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Background: The objective of this study was to build models that define variables
contributing to pneumonia risk by applying supervised Machine Learning (ML) to
medical and oral disease data to define key risk variables contributing to
pneumonia emergence for any pneumonia/pneumonia subtypes.
Methods: Retrospective medical and dental data were retrieved from the
Marshfield Clinic Health System’s data warehouse and the integrated electronic
medical-dental health records (iEHR). Retrieved data were preprocessed prior to
conducting analyses and included matching of cases to controls by (a) race/
ethnicity and (b) 1:1 Case: Control ratio. Variables with >30% missing data were
excluded from analysis. Datasets were divided into four subsets: (1) All
Pneumonia (all cases and controls); (2) community (CAP)/healthcare-associated
(HCAP) pneumonias; (3) ventilator-associated (VAP)/hospital-acquired (HAP)
pneumonias; and (4) aspiration pneumonia (AP). Performance of five algorithms
was compared across the four subsets: Naïve Bayes, Logistic Regression,
Support Vector Machine (SVM), Multi Layer Perceptron (MLP), and Random
Forests. Feature (input variables) selection and 10-fold cross validation was
performed on all the datasets. An evaluation set (10%) was extracted from the
subsets for further validation. Model performance was evaluated in terms of
total accuracy, sensitivity, specificity, F-measure, Mathews-correlation-
coefficient, and area under receiver operating characteristic curve (AUC).
Results: In total, 6,034 records (cases and controls) met eligibility for inclusion in
the main dataset. After feature selection, the variables retained in the subsets
were: All Pneumonia (n=29 variables), CAP-HCAP (n=26 variables), VAP-HAP
(n=40 variables), and AP (n=37 variables). Variables retained (n=22) were
common across all four pneumonia subsets. Of these, the number of missing
teeth, periodontal status, periodontal pocket depth more than 5 mm, and
number of restored teeth contributed to all the subsets and were retained in the
model. MLP outperformed other predictive models for All Pneumonia, CAP-
HCAP, and AP subsets, while SVM outperformed othermodels in VAP-HAP subset.
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Conclusion: This study validates previously described associations between poor oral health
and pneumonia. Benefits of an integrated medical-dental record and care delivery
environment for modeling pneumonia risk are highlighted. Based on findings, risk score
development could inform referrals and follow-up in integrated healthcare delivery
environments and coordinated patient management.
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Introduction

Pneumonia continues to represent a significant medical

condition associated with substantially increased morbidity,

mortality, and healthcare cost, especially with advancing age.

The American Lung Association defines pneumonia as a

common infection of the lung caused by bacteria, fungi, and/

or viruses (1). Treatment and management vary depending on

the cause of pneumonia and symptom severity. In 2017, the

National Hospital Ambulatory Medical Care Survey reported

approximately 1.3 million visits to emergency departments

with a primary diagnosis of pneumonia (2) and the CDC

reported 49,157 deaths due to pneumonia in the same year

(3). Pneumonia has five subtypes: aspiration pneumonia (AP),

community-acquired pneumonia (CAP), hospital-acquired

pneumonia (HAP), health care-acquired pneumonia (HCAP),

and ventilator-associated pneumonia (VAP) (4, 5). In the

timespan between 2010 and 2014, Corrado et al. reported that

CAP is the most frequent subtype (54.3%) while VAP (1.6%)

is the least frequent subtype (6).

The current evidence base supports poor oral health as a risk

factor for VAP and AP. In contrast with the now well-studied

association between oral health and HAP, CAP remains under-

explored by population-level studies (7). Notably, a 2017

systematic review of risk factors for adult CAP identified poor

oral/dental health including periodontal disease (PD) as

potential risk factors (8, 9). However, a large population-based

study did not find PD to be a risk factor but did find dental

caries and tooth loss to be associated with pneumonia (7).

