if the inflammatory
response is able to contain the microbial infection, then the
overall response is shifted toward the generation of anti-
inflammatory signals and the resolution of inflammation.
The signals mediating timely control of the inflammatory
response and the shift to resolution and repair are not
entirely elucidated, however a role for macrophages has been

suggested. In the early inflammatory phase macrophages are
activated by the inflammatory microenvironment to polarize
into pro-inflammatory phenotype (M1 macrophages), that
perform vital innate immune functions such as phagocytosis of
microbes and dead cells and production of pro-inflammatory
cytokines. Later in the healing process and with the transition
from inflammatory to proliferative phase, macrophages transit
from a pro-inflammatory M1 to a reparative M2 phenotype,
expressing anti-inflammatory mediators such as, IL-10 and TGF-
B1, which results in matrix deposition and tissue remodeling
(Figure 1). The M1–M2 transition is critical for the resolution
of inflammation and tipping the balance to tissue repair (41).
This, together with lipid-derived pro-resolving mediators, as
well as activation of intracellular stop signals that inhibit the
innate immune response (42), all orchestrate to control the
inflammatory process.

IL-10 is a potent anti-inflammatory cytokine which acts
by suppressing the synthesis of pro-inflammatory cytokines
and chemokines in macrophages through activation of STAT3
signaling (43). Notably, high levels of IL-10 have been shown
to be detectable in the dental pulps from teeth with deep caries
lesions (44) and in cariously-exposed pulps (45). In comparison
with IL-8, the levels of IL-10 were higher in asymptomatic carious
exposure cases compared with cases clinically diagnosed with
irreversible pulpitis (45), which suggests that there is a different
degree of inflammation in asymptomatic cariously exposed pulp
compared with symptomatic pulps. Although carious exposure
is generally considered irreversible pulpitis (6), the outcomes
for VPT are better in cariously exposed pulp with a diagnosis
of reversible pulpitis (46), than for symptomatic irreversible
pulpitis, when presumably the infection and inflammatory
processes are more severe (47).

Several members of the TGF-β family have been implicated
in negative regulation of the inflammatory reaction. Indeed,
high-through-put gene expression analysis showed increased
levels of TGF-β family proteins and their receptors (48) in
carious compared with healthy pulps. Furthermore, TGF-β1
was relatively highly expressed in the odontoblastic and sub-
odontoblastic layer of pulpal specimens with irreversible pulpitis
indicating that it played a significant role in the dentinal repair
processes after pulpal inflammation (49, 50).

Pro-resolving lipid mediators, such as lipoxins, resolvins,
protectins and maresins, possess potent anti-inflammatory
properties and may play an important role in the resolution
of dysregulated persistent inflammation in pulpitis. Lipoxins
prevent the influx of neutrophils and help clear dead cells and
tissue debris to modulate inflammation. Resolvins also reduce
inflammation and promote healing (51), and Resolvin E1 has
been shown to reduce pulpal inflammation in vitro and in a rat
model of pulpitis (52). However, the potential role of endogenous
pro-resolving lipid mediators in the suppression and resolution
of pulpitis remains to be fully investigated.

In addition to the above molecular processes, many
intracellular stop pathways can be activated to control the
dysregulated inflammatory response, including signaling
involving IRAK, SOCS-1 and SOCS-3, and theTNFAIP3)
or A20 (53, 54). Despite the evidence demonstrating a role
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for all these pathways in controlling inflammation, their
contribution to the regulation of pulp inflammation has yet to be
rigorously investigated.

The Remodeling Phase
The final phase of the repair process involves tissue formation
and maturation. In the case of the mineralised dentine barrier
repair in pulpitis, DPSCs and other progenitor cells activated in
the proliferative phase can differentiate into odontoblast-like cells
under the influence of bioactive molecules. These cells replace
the original odontoblasts that were lost due to carious disease
in a process termed reparative tertiary dentinogenesis. DPSCs
are able to differentiate, given a conducive environment, under
the influence of certain environmental cues. However, the signals
required to switch on this differentiation process are complex
and not yet fully elucidated. Furthermore, the exact phenotype
of the odontoblast-like cells and their differentiation origin also
requires further characterization (54–57).

