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The coronavirus disease 2019 (COVID-19) is mostly a mild condition, however, in some

patients, it could progress into a severe and even fatal disease. Recent studies have

shown that COVID-19 infection and severity could be associated with the presence

of periodontitis, one of the most prevalent chronic diseases. This association could

be explained by the fact that periodontitis and COVID-19 share some common risk

factors that included chronic diseases, such as diabetes and hypertension as well as

conditions such as age, sex, and genetic variants. Another possible explanation could

be the systemic inflammation and the aspiration of periodontopathogens seen in patients

with periodontitis, which could have a synergism with the virus or compromise the

reaction of the body against COVID-19. This narrative review explores the nature of these

associations, the evidence behind them, and their implications.

Keywords: COVID-19, periodontitis, SARS-CoV-2 (2019-nCoV), cytokine storm, ACE2 (angiotensin converting
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INTRODUCTION

The outbreak of the coronavirus disease of 2019 (COVID-19) has been one of the most emergent
health problems and public threats in the 21st century. Despite the fact that the majority of patients
present withmild symptoms, more severe cases could lead to pneumonia, sepsis, septic shock, acute
respiratory distress syndrome (ARDS), and multi-organ damage or death (1).

The virus responsible for COVID-19, the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), infects the upper and lower respiratory system through the respiratory epithelium,
and then, it spreads into the bloodstream via endothelial cells causing viremia (2). After the
initial viremia, the disease can progress to an acute phase causing systemic inflammation. In some
cases, it can deteriorate into life-threatening conditions (10–20% cases) such as severe pneumonia
and/or multi-organ failure, which often require hospitalization and intensive care unit (ICU)
admission (3).

The SARS-CoV-2 virus infects host cells using a viral transmembrane spike (S) glycoprotein,
called S-protein, that adheres to the human cells by binding to angiotensin converting enzyme II
(ACE2), a membrane protein that acts as a receptor for the virus (4). Upon attachment to ACE2, the
S-protein is proteolytically cleaved by host proteases, such as TMPRSS2, cathepsin L, or proprotein
convertase furin to facilitate viral fusion into the target cells (5–7). Additionally, SARS-CoV-2 can
increase the expression of ACE2 further facilitating the infection of host cells (8).

ACE2 is a physiologically functional enzyme with anti-inflammatory properties which
are responsible for the conversion of angiotensin II (Ang II) to Ang (1–7) (9). Ang II
is a major component in the renin-angiotensin-aldosterone system (RAAS), involved
in vasoconstriction, renal sodium reabsorption and potassium excretion, aldosterone
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synthesis, blood pressure elevation, and induction of
inflammatory and pro-fibrotic pathways. Ang (1–7) is
physiologically active in vasodilatation and opposes the
vasoconstriction, counteracting the effects of Ang II (10). By
converting Ang II to Ang (1–7), ACE2 plays a role in protecting
endothelial function and inhibiting inflammation of endothelial
cells, but this role is compromised by SARS-CoV-2 when it binds
to ACE2 on the cell membrane (9).

ACE2 is expressed in many organs and tissues but it is
most prominent in the respiratory epithelium, endothelium,
gastrointestinal system, renal system, and basal epidermal layer
of the skin and in the oral and nasal mucosa (11). Hence, a wide
range of organs and tissues can be damaged by SARS-CoV-2,
resulting in subsequent multiple organ failure observed in the
patients with COVID-19. The expression of ACE2 is increased
in the patients with certain conditions, such as older age, male
sex, and obesity as well as kidney and pulmonary diseases,
rendering them more susceptible to the viral invasion and severe
COVID-19 cases (8). Interestingly, many of these comorbidities
are associated with periodontal diseases.

Periodontal diseases are among the most common diseases
that affect adults. It is estimated that about 42% of those above the
age of 30 years old and 60% of those above the age of 65 years old
have periodontitis (12). Severe stages of periodontitis (namely,
periodontitis stage 3 and 4) are the sixth most common disease
in older adults, affecting about 11% of the global adult population
(13). Periodontitis can have a negative impact on systemic
health and has been associated with several risk factors that are
also associated with increased risk of COVID-19 complications
(12, 14–18). Hence, the relationship between periodontitis and
COVID-19 disease has drawn great attention from the scientific
community. This narrative review summarizes current evidence
regarding the pathophysiology and mechanisms underlying the
association between periodontal disease and COVID-19.

