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Optimal strategies for the application of an adhesive differ between enamel and dentin

because of the differences in their composition. The development of adhesive systems

has mainly focused on the bonding of dentin, rather than on the enamel, by etching with

phosphoric acid (PA). Dental adhesive technologies continue to rapidly advance, and

various adhesive systems have been developed since the study of Buonocore in 1955.

He introduced the enamel acid-etch technique. Then, the etch-and-rinse (ER) system

was developed, and subsequently, the self-etch (SE) system. Universal adhesives are a

new generation of one-bottle SE adhesives that can be applied with either ER mode or

SE mode, or a combined system involving selective enamel etching mode. Since the

combination of PA etching and the SE system differs from conventional ER systems,

the enamel bonding strategy should be carefully considered. This concise review of

the literature on reliable enamel bonding strategies should prove helpful to clinicians to

choose an appropriate adhesive system to achieve optimal clinical outcomes.

Keywords: enamel, adhesive, phosphoric acid, universal adhesive, acid base resistant zone

INTRODUCTION

Adhesion largely determines the success or failure of composite resin (CR) restorations. Although
various adhesive systems have been developed for reliable CR restorations (1–14), each product
has unique characteristics that must be considered in clinical practice. Compared to dentin,
adhesion to enamel was achieved at an early stage by etching the enamel surface with phosphoric
acid (PA) (15). However, PA is too strong for the etching of dentin (16, 17). Dentin may
be over-etched by PA; consequently, some part of the demineralized collagen layer is left
uninfiltrated by bonding agents (17). Moreover, it has been considered that these incompletely
infiltrated collagen fibrils in the over-etched dentin are susceptible to degradation by matrix
metalloproteinases (18), which are activated by PA etching (19). To address this issue, self-
etch (SE) systems for adhesion to both enamel and dentin without PA etching were developed,
which are now used worldwide. Furthermore, the acidic functional monomer of the SE system
allows for simultaneous etching and priming, which simplifies the clinical application. Although
adhesive materials are user-friendly, etching ability with the acidic functional monomer of the
SE system is milder than with PA. Therefore, an additional step, selective enamel etching,
is recommended for mild and ultramild SE adhesives (SEAs) (20, 21). Since enamel is a
mineral composed of compact aggregates of hydroxyapatite crystallites (22), the influence
of enamel prism orientation should be considered when an enamel bonding is performed
(23). However, since the combination of PA etching and the SE system is different from
the conventional etch-and-rinse (ER) system, the enamel bonding strategy must be carefully
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considered. Therefore, the aim of this article is to summarize the
current knowledge of reliable enamel bonding in CR restoration
via a review of the literature.

ADHESIVE SYSTEMS

Phosphoric Acid Etching Technique
A schematic outline of current adhesive systems is presented in
Figure 1. The first report of effectively and durably bonding to
enamel is an “acid-etch technique” from the study by Buonocore
in 1955 (15). In this technique, bonding to enamel requires the PA
etching step followed by the application of a fluid resin without
the need for an intermediary primer step (15, 24). Afterward,
Fusayama advocated a “total etch technique” to remove the smear
layer (25). In this technique, both the enamel and dentin are
etched with PA prior to the application of a bonding agent
(25, 26). The mechanism of bonding to enamel is thought to be
primarily based on micromechanical interlocking of resin into
etch pits that are best produced with PA (27, 28) as the extent and
depth of the etching pattern significantly affects the bond strength
to enamel (28–30). Moreover, PA etching modifies the enamel
surface topography, substantially increasing its surface energy to
the direct benefit of enhancing its wettability (31).

