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Increased age is associated with an increased prevalence of chronic inflammatory

diseases and conditions. The term inflammaging has been used to describe the

age-related changes to the immune response that results in a chronic and elevated

inflammatory state that contributes, in part, to the increased prevalence of disease

in older adults. Periodontal disease is a chronic inflammatory condition that affects

the periodontium and increases in prevalence with age. To better understand the

mechanisms that drive inflammaging, a broad body of research has focused on the

pathological age-related changes to key cellular regulators of the immune response.

This review will focus on our current understanding of how certain immune cells

(neutrophils, macrophages, T cells) change with age and how such changes contribute

to inflammaging and more specifically to periodontal disease.
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INTRODUCTION

Advances in medical care and technology have resulted in increased life expectancy. The
populations of those over age 65 are expected to grow substantially within the United States and
globally over the coming decades (1, 2). Despite the recent advances, there is still an increased
burden of disease associated with increased age. Addressing the health care needs of this growing
population will present challenges. A better understanding of how age contributes to disease
susceptibility will allow us to better manage this unmet clinical need in older adult populations.

Chronic diseases, such cardiovascular disease, type II diabetes, and Alzheimer’s disease and
related dementias all increase in prevalence with increasing age. In addition, periodontal disease is
one of the most common chronic diseases and the prevalence of periodontal disease also increases
with age (3, 4). Much attention has been paid to how age-related physiological changes affect health
span and lifespan (Figure 1). For example, telomere attrition occurs throughout mammalian aging
and is associated with the onset of age-related disease (5). The mammalian target of rapamycin
(mTOR) pathway is involved in a diverse set of cellular processes that generally control growth
and homeostasis (6). Dysregulation of this pathway is strongly linked to age-related disease.
Additionally, cellular senescence is a state of proliferation arrest is cells. Senescent cells accumulate
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in tissue with increased age and contribute to a variety
of age-related disease, in part, through their characteristic
secretion of pro-inflammatory cytokines, chemokines, and tissue
remodeling enzymes (7).

The focus of this review will be on the age-related changes that
affect the immune system and contribute to disease. The changes
that occur to the immune system with age are quite diverse
and differ across the adaptive and innate immune systems
as well as across the different immune cell types (Figure 1).
These pathological changes have generally been described
as contributing to immunosenescence or inflammaging.
Immunosenescence describes the age-related dysregulation
of the immune response that results in immunocompromise
and contributes to increased disease susceptibility (8). This
immunocompromised status is associated with higher rates of
infection and the resulting increased morbidity and mortality
in older adults (8, 9). Inflammaging describes a chronically
elevated and dysregulated inflammatory response that occurs
with increasing age (10). Even in otherwise healthy older adults,
there are increased levels of circulating pro-inflammatory
factors such as interleukin-6 (IL-6), tumor necrosis factor α

(TNFα), and C-reactive protein (CRP) compared to young adults
(11, 12). Inflammaging is associated with a chronic inflammatory
component that underlies many of the age-related diseases.

Given the current understanding of periodontal disease
pathogenesis, immunosenescence and inflammaging may both
be important factors contributing to the increased prevalence of
periodontal disease in older adults. Within the periodontium,
a strict regulation of the host inflammatory response to the
oral microbes that inhabit these tissues is required to maintain
periodontal health. As a result of immunosenescence, there may
be a decreased ability to mount an effective immune response
and adequately clear the invading oral pathogens. Similarly,
the effects of inflammaging may result in a hyperreaction to
the inflammatory stimuli resulting in collateral damage to the
periodontal tissue as well.

The cause of inflammaging and immunosenescence is
likely multifactorial. This review will examine the current
understanding of age-related changes that affect neutrophils,
macrophages, and T cells. These cells have been chosen
here due to their known involvement in the pathogenesis
of periodontal disease and their involvement throughout the
initiation, propagation, and resolution of inflammation. It is
also important to appreciate that there are many other factors
that contribute to age-related immune dysregulation but are
outside the scope of this review. For instance, in addition to
neutrophils, macrophages and T cells, many other immune
cells have been implicated in periodontal disease pathogenesis,
including dendritic cells, B cells and natural killer T cells (13).
Each of these cells have also demonstrated pathologic age-related
changes but they will not be discussed in depth here.

This review will provide a brief explanation of the normal
function of neutrophils, macrophages and T cells during
infection and regulation of inflammation. The current
understanding of how such functions change with age will
be presented, highlighting how these age-related changes can be
pathogenic in periodontal disease. A better understanding of the

pathogenic age-related changes to these immune cells during
periodontal disease may lead to improved therapeutic targets and
better options for managing disease in older adult populations.