Notably, difficulty in defining the causal organism(s) in over

60% of pneumonia cases may be partially attributable to

pathogenic emergence of normal oral flora (10), including

anaerobes (11), consequential to environmental perturbation,

indicating that some pneumonia may originate from oral

dysbiosis (11). Viral infection may also represent a potential

cause of infection unrelated to oral health status (12, 13).

Moreover, poor oral health leads to a more anaerobic

environment, which may contribute organisms that colonize

both lungs and the oral cavity (14). Growing evidence supports

the potential role of oral flora in the etiology of pneumonia

(15–18). Comparison of pulmonary microbiota of patients

admitted to the ICU with CAP, VAP, and other HAP, in the
02
context of VAP (15), demonstrates clear overlaps across both

microbiomes. A systematic review supported a 40% reduction in

HAP incidence following improvement of oral hygiene in the

hospital setting (19). By contrast, a clinical trial implementing

improved oral hygiene in a nursing home setting was

terminated early due to futility (20), so further study is warranted.

Currently, trends to transform care delivery across the siloed

medical-dental domains include development of integrated

patient-centric care delivery models. This has been supported

by application of Artificial Intelligence (AI) in healthcare to

develop translational e-Health approaches to facilitate

implementation of precision care delivery (21–23). For

example, machine learning (ML), a subdomain of AI, involves

development of algorithms and makes decisions or predictions

relative to future data based on iterative modeling of historic

patient data (21). Algorithms developed by these models can be

translated at point of care in the form of clinical decision

support tools or risk prediction models (24–26).

Secondary use of electronically collected medical and dental

data for elucidating associations between oral-systemic health

conditions may expand insights into potential risk factors that

contribute to pneumonia emergence in the context of the

various pneumonia subtypes. Such characterization will

contribute to development of eHealth approaches in emerging

integrated medical and dental care delivery models. Because

poor oral health is a modifiable risk factor, targeting oral

disease prevention and treatment in the general population and

high-risk subpopulations could help reduce pneumonia risk

(27, 28). The objective of this study was to build models that

define variables contributing to pneumonia risk by applying

supervised Machine Learning (ML) to medical and oral disease

data to define key risk variables contributing to pneumonia

emergence for any pneumonia/pneumonia subtypes.
Methods

Study setting

This study was conducted at Marshfield Clinic Health System

(MCHS) (28), a large multispecialty healthcare practice with an

expansive service area spanning largely rural tracts of central,
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western, and northern Wisconsin. MCHS has partnered with the

Family Health Center of Marshfield (FHC-M), whose service area

largely overlaps that of MCHS (30). Medical and oral healthcare

are delivered across the service area via a network of over 50

clinics and hospitals supported by an integrated medical-dental

electronic health record (iEHR) that captures healthcare

encounter data in real time. Data are backed up daily in the

MCHS enterprise data warehouse (EDW), making this

repository and iEHR among the largest combined medical and

dental record systems in the country.

This study was reviewed and approved by the Institutional

Review Board (IRB) of Marshfield Clinic Research Institute.
Definition of the subject eligibility criteria

From a cohort of patients with medical and dental data, the

following inclusion/exclusion criteria were applied:
a. Patients more than 21 years of age.

b. With at least one oral examination at the FHC dental center

between 2007 and 2019.

c. With at least two ambulatory visits within 3 years of their

latest medical visit.

d. Recurrent pneumonia episodes were excluded. Pneumonia

recurrence was identified by documenting (additional

ICD9/10 CM pneumonia associated codes) less than 90

days of the index pneumonia diagnosis.
Eligible patients (n = 6,034) were assigned to one of the two

cohorts, based on their alignment with the following inclusion

criteria:

Cases were defined as patients who had documented

evidence of ICD9 CM (480.0–497.0) or ICD10 CM (J12-J18.9)

and a pneumonia encounter between 01/01/2007 and 12/30/

2019 as previously defined (31):
a. Rule of one: pneumonia encounter documented by ICD9/

10CM codes and associated antibiotics prescription and/or

a chest radiograph collected within ±30 days of the index

pneumonia encounter.

b. Rule of two: two pneumonia encounters in patients

documented by ICD9/10 CM codes during a pneumonia

episode.
There was no overlap between “a” and “b”. Patients who did

not meet the above definitions were excluded from further

analyses.