Regardless of their origin and nature, these cells lay down a
collagenous matrix that subsequently undergoes mineralisation
to form reparative dentine. The structure of reparative dentine is
generally different to that of primary and the reactionary dentine
which can be generated by the original developmentally derived
odontoblasts. In general reparative dentine is less organized and
lacks the continuous tubular structure of primary, secondary
and reactionary dentine; however, this lack of permeability may
protect the pulp from further external insult (58). Several studies
have shown that the pulp wound healing response often results in
the early formation of fibrodentine with an osteotypic appearance
(59), and this structure cannot provide an effective barrier to
protect the pulp from exogenous irritants. The factors that
influence the nature and the quality of the final hard tissue
formed are not known, but they are likely to be related to
the extent of the inflammatory process, level of infection, the
pulp capping material used, as well as the technical skill of the
clinical operator.

THE PULPITIS DIAGNOSIS CONUNDRUM

Currently, the clinical diagnosis of pulpal status is based on
subjective tests relying on patients’ reported symptoms, which
unfortunately do not accurately correlate with the histological
status of the pulp (60). In healthy teeth the odontoblast layer is
intact, with no evidence of inflammatory cells within the pulp
tissue (Figure 2A). In teeth that caries does not expose the pulp,
the inflammation is likely to be relatively mild or moderate
(Figure 2B) and resolve with the removal of the causative
agent following clinical intervention. Consequently, pulpitis is
treatable, is considered reversible and therefore the pathology is
defined clinically as reversible pulpitis (6). In this situation, the
degree of inflammation is generally compatible with healing and
native odontoblasts produce reactionary dentine to protect the
pulp from further injury.

In deep caries (lesion extend to the inner quarter of dentine,
but with zone of hard or firm dentine between the caries and the
pulp) and in the extremely deep caries lesions (lesion penetrates
the entire thickness of the dentine) (5), bacteria may invade the

FIGURE 2 | Pulp response to caries progression: (A) H&E staining of the

dental pulp from a sound molar tooth showing healthy tissue with an intact

odontoblast layer (B) In shallow caries bacteria and their components (black

arrows) diffuse through dentinal tubules but have not reached the pulp. The

odontoblast layer remains intact and the pulp tissue responds with formation

of reactionary dentine. (C) In deep caries there is a more pronounced

inflammatory response to the increased levels of infiltrating bacteria within the

dentine (arrowheads). The dentine structure is irregular, partially destroyed and

exhibits a non-tubular morphology. Reparative dentine (white arrow) is

deposited beneath the carious lesion and there is an apparent and localized

inflammatory cell infiltrate (dotted line). (D) Brown and Brenn staining of

cariogenic bacteria (red arrows) in the same section as is shown in (C). P =

pulp, d = dentine. Figure adapted from El Karim et al. (61), J Endod.

Permission obtained from Elsevier.

pulp leading to more severe forms of pulpitis (Figures 2C,D).
Here the pulpal diagnosis is generally considered irreversible.
This means that the pulp is not amenable to treatment and should
be removed by pulpectomy or extraction (6). However, this
empirical approach to diagnosis and treatment is not compatible
with the emerging minimal intervention approaches and does
not translate our current knowledge on the importance of
inflammation in the tissue repair process described above.

The dogma that claims severe pulp inflammation is
irreversible, is based on the assumption that the pulp has
limited ability to recover from the infectious and inflammatory
challenge due to the anatomical constraint of its low compliance
environment and lack of collateral circulation (62). However, the
dental pulp possesses anatomical and physiological properties
that may help compensate for these limitations. The pulpal blood
flow is relatively high, compared with that of other oral tissues
(63), and numerous shunt vessels exist (64), which provide direct
communication between pulpal arterioles and venules. Notably,
when intrapulpal pressure rises during inflammation, shunt
vessels open to reduce this pressure, thereby allowing normal
blood flow to be maintained (65).