Etch-and-Rinse Strategy
Following the development of a primer for the conditioning of
the dentin, the bonding procedure was revised to the following
three primary steps: etching, priming, and bonding. Therefore,
this adhesive system is referred to as a 3-step ER system.
Subsequently, a simplified 2-step ER system was developed,
where the priming and bonding steps are combined to the
priming adhesive. However, ER step is still separated from the
priming and bonding. Etching with PA requires rinsing with
water, unlike the SE system described later. After rinsing with
water, the dentin surface should be kept moderately wet (blot
dry). Then, the priming adhesive is applied (32). Various studies
of collagen-fibril collapse due to post-etching drying recommend
keeping the dentin surface visibly moist via the so-called “wet
bonding technique” (21). However, the greatest disadvantage of
the wet-bonding technique is its high sensitivity to the correctly
required degree of dentin-surface wetness, with both over-
wetting and over-drying dentin severely reducing the adhesive
performance (21, 32–34). Hence, a systematic review of cervical
restorations concluded that the bonding efficiency of 3-step ER
is favorable; however, a less favorable bonding performance was
noted for 2-step ER (35). In any case, these ER systems require
etching with PA because the primer and adhesive have no etching
capability, unlike the materials used in the SE strategy described
below. However, etching with PA dissolves nearly all of the
hydroxyapatite aggregates from the dentin surface at a depth of
up to a few micrometers (36). Removing hydroxyapatite as the
inorganic dentin component leaves only the organic collagen,
which is much more challenging to penetration and diffusion of

Abbreviations: ABRZ, acid–base resistant zone; CR, composite resin; ER,

etch-and-rinse; PA, phosphoric acid; SE, self-etch; SEA, self-etch adhesive; 1-

SEA, 1-step self-etch adhesive; 2-SEA, 2-step self-etch adhesive; SEM, scanning

electron microscopy.

the monomer (37). Therefore, porous regions of the hybrid layer
were more detected in ER adhesives than SEAs, even if there is
an absence of gap formation (38). Moreover, in vitro research
concluded that a 3-step ER adhesive showed greater deterioration
of the bond to dentin compared with a SEA (39). For clinical
researches, a systematic review reported that CR restorations in
non-carious cervical lesions resulted in similar retention rates
and post-operative sensitivity between 3-step ER adhesives and
SEAs (40). However, there is a concern that increased PA etching
time resulted in a higher risk of retention failure in Class V CR
restorations (41).

Self-Etch Strategy
In SE strategy, it no longer needs the PA etching step and
the water rinsing step, unlike ER strategy. Therefore, the
clinical application time became shorter and the technique
sensitivity was reduced (42, 43). It was achieved by the SE
primer that contained the acidic functional monomer and water.
In general, the functional monomer contains a carboxyl or
phosphate group, which decalcifies the tooth substrate instead
of the PA etching. Simultaneously, monomers permeate and
diffuse into the dentin during the decalcification process, so
that the decalcified dentin collagen fibers are less exposed
than with the use of ER adhesive. Moreover, the functional
monomers chemically interact with the hydroxyapatite of the
tooth substrate, which strengthens and stabilizes the bond to
mineralized tooth tissue (44, 45). However, not all functional
monomers chemically react with hydroxyapatite, such as 10-
methacryloxydecyl dihydrogen phosphate which has a chemical
bonding potential to calcium of hydroxyapatite (44). The etching
effect in SE strategy is ascribed to the acidic functional monomer.
Depending on the etching aggressiveness, they can be classified
into strong (pH < 1), intermediate (pH ≈ 1.5), mild (pH ≈

2), and ultramild (pH > 2.5) SEAs (21, 42, 46, 47). Strong
SEAs present rather deep demineralization effects at both the
enamel and the dentin. For enamel, the acid-etch pattern which
resembles a PA etching were created (30). This augmentation
in the enamel surface area may contribute to micromechanical
retention with resin. However, it differs from the PA etching since
the dissolved calcium phosphates are not rinsed away. Hence,
it is concerned that these embedded calcium phosphates are
expected to be very unstable, thereby seriously weakening the
interfacial integrity (42). Moreover, strong SEAs demineralized
the dentin completely, and expose a hydroxyapatite-depleted
collagen network that resembles the one exposed by the total
etch approach. Consequently, it showed low bond strength values
at dentin (48, 49). Mild SEAs demineralize dentin partially
to keep residual hydroxyapatite still attached to collagen (24).
Since the demineralization capability of ultramild SEA is limited,
the surface preparation method significantly affects the enamel
bonding performance. In particular, adhesion to unprepared
enamel appeared most challenging (50).