Controls: Patients with no ICD9/10 CM code for

pneumonia were included in the dataset.
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Data retrieval

To achieve the objective of the study, retrospective data from

2007 to 2019 were extracted from the MCHS EDW.

A comprehensive list of potential data features were shortlisted

following comprehensive review of prior studies that defined

risk variables associated with definition of pneumonia and its

various subtypes. Candidate potential risk factors targeted for

further analysis are catalogued in Supplementary Table S1.

The goal of predicting Pneumonia subtype risk was treated as a

classification problem, stratifying patients who had a

pneumonia diagnosis (cases) as “high risk” and those with no

pneumonia diagnosis (controls) as “low risk”.
Data preparation

Retrieved data were preprocessed prior to conducting

analyses and included matching of cases to controls by (a)

race/ethnicity and (b) 1:1 Case: Control ratio (24). Variables

with >30% missing data were excluded from analysis. Datasets

were divided into four subsets: (1) All Pneumonia (all cases

and controls); (2) community (CAP) and healthcare-

associated (HCAP) pneumonias; (3) ventilator-associated

(VAP) or hospital-acquired (HAP) pneumonias; and (4)

aspiration pneumonia (AP). An evaluation set (10%) was

extracted from the subsets for further validation. There was

no overlap among subtypes based on subclassification process.

The data were exhaustively classified using a rule-based

algorithm that examined each case for carefully defined

sub-type specific features that would allow for unequivocal

assignment to a specific subtype (31). Moreover, only

validated pneumonia applying NLP to radiographic notes was

included in the dataset (32).
Feature selection

To identify a representative subset of attributes, a univariate

filter, i.e., information gain with the ranker method was

employed (33). Feature selection was conducted on all the four

datasets using WEKA® (34). This allowed for evaluating the

contribution of each variable by measuring the information

gain with respect to the class, using the following formula:

InfoGain Class;Variableð Þ ¼ E Classð Þ�EðClass j VariableÞ
(1.1)

where E stands for entropy, which is defined as:

E¼�
X

ðProbabilityclass � log2ðProbabilityclassÞÞ (1.2)
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We set a cut-off value of ∼3*10−3 as low information gain

and variables with less than this value were further excluded

from the analyses.
Machine learning algorithms

Performances of five algorithms were compared across the

four subsets: Naïve Bayes (NB), Logistic Regression (LR),

Support Vector Machine (SVM), Multi Layer Perceptron

(MLP), and Random Forests (RF). Feature (input variables)

selection and 10-fold cross validation were performed on all

the datasets. Model performance was evaluated in terms of

total accuracy, sensitivity, specificity, F-measure, Mathews-

correlation-coefficient, and area under receiver operating

characteristic curve (AUC). Performance estimation was

conducted using a stratified 10-fold cross validation approach.

Table 1 summarizes the list of all data features included in

the prediction model. The study utilized the implementation

of these ML algorithms available in the Waikato Environment

for Knowledge Analyses (WEKA) open source tool (34). ML

was applied to rigorously processed datasets that included

only validated pneumonia cases subtyped using a rule-based

algorithm to prevent misclassification error.
Performance measures

To assess the prediction model performance of different

algorithms, the study compared ML algorithms using the

following performance measures.

(1) The area under the ROC curve (AUC) as defined by Hand

and Till for binary classification (35).
AUC ¼
S0 � n0 n0 þ 1ð Þ½ �

2
n0n1

(1.3)
where n0 and n1 are the numbers of “pneumonia cases” and

“controls”, respectively, and S0 ¼
P

ri , where ri is the rank of

the ith “pneumonia cases” in the ranked list.
TABLE 1 Distribution of data across all pneumonia and subtypes.