ASSOCIATION BETWEEN COVID-19 AND

PERIODONTITIS

Several studies give the credence to the association between
the COVID-19 and periodontal diseases since the beginning of
the pandemic. Three case reports indicated increased gingival
bleeding among the patients with COVID-19. This symptom
was improved clinically after the viral infection subsided
(19). However, these observations were insufficient to show a
relationship between periodontitis and COVID-19, especially
since it is expected that the patients suffering from COVID-19
may be more likely to neglect oral hygiene when compromised
by the symptoms of COVID-19. In fact, a recent publication has
reported that the patients with COVID-19 have higher dental
plaque scores and gingival edema than their matched SARS-CoV-
2 negative controls (20).

Larvin et al. analyzed the data on surrogates of periodontitis
(e.g., self-reports painful gums, bleeding gums, or loose teeth)
from 13,253 participants in the United Kingdom Biobank, that
included 1,616 COVID-19 positive cases. Even though they
could not link periodontitis with a higher risk of contracting

COVID-19 infection, they observed significantly higher
mortality in the patients with COVID-19 with periodontitis (21).
However, one weakness of this study was that self-reported oral
health indicators may not fully represent periodontitis diagnosis.

In another retrospective study, Sirin and Ozcelik analyzed the
dental records and panoramic radiographs of 137 patients with
COVID-19 and found a remarkable connection between dental
damage and the prognosis of viral disease (22). Also, Marouf et
al. conducted a case-control study by collecting the electronic
health records, medical as well as dental, of the patients with
COVID-19 (n = 568) and analyzed them for the associations
between the presence of periodontitis and the severity of COVID-
19 infections. After adjusting for confounders, such as age,
sex, smoking, or comorbidities, a significant association was
observed between the presence of periodontitis and COVID-
19 complications, such as death, ICU admission, or need for
assisted ventilation (23). However, one main limitation of this
study was that periodontitis was not assessed clinically but it was
rather assessed radiographically using interdental bone loss as an
indicator of periodontitis.

RISK FACTORS FOR SEVERE

PERIODONTITIS AND COVID-19

Comorbidities and pre-existing conditions associated with severe
COVID-19 complications include among others, older age,
male sex, African or South Asian race, cardiovascular diseases,
cerebrovascular diseases, heart conditions, obesity, smoking,
chronic kidney diseases, chronic lung diseases (particularly
chronic obstructive pulmonary disease, or COPD), diabetes
mellitus with high levels of glycohemoglobin (HbA1c) which
marks prolonged increased blood glucose level, hypertension,
moderate- to- severe asthma, immunosuppression, cancer, organ
transplantation, pregnancy, and elevated blood levels of D-Dimer
(3, 24). Some of the chronic conditions and diseases increase
vulnerability to the virus binding and transmission by favoring
ACE2 expression in the affected organs because of tissue damage
(25, 26). Other conditions, such as moderate- to- severe asthma
can compromise the status of the respiratory system, and its
vulnerability to excessive inflammation. Moreover, increased
HbA1c levels in patients with diabetes compromise the immune
system and impair its phagocytic adherence function. The
excessive adipose tissue in obesity is also associated with high
expression of ACE2, and insulin resistance, in addition to
increased susceptibility to thromboembolisms (27). Pregnancy
is related to compromised immunity, and susceptibility to
respiratory distress syndrome and hypoxia (28). The higher levels
of D-Dimer are associated with an increased risk of coagulability
and thrombosis (24).

Periodontitis shares several risk factors mentioned above.
These factors are associated with the risk of fast progression of
periodontitis (29). Diabetes mellitus and smoking are among the
most recognized risk factors for the progression of periodontitis
to severe grade, according to the World Workshop on
periodontal and peri-implant diseases (29). In addition, obesity
is associated with a higher risk of periodontitis progression and
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with the increased levels of proinflammatory cytokines, such
as Interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α
(TNF-α) in serum and in the gingival crevicular fluid (GCF)
of the patients (30–32). This risk is significantly increased in
patients who have genetic predisposition to the secretion of IL-1
proinflammatory cytokine (33).