2-Step Self-Etch Adhesives (2-SEAs)
The characteristic of this system is the SE primer, which combines
the etching and priming steps. In this system, the SE primer is
applied to the tooth first. Air blowing is then performed, and
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FIGURE 1 | The schematic outline of adhesive systems.

adhesive resin is applied to the tooth. The advantage of 2-SEA is
that their efficacy appears to be less dependent on the hydration
state of the dentin rather than the ER adhesives (47).

1-Step Self-Etch Adhesives (1-SEAs)
With the use of a 1-SEA, the etching, priming, and bonding
steps are combined in a single application. The 1-SEAs contain
hydrophobic monomers, hydrophilic monomers, water, and
solvents in one bottle. Furthermore, since 1-SEAs are intricate
mixtures of hydrophilic and hydrophobic compounds and water,
solvents, such as ethanol or acetone must be contained to
maintain miscibility (51, 52). However, the evaporation of
solvents and water is essential because remnants negatively affect
the polymerization of adhesives (53–57). However, the complete
evaporation of solvents and water is clinically difficult (58).
Therefore, the degree of polymerization of 1-SEAs is generally
inferior to that of 2-SEAs.

Universal/Multi-Mode Adhesives
A new generation of one-bottle dental adhesives is currently
available. The 1-SEAs are the most simple-to-use adhesives.

However, the differences in professional judgment regarding the
selection of the adhesive strategy and the number of steps still
exist. Therefore, more versatile one-bottle dental adhesives which
are available as ER mode (with prior PA etching) or SE mode
(single-use) adhesives (21) have been released. With the use of
this adhesive, clinicians can choose one of the three strategies
(ER, SE, or selective enamel etching), depending on the clinical
application, rendering the clinical procedure more user-friendly
(59). These new dental adhesives are known as “universal” or
“multi-mode” adhesives.

Meanwhile, “universal” also means the diversity of clinical
applications. Some adhesives are referred to as “universal
adhesive” because of the wide range of clinical applications,
as silanes for ceramics and indirect composites and adhesive
primers for metal alloys and zirconia oxide (59–63). Hence,
another characteristic of “universal adhesives” is that they are
recommended for a multitude of clinical situations, not only
in direct restorations but also in indirect restorations, resin
coating, core buildups, zirconia primer, and tooth desensitizer
(64). Hence, we have to be careful about interpreting “universal
adhesive,” as there are two meanings.
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BOND STRENGTH

Many kinds of laboratory tests have been performed to gather
data in the prediction of the eventual clinical outcome. The bond
strength test is relatively easy and fast. It, therefore, remains
one of the most popular tests in the laboratory. However, there
is an excessive number of bond strength data published in
the literature, and the variability among the studies is huge.
Especially, the difference among the different test set-ups is
remarkable (65). To compare the effects of bonding strategies,
test methodologies should be standardized. A series of studies
(24, 49, 66) on the application of commercial and experimental
adhesives to bur-cut enamel with the same experimental protocol
was reported. In the studies, the enamel bond strength of 2-
SEAs was found to be significantly lower than that of ER
adhesives, with the exception of some adhesives, such as the
Clearfil SE bond. Further, the bond strength of 1-SEAs was
significantly lower than that of ER adhesives and 2-SEAs (24,
49, 66). Therefore, the studies concluded that the bond strength
of ER adhesives to enamel is significantly higher than that of 2-
SEAs and 1-SEAs (24). These results may be due to insufficient
microretention for resin tag formation because (especially mild
and ultramild) SEAs have an unsatisfactory (self-) etching effect
on the enamel as compared to PA. To compensate for this
disadvantage, the application of PA prior to universal adhesives
is reported to increase the bond strength to enamel (67–
69). Moreover, systematic reviews recommend selective enamel
etching mode with the use of universal adhesives (20, 70).

The outer surface of intact enamel is known to have indistinct
and abnormal prism structures, or no prism structures (71). This
prismless enamel structure tended to have a stronger resistance
to acid than a prismatic enamel surface (72). Therefore, the
bond strength test to uncut enamel reported that mild and
ultramild SEAs resulted in lower values in the SE mode, and
prior PA etching significantly improved the bond strength (73).
Thus, micro-mechanical retention of (ultra) mild SEAs for uncut
enamel may be weak due to lower etching ability which could not
demineralize the prismless layer effectively. Hence, PA etching
before the application of (ultra) mild SEAs to an uncut enamel
surface is essential to enhance the enamel bond effectiveness (73).