Subsets Cases

(n)
Controls

(n)
Total

(n)
“n” for

training

“n” for

validation

All
pneumonia

3,017 3,017 6,034 5,432 602

CAP/HCAP 1,832 1,832 3,664 3,298 366

VAP/HAP 591 591 1,182 1,064 118

AP 213 213 426 384 42
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(2) Sensitivity, also termed recall, is the ratio of the number of

correctly classified “pneumonia cases” instances to the total

number of “controls” instances.

Recall=Sensitivity Seð Þ ¼ TP
TP þ FN

(1.4)

where TP = true positive and FN = false negative.

(3) Precision is the ratio of the number of correctly classified

“pneumonia cases” instances to the total number of

instances that are classified as “controls”.

Precision ¼ TP
TP þ FP

(1.5)

where FP = false positive.

(4) Specificity is the ratio of the number of correctly classified

“pneumonia cases” instances to the total number of

instances that are classified as “controls”.

Specificity ¼ TN
TN þ FP

(1.6)

where TN = true negative.

(5) Accuracy is the ratio of the number of correctly classified

instances to the total number of instances.

Accuracy ¼ TN þ TP
TP þ TN þ FP þ FN

(1.7)

(6) F-measure is the harmonic mean of precision and recall.

F�measure ¼2�Precision � Recall
Precisionþ Recall

(1.8)
(7) Matthew’s Correlation Coefficient (MCC) considers the

accuracy and error rates and is calculated by the

following equation:

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FPð Þ TN þ FPð Þ TN þ FNð Þp (1.9)
Results

In total, 6,034 records (equal number of cases and controls)

met eligibility for inclusion in the main dataset. Table 1 shows

the distribution of the datasets. A total of 52 variables

which included demographic (n = 2), oral health (n = 6), and

medical/environmental/behavioral (n = 44) were identified and

retrieved from the data warehouse. Preprocessing of data

resulted in deletion of three features (Arterial blood gas,

Blood oxygen saturation levels, and Pro-calcitonin levels)

based on a high proportion of missing data. Among these (n

= 49), a total of 43 variables (22 common and 21 unique

variables) showed association with pneumonia. After

performing feature selection on all 4 datasets, variables were
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excluded due to low information gains from the subsets

respectively, thus bringing the variable countdown to: All

Pneumonia (29 variables), CAP/HCAP (26 variables), VAP/

HAP (40 variables), and AP (37 variables). Table 2 shows the

variables retained in the different subsets. Variables retained

(n = 22) were common across all four pneumonia subsets. The

most significant feature in terms of information gain for

dental variables included “restored teeth” (∼0.3). Restored

teeth was consistently the highest ranked variable across all

pneumonia and pneumonia subtypes. While other dental

variables such as missing teeth, periodontal pocket depth

≥5 mm, periodontal disease status, and dentures were retained

in all pneumonia models, they were differentially ranked with

respect to level of contribution across the various pneumonia

subtypes (see Table 2). Bleeding on probing was only retained

in the AP model.
Machine learning

Results of the performance estimated through 10-fold cross

validation are shown in Figure 1. MLP demonstrated higher

accuracy in classifying the patients with Pneumonia risk as

compared to NB, LR, and SVM in all Pneumonia and CAP-

HCAP subsets. In terms of sensitivity and specificity of the

resultant models for all Pneumonia and CAP-HCAP subsets,

the MLP algorithm demonstrated all Pneumonia (sensitivity:

88% and specificity: 90%) and CAP-HCAP (sensitivity: 88%

and specificity: 84%). By comparison, the sensitivity and

specificity in VAP and AP subsets were: VAP [SVM,

(sensitivity: 98%, specificity: 86%)], AP [SVM, (sensitivity:

85%, specificity: 95%)], and [MLP, (sensitivity: 90.5%,

specificity: 90.5%)].