Other mutual risk factors for periodontitis and severe
COVID-19 are AIDS, cancer, and Down’s syndrome (34).
AIDS or HIV infection is associated with acute necrotising
gingivitis and periodontitis (35), and severe, rapidly progressing
periodontal destruction (36). This pathogenesis is attributed
to impaired immune function, challenged by periodontal
microorganisms. The patients with cancer undergoing
chemotherapy experience a weakening of their immune
response, associated with the dysbiosis by altering the ecology
of their microbiota. This renders their periodontium more
vulnerable to infection and destruction by microbial by-products
(37, 38). Patients with Down’s syndrome have a higher risk of
periodontitis due to their compromised oral hygiene, extensive
calculus formation, alterations in connective tissues, and
capillary morphology, as well as disorders in leukocyte and
monocyte function, an important part of the immunological
response (39). Periodontitis shares common risk factors
with atherosclerosis-associated cardiovascular diseases (12),
probably due to the microbial and immunological interactions
with atheroma formation (40, 41). The patients with active
periodontal inflammation are 2.25 times more likely to develop
future major cardiovascular events (40).

GENETIC PREDISPOSITION TO COVID-19

AND PERIODONTITIS

Another possible hypothesis linking periodontitis and severe
COVID-19 could be that certain patients might be having genetic
variations that could be predisposing them for both diseases.
It has been shown that genetic predisposition plays a role in
the initiation of severe forms of periodontitis, especially those
observed in the younger age groups (42). So far, 65 genes have
been associated with higher susceptibility to periodontitis. Many
of these genes are known to have various functions in the immune
system, and it is thought that their impact on periodontitis
may be related to their effect on the inflammatory response to
microbial biofilms in the periodontal pocket (42). It could be
hypothesized that these same gene expressions concur with other
chronic inflammatory diseases, such as coronary artery disease,
diabetes, metabolic syndrome, obesity, and other inflammatory
mediated diseases (12). For this reason, it could also be
hypothesized that this genetic makeup could also be linked to the
susceptibility of some individuals to severe COVID-19.

Indeed, several genes have been associated with severe
COVID-19 outcomes. These include, so far, the following:
ACE2, TMPRSS2, CD26(DPP4), IFITM3, HLA, ABO, SLC6A20,
GSTT1-M1, DBP, and IL6 (43, 44). Interestingly, some of these
genes are known to play a role in periodontitis. For example,
CD26 or namely dipeptidyl peptidase IV (DPP4) was also
found to be expressed in fibroblastic cells of human periodontal

tissues when exposed to periodontal pathogens (45). Human
leukocyte antigens (HLA) play a vital role in antigen recognition
and communication of periodontopathogens, whereas HLA-
A∗02/B∗40 haplotype was found contributing to the development
of chronic periodontitis among the Brazilians (46). GSTM1-
null genotype was found to be linked to chronic periodontitis
and its combination with GSTT1- null genotype could lead to
aggressive periodontitis (47). Additionally, IL-6-174C allele has
been associated with an increased risk of gingivitis in Caucasian
children (48).

Thus, it could be hypothesized that in some patients the
association between severe COVID-19 and periodontitis could in
part be driven by genetic phenotypes involving CD26, HLA, and
GSTT1-M1. In addition, in the presence of predisposing genes,
environmental factors, such as obesity, smoking, and stress could
induce the expression of the genes against themicrobial challenge
in the periodontal pocket thus inducing severe inflammatory
response leading to tissue destruction (42).

It is worth noting that the association between periodontitis
and COVID-19 complications seems to be stronger among
the younger patients (23). Given the fact that the onset of
periodontitis at a younger age has a strong genetic component,
it could be speculated that the presence of periodontitis in young
patients could be a sign of a genetic variation that favors COVID-
19 complications, although future genetic research would be
needed to confirm this.

ACE2, TMPRSS2, AND PERIODONTITIS

Some reports have proposed that the oral mucosa could play
an important role in the entry of the virus into the body,
especially in the patients with periodontitis (49). Membrane
proteins and enzymes used by SARS-CoV-2 to infect cells can
be found in abundance in the oral cavity (50, 51), ACE2 is
highly enriched in epithelial cells of the oral mucosa (52) and
in salivary glands (53), and TMPRSS members are broadly
enriched in epithelial cells of the salivary glands, oral mucosa,
and gingiva tissues (54). In addition, the expression of these
membrane proteins and enzymes is influenced by the presence of
periodontitis. Cathepsin L and CD147 can be elevated in the GCF
of patients with chronic periodontitis (55–58). Furthermore,
the bioinformatic analyses have shown that periodontitis could
induce an increase in microRNA-146 and-155 in the oral cavity,
which is predicted to upregulate the expression of ACE2 (59).
Moreover, in vitro studies have confirmed this prediction by
showing an upregulation of ACE2 in alveolar epithelial cells
when exposed to the periodontopathic bacteria Fusibactereum
nucleatum (F. nucleatum).