NEUTROPHILS

Neutrophils are present within the periodontium in health and
disease. Recruitment of neutrophils locally to the periodontium
is initiated by a cascade of chemotactic signals from oral
microorganisms (14). At the site of inflammation, neutrophils
will exit the microvasculature, enter the gingival tissues,
and continue their migration toward the gingival crevice
where there is a high number of microorganisms and their
associated chemoattractants. Even during periods of clinical
health, the presence of neutrophils within healthy tissue has
been demonstrated, as they can be recruited by the oral
microorganisms constantly present at the gingival crevice (15,
16). Periodontal disease is characterized by a large increase
in the number of neutrophils within the periodontium and
the gingival crevice. Disease results in a significant increase in
chemoattractant signals that are both endogenous, such as pro-
inflammatory signals derived from the epithelia, and exogenous,
such as LPS derived from the local bacterial plaque that cause the
influx of neutrophils locally (14).

Health and disease are characterized, in part, by a difference
in the number of neutrophils locally present. Therefore, it
is of interest to understand if age affects the number of
neutrophils within the tissue. Studies have measured the number
of circulating monocytes as well the number of their progenitors
within the bone marrow and have found no difference as a
function of age (17, 18). Other groups have shown that the ability
of neutrophils to respond to chemoattractants and migrate to
the site of inflammation appears to remain intact with increased
age (19, 20) or demonstrate a slight reduction in response (21,
22). In vitro investigations of the chemotactic response have
shown that neutrophils from older adult subjects demonstrate
a reduced response to granulocyte-colony stimulating factor
(G-CSF) and N-formyl-Met-Leu-Phe (FMLP) peptide (18, 23).
However, the chemotactic response to granulocyte macrophage-
colony stimulating factor (GM-CSF) and IL-3 were not affected
by age (18). Similarly, the molecules that promote the migration
of neutrophils out of the vessels and into tissue, such as CD15,
CD11a and CD11b, do not change as a function of age or are
slightly increased (20, 24, 25). Taken together, the small changes
that have been reported are unlikely to result in an inadequate
quantity of neutrophils that respond to infection in older adults,
including in response to the oral microorganisms present with
periodontal disease (26).

The number of neutrophils able to respond to infection
appears to remain largely intact in aging populations.
However, age-related changes that affect neutrophil function,
especially antimicrobial activity, may be more pathologic.
Upon infiltration into the tissue, neutrophils are equipped
with multiple antimicrobial strategies to reduce the microbial
load. Phagocytosis describes the neutrophil’s ability to ingest
and kill microbes intracellularly, and studies have shown
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FIGURE 1 | Physiological changes that occur with age have been shown to contribute to the myriad of disease that increase in prevalence with increasing age,

including periodontal disease. Significant attention has been paid to better understand the pathogenic age-related changes that affect the immune system.

Age-related immune dysregulation has generally been described as resulting in immunosenescence (a decreased ability to mount an effective immune response and a

resulting immunocompromised status) or inflammaging (a chronically elevated and hyper-immune response). Immune cells with critical roles in regulating inflammation

within the periodontium (neutrophils, macrophages, and T cell) have demonstrated age-related changes that contribute to immunosenescence and inflammaging.

Beyond the immune system, other age-related changes that occur systemically have been shown to be pathogenic. Telomere attrition and shortening occurs

throughout most cells and is highly associated with the onset of age-related disease. The mTOR signaling pathway is involved in a variety of basic cellular functions

across cell types and inhibiting its activity results in significant gains in life span in animal models. Cellular senescence is a state of proliferation arrest is cells.

Senescent cells accumulate in tissue with increasing age and produced a variety of pro-inflammatory cytokines, chemokines, and tissue remodeling enzymes, known

as the senescent cell secretory phenotype (SASP), that contributes to age-related pathology.
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that phagocytosis by neutrophils is attenuated in older adults
(27, 28). Multiple mechanisms for the age-related decrease
in phagocytosis have been proposed. Neutrophils from
older subjects demonstrated decreased expression of CD16
(29). CD16 is a Fcγ receptor expressed on neutrophils that
recognizes IgG-opsonized microorganisms and facilitates their
engulfment (30). Others have similarly suggested that neutrophil
recognition by antibodies and complement is attenuated in
older populations, which contributes to the age-related decrease
in phagocytosis (20, 25).