The ROC curves are shown in Figure 2.

MLP outperformed other predictive models for All

Pneumonia, CAP-HCAP, and AP subsets, while SVM

outperformed other models in VAP-HAP subset.
Discussion

This study capitalized on the availability of rich, clinical

real-world, population-based, “big data” from an integrated

medical-dental record and care delivery environment for

modeling pneumonia risk through application of ML.

Validated ML analytical approaches were applied to

population-level data to vet association of established

pneumonia risk factors including oral/dental variables with

incidence of any pneumonia, as well as pneumonia subtypes

including “CAP-HCAP”, “VAP-HAP”, and “AP”. Among the

ML algorithms used in this study, MLP yielded the best AUC

(0.9) in “ALL pneumonia”, “CAP-HCAP”, and “AP” subsets.

Although predictive modeling using ML approaches has been
Frontiers in Dental Medicine 05
used for various health conditions, use of ML approaches

to define variables most predictive of pneumonia risk has

been limited.

Notably, oral health-related variables defined in the current

study that contributed most significantly to pneumonia risk are

consistent with outcomes of oral diseases associated with

infectious/inflammatory etiologies. Increasingly, a growing

body of evidence supports plausibility of microbial

pathogenesis as an important contributory factor underlying

the association between pneumonia and oral diseases. Distinct

pulmonary microbiomes in the upper and lower airways have

recently been reported (11, 14). Notably, resident airway flora

reflects microbiota found in the oral cavity, likely due to close

proximity and interconnections between the lung and oral

cavity (11). Further, shifts in microbial representation

associated with disease processes such as cariogenesis and PD

may also cause shifts in relative representation of oral

microbiota in the pulmonary microbiomes (14). Such shifts in

the relative representation of microbial species in the oral

cavity in the context of infectious/inflammatory processes

elicited by periodontal or cariogenic pathogens can lead to

dysbiosis. Dysbiosis is associated with perturbation of the

microbial content and environment giving rise to conditions

unfavorable for normal flora which normally maintain

microbial balance and the microbial environment.

Subsequently, shifts in microbial representation may favor oral

pathogens and establishment of conditions favorable to

colonization by potential pulmonary pathogens. This positions

these organisms to become opportunistic pathogens when

conditions become favorable, especially in

immunocompromised hosts. Moreover, direct transfer of oral

bacteria from the oral cavity to the lungs may occur in the

context of aspiration and VAP subtypes. Causality of VAP in

conjunction with microbial transfer from the oral cavity

during intubation has been definitively established by

demonstrating genetic identity between the isolated

pneumonia pathogen and bacterial isolates from dental plaque

of the affected patient (16).

This study builds on two previous studies that applied

informatics approaches to achieve pneumonia sub-classification

into CAP, HCAP, VAP, HAP, and ASP pneumonia subtypes

in the same population analyzed in the current study (31, 32).

We performed pneumonia case validation by using Natural

Language Processing (NLP) on the observations recorded by

radiologists on chest radiographs (31). The rules followed

were based on the study published by Dublin et al. (36).

A NLP-based software was developed which enforced the rule-

set prescribed by Dublin et al. and used to classify radiological

records to have “positive”, “negative”, or “unknown” mentions

of pneumonia. This validated the presence of the pneumonia

diagnoses in patients through unstructured data in addition to

“Rule of one” and “Rule of two”. The validated pneumonia

episodes after case validation were then classified into six
frontiersin.org
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TABLE 2 Summarizes the list of all data features included in the prediction model.