PERIODONTAL BACTERIA IN THE LUNGS

Co-infections and/or secondary infections by bacteria, such as
ventilator-associated pneumonia in the patients with COVID-19
(60), could augment the pathogenesis, thus escalating morbidity
or mortality during viral invasion. Periodontopathogens and
other oral bacteria could play a role in such infections since they
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have been found in the lower respiratory tract of the patients
with pneumonia and have long been associated with respiratory
conditions that could synergize with the viral infections to
cause adverse outcomes (61). More specifically, periodontopathic
bacteria, such as F. nucleatum and Prevotella intermedia (P.
intermedia), have been found in the bronchoalveolar lavage
fluid (BALF) of the patients with bacterial pneumonia (61, 62).
Supernatant of F. nucleatum has been found to upregulate
ACE2 in the alveolar epithelial cells in vitro (63), while P.
intermedia enhanced the expression of platelet-activating factor
receptor used by pneumonia-causing bacteria to infect the
lungs (64). In addition, F. nucleatum was found to induce IL-
6 and IL-8 production in alveolar, bronchial, and pharyngeal
epithelial cells, supporting the hypothesis that aspiration of
periodontopathic contaminated saliva into the lower respiratory
tract might aggravate COVID-19 infection (63). These effects
of periodontopathogens on alveolar cells could suggest that
their aspiration into the lungs and bronchus might increase the
vulnerability of patients to COVID-19 infection (63).

SARS-CoV-2 IN PERIODONTAL POCKETS

Periodontal pockets can serve as potential viral reservoirs. Herpes
simplex virus (HSV), active human cytomegalovirus (HCMV),
and other viral species have been isolated from pockets of
severe periodontitis (Stage 3 and 4) patients (65, 66), and severe
periodontitis has been associated with reactivated herpes viruses
(65). Interestingly, Gupta et al. found coronavirus accumulated
in GCF in the asymptomatic and mildly symptomatic patients
with COVID-19 (67). Thus, Badran et al. hypothesized that
periodontal pockets might also play as a reservoir of SARS-CoV-2
and increase the viral load in the infected individual (68).

MICROBIOME DYSBIOSIS IN

PERIODONTITIS AND COVID-19

The oral cavity represents the second largest microbial
community in the human body after the gut, dominated by
bacteria in homeostasis (69). But it can shift to dysbiosis when
there are increased numbers of pathogens at the loss of beneficial
commensal bacteria and microbial diversity (70). Periodontitis
is primarily an inflammatory disease initiated by oral microbial
plaque organized in the form of a complex microbial biofilm
(71). The complex microbial infection induces a cascade of
immune reactions starting from an acute inflammatory response
that could progress into a prolonged, self-destructive immune
reaction that destroys the periodontal attachment apparatus,
such as the alveolar bone and periodontal ligament fibers
attaching the teeth to the jaws.

Bacteria play an essential role in the initiation and progression
of periodontitis. Indeed, the experiments done in sterile
conditions have shown that periodontal tissue destruction
does not occur in the absence of putative periodontal
pathogens (72), and management of the microbial infection
is the most predictable treatment of periodontitis (73). In
clinically healthy gingiva, the gingival crevice is populated by

large amounts of bacteria comprising normal flora. However,
microbial dysbiosis of these bacteria toward certain pathological
species provokes inflammation in the periodontal tissues
manifested clinically as gingivitis and periodontitis (65, 73–75).
Some of the most common pathogens associated with these
conditions include among others P. intermedia, Porphyromonsa
gingivalis (P. gingivalis), F. nucleatum, Treponema denticola
(T. denticola), or Aggregatibacter actinomycemetcomitans (A.
actinomycemetcomitans). In addition, oral dysbiosis is linked to
several systemic diseases, such as atherosclerosis, Alzheimer’s
disease, or head and neck cancer (76). Oral dysbiosis could favor
viral infections since viruses exploit bacteria co-inhabitants to
enhance their entry into the host cells (77, 78). This is why viral-
bacterial co-infection has been proposed as a possible mechanism
for pathogenesis in certain types of periodontitis (79). Moreover,
the presence of oral microbes in other organs distant from
the oral cavity had shed light on the importance of the oral
microbiome in general health and the potential of emerging
treatment modalities targeting oral dysbiosis (76).