Another compensatory mechanism for the low compliance
environment may be provided by the dental pulp’s extracellular
matrix (ECM). It is accepted that the resilience of the ECM
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limits intra-pulpal pressure to the site of irritation (66). Indeed,
significant pressure differences have been observed at sites only
1–2mm apart in the pulp (67). Pressure from the increased tissue
fluid collapses the thin-walled venules in the microenvironment
of the affected pulp tissue, causing a localized vascular stasis and
ischemia, which results in localized cellular death. It is only when
the structural integrity of the pulp tissue is lost, as a result of
overwhelming inflammation, that the increased tissue pressure
spreads resulting in compression of the blood vessels at the apex
of the tooth leading to total pulpal necrosis (68).

The pulpal ECM may also act as a barrier to the spread
of microorganisms and toxic products, thereby limiting the
infection and inflammation to a specific microenvironment
or compartment within the inflamed pulp (Figures 3D–F).
In general, the inflammatory process usually begins at the
site of bacterial entry and spreads circumferentially from one
compartment to another (70, 71). Consequently, the co-existence
of different histopathological conditions in various parts of the
same pulp has previously been reported (72), making a single
diagnosis for the entire pulp tissue impossible in most cases.
Indeed, a range of classical studies reported no clear association
between clinical signs and symptoms and the histological state of
the pulp (73, 74). As a result, it has been considered impossible to
accurately classify the pulpal condition and in particular to clearly
differentiate between pulps that are reversibly or irreversibly
inflamed (73). Notably histological studies determined that
some teeth clinically diagnosed with irreversible pulpitis had
histological features in common with reversible pulpitis (69).
Furthermore, complete absence of inflammation and bacteria
in the radicular pulp tissue of teeth clinically diagnosed with
irreversible pulpitis was reported (Figure 3C). This is clinically
relevant as it supports the use of pulpotomy techniques and
removal of only the inflamed pulp tissue in teeth with irreversible
pulpitis. It should be noted that reparative dentine formation
could be observed in teeth with cariously exposed pulps and
bacterial infection (Figure 2C), further supporting the above
argument and questioning the traditional approach of diagnosing
pulpitis as reversible or irreversible.

FUTURE PERSPECTIVES FOR PULPITIS
MANAGEMENT

Persistent pulp inflammation is likely to delay and compromise
the transition to the proliferative and remodeling phase to
complete the repair process. Therefore, novel approaches to
resolve chronic inflammation, based on creating an environment
inductive of repair are discussed below.

Improve the Accuracy of Pulp Status
Diagnosis
As discussed above the current description of pulpitis as
reversible/irreversible is not “fit for purpose” as the development
of minimally invasive approaches such as VPT have shown
that maintenance of at least part of the pulp is possible in
teeth displaying signs and symptoms of irreversible pulpitis (47).
Clinical research is required to validate novel accurate diagnostic

FIGURE 3 | Clinical vs. histological diagnosis of pulpitis: tooth with deep

caries showing different phases of destruction and inflammation reflecting

different histological diagnosises. (A) Radiograph of a maxillary third molar

from a patient with severe spontaneous pain and clinical diagnosis of

irreversible pulpitis. (B) Buccolingual sectioning plane of the tooth showing the

infected dentine. (C) Histological section showing the dentine and pulp

chamber in. An abscess is present buccally (Taylor’s modified Brown and

Brenn, original magnification X8). (D) A detailed view of the abscess cavity with

necrotic debris heavily colonized by bacteria. (E) Higher magnification view of

the upper left portion of the abscess, the bacterial infiltration is limited by

fibrous connective tissue. (F) High-power view of the rectangular area in (E)

showing the fibrous connective tissue. (Circular inset) shows a high-power

view of the area of the right portion of the abscess indicated by the arrow in

(D). Increased accumulation of bacteria and PMNs are evident. [Figure

adapted from Ricucci et al. (69), J Endod. Permission obtained from Elsevier].

classifications of pulp disease status and related treatments (75).
In addition, the current limitations of thermal and electric
diagnostic tools for pulpitis should be addressed by developing
more accurate and sophisticated molecular chairside tests. This
is particularly relevant in cases of exposed pulps where blood
or tissues obtained during routine treatment can be utilized
on clinics in real-time to determine the level of appropriate
biomarkers which subsequently enable accurate diagnosis and
case selection. Biomarkers could also be collected and measured
non-invasively in gingival crevicular fluid and dentinal fluid for
pulpal diagnosis (19).