Meanwhile, the strong acidity of PA can weaken the surface
structure of enamel. Shimada et al. (23) demonstrated significant
interactions between the adhesive system and the direction of
enamel rods and found that the bond strength of an ER adhesive
was lower with parallel prismatic enamel than vertically sectioned
enamel. Moreover, observations of the surface enamel structures
using scanning electron microscopy (SEM) showed that etching
of the parallel prismatic zone with 35% PA separated the apatite
crystals and subsurface enamel prisms from the deeper part of the
enamel (Figure 2). They concluded that the use of PA can “over
etch” the parallel prismatic enamel surface, resulting in weaker
bonding (23).

A number of acid-etching protocols were used for enamel
adhesion. A systematic review showed that PAs at concentrations
between 30 and 40% were most commonly tested clinically
(74). When different concentrations of PA were used in vitro,
concentrations lower than 30% were concluded to be insufficient

in producing enough enamel dissolution for bonding (75). While
PA concentrations higher than 50% presented fewer surface
morphologic changes (76), this review paper also mentioned that
an etching time of 15 or 30 s has become the prevailing method
of PA etching in recent years with the clinical advantages (74).
On the one hand, increasing PA pre-etching time from 15 to
60 s produced greater surface roughness, but did not improve
the enamel bond strength of SEAs (77). On the other hand, the
reduced PA etching time did not influence the bond strength
and surface area, although the surface roughness decreased
with decreasing etching time (78). Spending less time on PA
etching can save chairside time, decrease the chance of surface
contamination, minimize the subsurface substance dissolution,
and be more biocompatible when enamel and dentin are etched
at the same time (74). From these studies, pre-etching times of
below 15 s can sufficiently improve the bond strength of (ultra)
mild SEAs.

BONDING INTERFACE

Leakage Test
Good mechanical retention and chemical bonding are both
important to obtain reliable bonding, as determined by bond
strength testing as well as morphological studies. In particular,
SEM of the bond interface has revealed useful information
to better understand the bonding mechanisms of adhesives to
tooth substrates (45). The longevity of an adhesive composite
restoration is mainly compromised by the leakage of oral fluids
along the interface between the restorative material and tooth
substrate (79, 80). Hence, the sealing ability should be evaluated
to predict the clinical performance of adhesives with regard to
the occurrence of post-operative sensitivity and/or secondary
caries (80). For in vitro evaluation of sealing ability, leakage
tests are preferred over other methods, such as SEM, for
the evaluation of marginal adaptation/gap formation, bacterial
leakage, and permeability assessments, which are more laborious,
time-consuming, or technique-sensitive (81). However, this cross
section based procedure allows only a limited 2D-view on the
distribution of the marker fluid, by which it is for instance
not possible to determine the point of deepest leakage with
certainty (65). Microleakage is assessed in vitro microscopically
on cross sections using a wide variety of tracers or dyes. Hence,
the reliability of microleakage protocols remains controversial
due to the variability of methodology employed worldwide
(79, 82, 83). Nanoleakage is assessed using Ag-ions that are
extremely small (0.059 nm). This nanoleakage refers to leakage
within nanometer-sized channels along the adhesive interface,
even in the absence of a marginal gap (38). These voids are so
small that bacteria may not be able to pass through, but these
spaces may be more susceptible to degradation. Optimal enamel
bonding is primarily based on micromechanical interlocking of
a low-viscosity resin into microporosities. Hence, nanoleakage
in the enamel bonding interface may be caused by insufficient
infiltration of the resin into the demineralized enamel or
incomplete polymerization of monomers in the nanometer-
sized interfacial space. In addition, the extent and depth of the
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FIGURE 2 | Effects of regional enamel and prism orientation. (A) For monomer penetration, the smear layer should be removed by etching. (B) A horizontally

sectioned enamel surface is roughened by PA etching. (C) Unsupported apatite crystals were observed on the surface of axially sectioned enamel after PA etching.

etching pattern can influence the mechanical behavior of the
adhesive (84). Importantly, some studies reported the absence of
any correlation between nanoleakage and the bond strength of
adhesives (85–88).