Interestingly, the patients with COVID-19 have been found to
present periodontopathogens and oral dysbiosis that correlates
to the severity of the disease (80). Although it is not possible
to determine whether the alteration in the oral microbial
community is the cause or effect of the SARS-CoV-2 replication
or pathogenesis, these parameters may be considered as markers
for personalized therapy and vaccine development.

IMMUNOPATHOGENESIS OF

PERIODONTITIS AND COVID-19

A possible link between periodontitis and COVID-19 severity
could be through the immune system and the inflammatory
response to these diseases. It has been hypothesized that the
synergy between severe COVID-19 and periodontal disease
might be the result of their immune stimulation.

Bacterial and viral invasions should be confronted by a self-
limited inflammatory response that is followed by a complete
resolution. However, the pathogenicity and virulence of such
infections might result in an inflammation that is not self-
controlled, while this excessive immune response can lead to
adverse outcomes. In many diseases, such as periodontitis, this
means the loss of soft and hard tissues, while in COVID-19, it
involves cytokine storm, ARDS, and multi-organ failure.

The inflammatory markers associated with severe COVID-19,
such as C-reactive protein (CRP), D-Dimer, and increased white
blood cell (WBC) count were found to be significantly elevated
in the patients with COVID-19 who have stages 2, 3, and 4 of
periodontitis compared with those who do not have periodontitis
(23). Respiratory diseases, such as bronchial asthma (81), COPD,
and pneumonia (82) are linked to periodontitis and share similar
proinflammatory cytokines (83).

The “cytokine storm,” a vicious cycle of stimulation and
excessive production of proinflammatory cytokines and
mediators induced by severe SARS-CoV-2 infection, appears to
be a major cause of disease severity, multiple-organ failure, and
death in the patients with COVID-19 (84). Thus, understanding
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the underlying mechanisms behind it is crucial for fighting
the disease, and reducing its mortality (85). Cytokine storm is
characterized by the increased serum levels of liver enzymes,
creatinine, and interleukins IL-2, IL-6, IL-7, IL-10, and IL-17
(86); IP-10 (an inflammatory chemokine induced by interferon
IFN- γ and usually found increased in severe acute respiratory
infections) (87), monocyte chemoattractant protein-1 (MCP-
1); tumor necrosis factor-α (TNF-α); granulocyte-colony
stimulating factor (GCS); monocyte chemotactic and neutrophils
as well as a decrease in lymphocyte counts (CD4+ cells and
CD8+ cells). The exaggerated immune reaction shifts the
immunological function toward harm rather than repair,
causing the excessive pulmonary infiltrate, viewed on the chest
radiographic images as bilateral infiltration without cardiac
involvement (88).

The cytokine storm observed in the severe cases of COVID-19
is linked to impairments in the acquired and innate inflammatory
responses, and this is often associated with chronic diseases
affecting the immune system (88), or predisposing genetic
conditions (89, 90).

Periodontitis initiates complex cascades of innate/adaptive
cellular and humoral immune reactions, leading to
persistent inflammatory status associated with the release
of proinflammatory cytokines (i.e., TNF-α, IL-1β, and IL-6)
into the periodontal tissues and the bloodstream (65, 91–94).
Many of these cytokines are also known to play a crucial role
in COVID-19. For example, the expression of IL-6 is known to
be a strong predictor of critical illness and mortality among the
patients with COVID-19 (95, 96). IL-6 inflammatory response
via gingival fibroblasts can lead to increased Cathepsin L
expression which favors coronavirus adhesion (97). Moreover,
aspiration of periodontopathogens, such as F. nucleatum could
induce IL-6 production by alveolar epithelial cells as well as
bronchial and pharyngeal epithelial cells (63), which in turn
could promote SARS-CoV-2 infection and worsen the severity of
viral pneumonia (98).

Another manifestation of the cytokine storm observed in
COVID-19 as well as in certain other viral infections, such
as MERS-CoV, SARS-CoV, and nvH1N1 influenza is elevated
Th17 inflammatory responses and IL-17 production (86, 99–
101). Interestingly, the patients with periodontitis also present
increased levels of IL-17 producing cells in the periodontal
tissues (102, 103) as well as the high levels of IL-17 in serum
(104). IL-17 has a significant role in periodontal bone resorption
and destruction due to its impact on chemokines secretions of
osteoblasts (105). Therefore, it has been suggested that the severe
COVID-19 cytokine storm and periodontitis might be associated
with the Th17 immune pathway (106).