Deal With Bacterial Infection
Chronic pulp inflammation is sustained by the presence of a
heavy bacterial burden. With the progression of caries, bacteria
enter the pulp space and cause a localized infection resulting in
a cariously-exposed pulp (76). Although sub-infection levels of

Frontiers in Dental Medicine | www.frontiersin.org 6 March 2021 | Volume 2 | Article 651219

https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/dental-medicine#articles


El karim et al. Inherent Potency of the Dental Pulp

bacteria have been shown to enhance the infiltration and function
of neutrophils andmonocytes/macrophages to accelerate healing,
infection is likely to compromise the protective inflammatory
phase, disrupt the normal inflammation-proliferation phase
transition and consequently impair healing (77). It is therefore
not surprising, that reactionary dentine formation reportedly
occurs in the case of cavitated and non-cavitated lesion in the
absence of bacterial invasion and infection of the dental pulp
(78). Moreover, the progression of the carious lesion can result in
different cellular responses within the pulp and different patterns
of dentine formation (79), suggesting different bacterial biofilm
growth conditions within the carious lesion (80).

In deep carious lesions with mild to moderate pulpal
inflammation, removal of heavily infected dentine using stepwise
excavation will reduce the bacterial load and following the
placement of a restoration with a good seal, the maintenance
of pulp vitality and dentine repair should be achieved (81). In
cases of an exposed pulp, wound infection already exists and
considerations should be given to cleaning the wound with an
antibacterial irrigant, such as sodium hypochlorite and to ensure
appropriate isolation to prevent further contamination with
oral bacteria (82). VPTs such as pulp capping and pulpotomy
procedures are indicated for managing cariously exposed pulps
(5). Direct pulp capping is generally highly successful in non-
infected traumatic exposure (83), but recent data showed high
success rate for direct pulp capping of cariously exposed pulp
using calcium silicate cements (84). These materials have a
direct anti-bacterial action as well as tight sealing properties
to prevent microleakage and subsequent infection. The latter
property is considered critical for their superior histological
and clinical performance compared with traditional calcium
hydroxide preparations (85).

Harnessing Cellular Signaling Pathways in
Pulpitis for Repair
The translation of extracellular signals surrounding the dental
pulp to cellular responses is the result of a complex integration
of numerous signaling pathways. These pathways regulate the
inflammatory responses and therefore may directly influence
the repair process in pulpitis. Among these, as has been
previously highlighted, the NFκB and MAPK pathways are well-
characterized in dental pulpal inflammatory and repair processes.

The NFκB pathway is one of the most important signaling
cascades in the regulation of immune responses and considered
a prototypical pro-inflammatory signaling pathway, largely
based on its role in regulating the expression of numerous
pro-inflammatory genes, including cytokines, chemokines and
adhesion molecules (86). As many molecules with important
functions in repair, including receptors for chemokines and
GFs, mediate their effects through NF- kB pathway activation,
its’ signaling controls repair events through direct or indirect
mechanisms. Indeed, many studies have already shown that
this intracellular pathway mediates osteogeneic and odontogenic
differentiation of DPSCs under a range of environmental
contexts (87, 88). In an acute inflammatory response, NFkB
signaling may mediate the production of cytokines or GFs

that are known for their ability to induce repair. In situations,
however, where the stimulus is likely to produce sustained and
dysregulated activation of NFκB signaling, healing and repair are
likely to be compromised (27). Therefore, reducing excessive and
uncontrolled NFκB signaling is reportedly important for repair
(89) and regulators of NFkB signaling such as TNFAIP3/A20
rather than complete inhibition should be considered for
targeting for future pulp therapies.