All pneumonia CAP-HCAP VAP-HAP AP

1 Restored teeth Restored teeth Restored teeth Restored teeth

2 Cough Cough Complete blood count Dysphagia

3 Intubation Intubation White blood cell count Video fluoroscopy

4 Complete blood count Age Heart failure Age

5 White blood cell count Complete blood count Hematocrit Missing teeth

6 Heart failure White blood cell count C-Reactive protein Hematocrit

7 Hematocrit Fever Legionella urinary antigen test (ULA) Complete blood count

8 Missing teeth Beta lactam medication Renal disease Heart failure

9 Fever Dyspnea Blood urea nitrogen White blood cell count

10 Blood urea nitrogen Missing teeth Dyspnea Blood urea nitrogen

11 Dyspnea Periodontal disease status Cough Renal disease

12 Age Legionella urinary antigen test (ULA) Blood glucose Intubation

13 Beta lactam medication Hematocrit Intubation Cerebrovascular disease

14 C-Reactive protein Periodontal pocket depth >5mm Missing teeth Neoplastic disease

15 Legionella urinary antigen test (ULA) Dentures Fever Dyspnea

16 Blood glucose Heart failure Sodium levels Legionella urinary antigen test (ULA)

17 Renal disease Blood urea nitrogen Diabetes Hypertension

18 Diabetes Gender S. Pneumoniae urinary antigen test
(UAT)

S. Pneumoniae urinary antigen test
(UAT)

19 Periodontal disease status C-Reactive protein Periodontal pocket depth >5mm Periodontal disease status

20 Video fluoroscopy Hypertension Age Bleeding on Probing

21 Sodium levels Glucose Video fluoroscopy Blood glucose

22 S. Pneumoniae urinary antigen test
(UAT)

Blastomycosis Beta lactam medication Steroid medication

23 Dysphagia S. Pneumoniae urinary antigen test
(UAT)

Periodontal disease status Cryptococcosis

24 Periodontal pocket depth >5mm Diabetes Blastomycosis Betalactam medication

25 Cerebrovascular disease Video fluoroscopy Cerebrovascular disease Hypercholesterolemia

26 Blastomycosis Hypercholesterolemia Hypercholesterolemia Aminoglycoside medication

27 Gender Liver disease Hemoglobin

28 Tachycardia Tachycardia Sodium levels

29 Histoplasmosis Histoplasmosis Tachypnea

30 BOP Blastomycosis

31 Neoplastic disease Fever

32 Hypotension Gender

33 Haemoglobin Histoplasmosis

34 Gender Hypotension

35 Steriod medication Periodontal pocket depth >5mm

36 Bradypnea Diabetes

37 Hypertension Dentures

38 Nausea

39 Tachypnea

40 Dysphagia

Variables that were not retained included: chills, chest sounds, confusion, malaise, carbapenam and cephalosporins.

Shimpi et al. 10.3389/fdmed.2022.1005140
cohorts. After extensive literature review, key medical features

that were identified to classify pneumonia episodes and

rules were set in place to develop a rule-based algorithm
Frontiers in Dental Medicine 06
which allowed for classification of pneumonia episodes (32).

Application of ML to datasets from our population-

based pneumonia cohort that had previously undergone
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FIGURE 1

Results of the ML performance estimated through 10-fold cross validation.

Shimpi et al. 10.3389/fdmed.2022.1005140
algorithm-driven subclassification and validation of pneumonia

status ensured that all pneumonia subclassification assigned in

the current study was accurate and represented true, validated

pneumonia cases. Following propensity score adjustment for

potential confounding by other established pneumonia risk

factors, our group also conducted time to event analysis and

statistical modeling in the same dataset. This alternative

approach to exploring association between oral health status

preceding pneumonia events similarly identified “missing

teeth” and “periodontal status assigned by a dental

professional” as two variables that were retained in

statistical models as significant independent risk factors for

pneumonia emergence.