The application of PA roughens and increases the porosity
of the enamel surface, which improves the bonding potential
of SEAs, resulting in an initially superior marginal seal (89).
Previous microleakage studies have reported that etching with
PA prior to the application of 1-SEAs reduces microleakage at
the enamel bonding interface (90, 91). For 2-SEAs, microleakage
studies reported that there was no difference in the extent of
leakage with the use of a 2-SEA regardless of etching with PA
(81, 90). For nanoleakage studies, Perdigão et al. (92) reported
significantly less leakage with the use of a 2-SEA (Clearfil SE
Bond, pH 1.8, Kuraray America, Houston, TX, USA) than
1-SEAs (Adper Prompt L-Pop, pH 0.9, 3M ESPE, Seefeld,
Germany; iBond, pH 2.2, Heraeus Kulzer, Hanau, Germany).
Additionally, PA etching reportedly improved the sealing ability
of iBond but not that of others (92). Another study using 1-SEAs
showed that nanoleakage is material-dependent, irrespective of
preliminary PA etching (93). These studies suggest that not
only the adhesive system but also the pH value of the adhesive
influences the sealing ability at the enamel bonding interface.
Moreover, nanoleakage was detected in 2-SEAs with PA although
not detected in 2-SEAs without PA (94). This study suggested
that deep jaggedness created by PA etching on the enamel surface
renders a challenge to water and solvent evaporations (94).
Therefore, these residual hydrophilic solvents might compete
with the hydrophobic monomers that are contained in adhesive

resin, for example, Bis-GMA, which triggers a nanoleakage.
Halabi et al. (95) reported that nanoleakage was observed
in the interface between 1-SEAs and the enamel, while not
observed in between 1-SEAs and the bleached enamel (95). They
noted that a bleaching agent will denature enamel proteins,
which may create macrospaces for more effective penetration
of the adhesive monomers into the enamel. Monticelli et al.
(89) concluded that ER adhesives offer the most predictable
bonding to enamel, although the adhesive potential of 2-SEAs
was significantly reduced when bonded to dentin etched by
PA. Hence, PA etching of dentin prior to the application of a
SEA should be avoided. To seal the enamel bonding interface,
selective enamel etching is recommended when using (ultra)
mild SEAs.

Acid–Base Resistant Zone
Scanning electron microscopy examinations of the bonding
interface after acid and base challenges have yielded useful
information to assess the resistance to secondary caries. Tsuchiya
et al. (96) reported an acid–base resistant zone (ABRZ) beneath
the hybrid layer of a SEA–dentin interface after an acid than
base challenge. A later study by Li et al. (97) detected the
enamel, ABRZ. These studies reported that an ABRZ remained
after an acid challenge, although the tooth substrate (i.e.,
enamel or dentin) was dissolved by an artificial demineralization
solution (Figure 3). Therefore, ABRZ is believed to play an
important role in inhibiting damage from recurrent caries by
sealing restoration margins, which can then promote restoration
durability by maintaining the bond (98). However, ABRZ
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FIGURE 3 | The schematic design of an ABRZ. An ABRZ is observed beneath the bonding interface as a tooth-like substrate despite an artificial demineralize solution

dissolves the enamel substrate.