In addition, periodontitis is characterized by a dysregulated
neutrophil response to specific bacterial species. This involves the
overproduction and impaired removal of neutrophil extracellular
traps (NETs), an alternative form of cell death (107). Many
viruses can also stimulate neutrophils to produce NETs (108). Of
note, NETs increase in the patients with ARDS (109), and in those
with COPD during the acute respiratory failure phase (110).
NETs generation has also been involved in venous and arterial
thrombosis (111, 112), another life-threatening complication

that has been observed in SARS-CoV-2 infection (14, 113).
Since NETs upregulation is observed in the patients with both
COVID-19 and periodontitis, it has been hypothesized that
periodontitis could be predisposing the patients with COVID-19
to develop severe forms of the disease through the production of
NETS. However, there is still no direct evidence available linking
NETs generation in periodontitis and the severity of COVID-19
disease, hence NETs-oriented studies are suggested in the future.

Another proposed immunological link between periodontitis
and COVID-19 is through Galectin 3 (Gal-3), a proinflammatory
protein and has been involved in the disease process of
various inflammatory conditions (114). Gal-3 has a morphology
that is almost identical to the spike protein of SARS-CoV-
2 which is critical for the virus entry into the host cells
(115). Gal-3 inhibition could also decrease IL-6 production
(116), suggesting it could be a potential therapeutic target
in patients with COVID-19. Moreover, human saliva contains
exosome-like vesicles with Gal-3 which might regulate the
local immune defense in the oral cavity by enhancing
phagocytic activity of neutrophils and stimulation of cytokines
production (117). However, even though Gal-3 affects the key
processes involved in periodontitis, so far there is no clinical
evidence demonstrating its possible role in the development of
the disease.

Specialized pro-resolving mediators (SPMs) are endogenous
lipid mediators that are biosynthesized during the acute
inflammatory response which help in all resolution phases
of the inflammation (118) and are pivotal to returning the
affected tissues to healthy working order (119). Multiple animal
studies indicate that exogenous administration of SPMs could
dramatically help in healing the periapical lesions and reducing
inflammation in periodontitis (120–122), and hence they could
also help manage the COVID-19 complications. However,
clinical studies are still needed to optimize the applications of
SPMs in treating periodontal diseases.

MANAGEMENT FOR PERIODONTITIS AND

COVID-19

Numerous papers have shown that periodontal treatments
improve the levels of serum markers of systemic inflammation
(123) as well as systemic medical conditions, such as COPD
and diabetes (124). For example, Katagiri et al. suggested
periodontal treatment with topical antibiotics could improve
the levels of HbA1c through reduction of CRP and ameliorated
insulin resistance in type 2 diabetes (125); Shimada et al.
demonstrated that scaling and root planing (SRP), a mechanical
periodontal therapy, could reduce IL-6, CRP, and leptin in the
serum of the patients with periodontitis (126). Terry et al. also
concluded that SRP could improve glycemic control in people
with diabetes and reduce HbA1c serum level (127). Abe et
al. indicated that weekly professional oral care is effective to
prevent influenza infection in the older patients by reducing
oral bacterial and viral activities (128); Chambrone et al.
suggested positive effects of periodontal treatment on diabetes-
associated renal function (129). Teeuw et al. demonstrated
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through a meta-analysis that the periodontal treatments
improve endothelial function and reduce the atherosclerotic
biomarkers (130). However, the interventional clinical studies
are still needed to draw a definitive conclusion on the
ability of periodontal treatments to prevent atherosclerotic
cardiovascular disease (131). Nonetheless, we still suggest
a potential effect of periodontal treatment on COVID-19
disease control.

DISCUSSION

In summary, COVID-19 complications, such as ARDS andmulti-
organ failure, are mainly caused by severe systemic inflammation
and thrombotic lesions (132). These complications are associated
with certain risk factors and conditions, many of which are
also linked to periodontitis. These possible associations between
periodontitis and COVID-19 complications could stem from
either a direct effect of periodontitis on systemic inflammation,
from an indirect effect of periodontitis on other risk factors
of COVID-19, or due to predisposing conditions common

to both periodontitis and COVID-19, such as diabetes and
genetic variants.

The association between COVID-19 and periodontitis does
not imply causality, but it does raise a call for further research
to deepen our understanding of the nature and mechanisms
underlying it. This might be insightful in the terms of early
prevention and management of complications in the patients
with COVID-19 and may help in clinical decision making.
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