Historically, similar studies developed predictive models to

predict pneumonia risk in patients with specific systemic

conditions including schizophrenia (37), liver transplantation

(38), and traumatic brain injury (39). Another study modeled

risk factors for 30-day hospital readmission following

incidence of pneumonia (40). A recent study (41) developed

ML VAP risk prediction models using EHR data from adult

ICU encounters (n = 524 positive VAP patients) during the

patients’ hospital stay (41). The authors reported logistic

regression as the best performing model followed by MLP.
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The AUC (ROC) reported by the investigators was 0.8 after

reviewing 48 h of data (41). The performance for VAP/HAP

subset in our study was 0.9 and is likely attributable to

volume of data used (591 positive VAP patients), the number

of variables used (n = 40) [vs. 10 variables modeled in the

study (41)], and use of 10% vs. 20% evaluation set in their

study. Similarly, Xu et al. built models to predict adverse

outcomes in patients with CAP using nine ML algorithms

and reported AUC of 0.8 using MLP for prediction of death

in pneumonia patients (42). The study reported using

variables including fever, cough, tachypnea, dyspnea,

hypertension, hematocrit, hemoglobin, WBC, creatinine, BUN,

glucose, heart disease, immunosuppression, malignancy,

cerebrovascular disease, renal disease, and liver disease, which

were also retained in our models using feature selection (42).

Our study focused on improving overall predictive accuracy

by including medical and dental variables to develop a risk

model for assessing patient risk for pneumonia. This study

demonstrated that dental variables, such as restored teeth,

missing teeth, periodontal pocket depth ≥5 mm, periodontal

disease status assigned by dental provider, and presence of

dentures, displayed high predictive performance. Selection of

dental data variables also led to a novel observation: tooth
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FIGURE 2

Receiver operating characteristics (ROC) curve for all pneumonia sub types.
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restoration history and missing teeth play a significant role in

pneumonia risk. Increased numbers of restorations and/or

missing teeth may be related to higher risk of aspiration and

perhaps dysphagia, well-known risk factors for pneumonia

(43). These findings are similar to a recent population-based

study conducted by Son et al. who showed that the risk of

pneumonia significantly increased in patients with a higher

number of dental caries and missing teeth. In the present

study, PPD≥ 5 mm and periodontal status assigned by a
Frontiers in Dental Medicine 08
dental provider were identified as significant factors

contributing to pneumonia risk in all subsets. This

observation further reinforces the association between

periodontal disease and pneumonia risk as shown in other

studies (8, 10). Further in our study, “restored teeth” was the

dental variable contributing to highest pneumonia risk. Two

additional studies that applied ML to evaluate potential risk

variables associated with HAP (37) and VAP (39) identified

WBC count and serum sodium levels as additional crucial
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risk factors in their respective studies. WBC count was also

identified as a significant variable in the current study. A

recent study by Zhao et el. applied ML approaches to datasets

of pneumonia and COVID patients and similarly showed that

clinical indicators including WBC count may be a significant

factor to predict the disease progression and outcomes in

patients with pneumonia and COVID-19 (44).

The study acknowledges some limitation. The study data

used were collected from a single healthcare system. This may

raise potential for selection bias within the healthcare system.

Generalizability of the predictive models developed in this

study will require further testing and validation in other

healthcare systems. Some variables such as clinical attachment

loss were not included due to incomplete and missing

data. The addition of these variables may be necessary to

further improve the pneumonia risk predictability in

healthcare settings.
Conclusion

The results of this study show that ML approaches that

include medical and dental data show an association of oral

health variables with pneumonia subtypes. Thus, consideration

of oral health outcomes in the integrated healthcare

environment would improve patient care through early

detection of pneumonia risk and further help in clinical

decision support to undertake preventive approaches.

To the best of our knowledge, this study is the first to develop

predictive models using ML techniques for identifying risk factors

associated with emergence of different pneumonia subtypes based

on modeling of medical and dental data. Risk scores could be

developed to inform patient referral and follow-up in integrated

medical-dental care delivery settings and coordination of oral

health and pneumonia management. Future studies would test

portability and translation of e-Health approaches into clinical

care delivery in diverse healthcare settings.
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