formation is reportedly dependent on the adhesive material (45,
99). Li et al. (97) observed an ABRZ of the enamel following the
application of 2-SEAs containing the functional monomer 10-
methacryloxydecyl dihydrogen phosphate but not with 2-SEAs
containing the functional monomer phenyl-P. Subsequently,
the ABRZ of the enamel was also observed following the
application of 1-SEAs or universal adhesives containing 10-
methacryloxydecyl dihydrogen phosphate (100, 101). However,
the funnel-shaped erosion beneath the enamel bonding interface
was detected following the application of 1-SEAs or universal
adhesives, but not of 2-SEAs (100, 101). This type of erosion
indicates that the enamel substrate beneath the bonding interface
of 1-SEAs or universal adhesives is more easily dissolved than the
intact enamel. The results of these studies raise doubts regarding
the acid-resistance ability of 1-SEAs and universal adhesives as
SE mode on enamel even if an ABRZ forms on the enamel.
Meanwhile, etching with PA prior to the application of SEAs (i.e.,
2-SEAs, 1-SEAs, and universal adhesives) promotes the thickness
of the ABRZ of the enamel (100–102). Additionally, etching with
PA prior to the application of 1-SEAs or universal adhesives (i.e.,
selective enamel etching mode) prevented the formation of the
funnel-shaped erosions on the enamel bonding interface (100,
101). These morphological studies suggest that prior etching with
PA is essential to create a stable enamel bonding interface for the
use of 1-SEAs and universal adhesives, but it is not essential for
the use of 2-SEAs (Figure 4).

CLINICAL RESEARCH

Clinical trials are the ultimate test for dental restorations (24);
however, all sorts of chemical and mechanical challenges that are

inherent to the oral environment should be taken into account
(103). Hence, clinical assessments have been often performed
using Class-V lesions or non-carious cervical lesions (NCCLs),
because these cavities do not provide any macro-mechanical
retention and have a relatively small C-factor (65). The systematic
review revealed that both 1-SEAs and 2-SEAs have comparable
clinical effectiveness; however, there was a statistical difference in
relation to marginal adaptation (104). Another systematic review
concluded that selective enamel etching prior to application of
SEAs might improve the clinical performance of CR restorations
in NCCLs (105). For mild 2-SEAs, clinical trials reported that
SE strategy showed clinically acceptable small marginal defect
and/or superficial marginal discoloration compared to selective
enamel etching; however, the difference was not statistically
significant (5, 6). For universal adhesives, in contrast, without
PA etching showed that marginal discoloration (13) and small
marginal fractures (10) were significantly worse. These defects
can be explained by the theory of the funnel-shaped erosion
formation on ABRZ studies (100, 101) (Figure 4).

DISCUSSION

Alternative Approaches to the PA
Application
Although PA etching definitely improves bonding of 1-SEAs
and universal adhesives to enamel, the bonding interface of
dentin becomes vulnerable in ER strategy (67). Hence, the ideal
strategy when using 1-SEAs and universal adhesives is to etch the
enamel and dentin separately. However, strict selective etching
of the enamel may be clinically difficult. Thus, various novel
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FIGURE 4 | Morphological differences in enamel ABRZ. The funnel-shaped erosion was detected beneath the bonding interface with 1-SEAs. The formation of this

erosion can be prevented by prior PA etching.

approaches have been investigated in vitro. For example, double-
layer application of universal adhesives was reported to increase
the enamel bond strength (106, 107), but not effective for 2-SEA
(106). The active application of universal adhesives in the SE
mode may be an alternative to increase the adhesive properties
in the enamel (108, 109). However, the active application of
universal adhesives in the ER mode exhibited significantly lower
bonding strength (110). Another approach is to apply the
alternative etching agent which has milder acidity than PA to
prevent degradation of the dentin. Since SEAs have etching
capabilities themselves, unlike 3-step ER system, the use of an
etchant with milder acidity to PA might be adequate. Some in
vitro studies demonstrated that an alternative etchant applied
prior to a universal adhesive improved the enamel bonding
performance (111–114).Moreover, unlike PA, this etchant had no
bad effect on the dentin bonding performance (115). On the basis
of the findings of these studies, this etchant might be suitable for
simultaneous application to both the enamel and dentin to elicit
the high performance of a universal adhesive. However, little
information is available about the application to uncut enamel
or the clinical outcome. Hence, further researches are warranted.

Conclusion
The latest adhesive system, a universal adhesive, can simplify
the treatment procedure and reduce the chair time but not
necessarily optimize the tooth bonding strategy. From the

current literature of enamel bonding, selective enamel etching
is recommended prior to the application of (ultra) mild SEAs.
When using PA with SEAs, it is recommended that the
concentration of PA is between 30 and 50%, etching time is under
15 s; if not, it is advisable to not perform the active application.
SEAs result in adequate CR restoration outcomes, and prior
etching improves the quality of the enamel margin.
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