MAPK pathway is another important signaling pathway in
pulp inflammation. MAPKs comprise a large family of proline-
directed, serine/threonine kinases with three subfamilies being
described including; the ERK-1/2, JNK and p38 MAPK (90).
ERKs are activated by mitogens and GFs, whereas JNK and
p38 are activated by inflammatory cytokines, such as IL-1α/β
and TNF-α (91). The pathway regulates translation of these
extracellular stimuli into specific cellular responses, such as
embryogenesis, cell proliferation, differentiation, and survival.
Signal transduction via MAPK pathways regulate several pulpal
reparative processes (88, 92, 93). Data from these studies and
others have demonstrated that this signaling pathway can be
activated in dental cells by inflammation-related molecules,
including bacterial components (88), ROS (94), and cytokines
(25). MAPK dependent signaling in these studies reportedly
directly drives in vitro mineralization and differentiation of
DPSCs. It is therefore not surprising that several biomaterials
which are used successfully as pulp capping agents to induced
dentine repair, such as hydraulic tricalcium silicate cements
MTA (ProRoot MTA Dentsply, Tulsa, OK, USA) and Biodentine
(Septodont, Saint-Maur-des-Fossés, France) mediate their effects
via the MAPK signaling pathway (95, 96).

Next Generation Biomaterials and Pulp
Regenerative Therapies
Treatment of deep carious lesions with indirect, direct pulp
capping and pulpotomy procedures provides an opportunity for
pulpal healing and repair and the formation of a reparative
mineralised barrier. The placement of biomaterials such as
MTA and other hydraulic tricalcium silicate cements potentially
facilitates recruitment of DPSCs, the release of GFs and
subsequent production of reparative dentine (97). Currently,
the success of the traditional pulpotomy procedure is measured
only by the absence of symptoms and the formation of a
calcific barrier; however, the procedure lacks the potential for
the regeneration of the removed coronal pulp tissue. Thus,
the ideal treatment for teeth requiring pulpotomy will be a
therapeutic option that allows for regeneration of the coronal
pulp tissue previously damaged by infection and inflammation.
Pulp regeneration can be defined as the formation of new
pulp tissue using the tissue-engineering concepts which include
stem cells, scaffolds and signaling molecules. Indeed, complete
and partial pulp regeneration can potentially be achieved
using these principles. The dental pulp is well-populated with
mesenchymal stem cells, and partial pulp regeneration using
existing pulp stem cells and GFs in the presence or absence of
scaffolds has already been reported (98). The challenges however
associated with partial regeneration of the cariously exposed
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and inflamed pulp include the control of inflammation and
bacterial contamination, as well as the predictable recruitment
of stem cells which can be activated to differentiate into the
desired cell types. Importantly, however, properties of DPSCs
derived from inflamed pulp were shown to be comparable to
those derived from healthy tissue indicating the potential for
these cells to be harnessed for regenerative purposes (99). The
availability of functionalized scaffolds that can act as effective
carriers for biological molecules also provides an opportunity
for the control of inflammation and the delivery of GFs to
modify the tissue microenvironment in favor of regeneration
(100). Alternatively, scaffolds can be engineered to interact with
the dentine matrix, to enable the release of local GFs and other
bioactive molecules fossilized within the structure (101). The
development of self-assembling peptides scaffolds with good
biocompatibility, handling properties, and potential as carrier
vehicles for anti-inflammatory, antimicrobial and other bioactive
molecules provide a significant opportunity to overcome the
challenges to enable the regeneration of the diseased pulp (102).
Evidence supports the use of these peptide scaffolds for pulp
regeneration in a murine xenograft model. However, further
work is needed to explore the potential of these and similar

approaches for controlling pulp inflammation and ultimately
enabling regeneration of dental pulp tissue.

CONCLUSION

The ability of the inflamed pulp to heal is proven with the
available clinical evidence, although preliminary that supports
a front-line role for VPT in the treatment of symptomatic
deep carious lesion in permanent teeth. There is clearly a need
for better diagnostic approaches to accurately assess the level
of pulpal inflammation as this can be used to indicate an
appropriate treatment modality. However, more conservative
treatment methodologies, focusing on, and utilizing recent
development in biomaterials and regenerative techniques will
provide the 5way forward for VPTs.
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