Neutrophils are also capable of producing cytotoxic reactive
oxygen species (ROS) as an antimicrobial defense mechanism.
Neutrophils release ROS intracellularly to kill phagocytized
microbes or extracellularly to kill microbes within the tissue (31).
Some studies have shown that the production and release of ROS
was decreased in neutrophils from older groups compared to
young (21, 25, 32). In contradiction, others have reported that
the ROS production by neutrophils is increased in samples from
older adults compared to young (33, 34). However, the increased
ROS production was associated with increased level of circulating
pro-inflammatory cytokines in older adults. Thus, it is not clear
if the age-related changes in ROS production are a result of
intrinsic changes to neutrophils from older adults or a result of
an increased presence of pro-inflammatory stimuli. Additionally,
the attenuation of ROS production as a function of age may be
pathway or stimulus specific. One study demonstrated that ROS
production by neutrophils from old donors was decreased when
stimulated by Staphylococcus aureus but there was no change
in ROS production when old neutrophils were stimulated by
Escherichia coli compared to young (28).

Another antimicrobial strategy utilized by neutrophils is the
formation of neutrophil extracellular traps (NETs). In response
to certain microbial stimuli, neutrophils will undergo a form
of cell death known as NETosis, where the nuclear and plasma
membrane disintegrate and a decondensed DNA structure is
released extracellularly forming the physical NET (35). NET
formation in the extracellular space provides a physical barrier
to trap microorganisms from further invasion, and also contains
antimicrobial agents, including neutrophil elastase, cathepsin
G, and myeloperoxidase, to kill microorganisms and eliminate
their associated virulence factors (36). NET formation appears
to be an important host defense mechanism during periodontal
disease (37). Hirschfield and colleagues demonstrated that
NET formation was stimulated by 19 different microbial
species involved in periodontal disease (38). Similar to other
antimicrobial strategies utilized by neutrophils, NET formation
also appears to be attenuated with increased age. Multiple
in vitro studies have demonstrated decreased NET formation
by neutrophils from old subjects compared to young (39–41).
Research using mouse models of Staphylococcus aureus infection
have demonstrated that NET formation was attenuated in old
mice which was associated with increased dissemination and
more severe infection compared to young (41).

In summary, increased age has a pathological effect on the
antimicrobial function of neutrophils and less of an effect on
the number of neutrophils recruited locally. This attenuation
in antimicrobial activity likely contributes to the increased

prevalence of periodontal disease in older adults, as has been
shown in other age-related disease (42). The age-related decrease
in phagocytosis or NET formation by neutrophils could result in
a decreased ability to kill and clear pathogenic microbiota within
the periodontium and an associated prolonged inflammatory
response. Inadequate resolution of inflammation can propagate
the tissue destructive mechanisms that contribute to the clinical
hallmarks of periodontal disease (43). However, it is also
important to appreciate that the same antimicrobial actions of
neutrophils that are toxic to microbes are also toxic to host cells
(43). This points to the importance of a tightly regulated immune
response within the periodontium and how perturbations of
the response can lead to disease. More evidence is needed to
understand the specific effects of these age-related changes to
periodontal disease susceptibility.

MACROPHAGE

The two general classes of macrophages are tissues resident
macrophages and circulating monocyte-derived macrophages.
Circulating monocyte-derived macrophages appear in tissue
in response to infection or injury. Circulating monocytes are
recruited locally where they differentiate into macrophages and
migrate into tissue (44). Within the periodontium, macrophages
are rapidly present in response to invading oral pathogens and
their associated chemoattract signals. Macrophages demonstrate
multiple antimicrobial strategies to eliminate invading microbes
and are able to both propagate or resolve the inflammatory
response through the secretion of cytokines and chemokines
(44, 45). Tissue resident macrophages are present steadily within
tissue and arise developmentally from the yolk sac, which is
distinct from the hematopoietic origin of monoctyes (46). Tissue
resident macrophages are an emerging area of interest that
have been characterized in a variety of tissues, such as bone,
central nervus system, and liver. They exhibit a heterogenous
set of functions including involvement in homeostasis and
regeneration of tissue that appears to be unique to a given
tissue (46). However, to date, no tissue resident populations of
macrophages within the periodontium have been identified.

Phagocytosis is an important host defense mechanism
exhibited by macrophages, which involves detection, ingestion,
and killing of foreign material (47). Macrophages also ingest and
degrade apoptotic cells, cellular debris, and damaged tissue after
infection and injury or as part of normal homeostatic functions
within the tissue (48). Macrophages have a repertoire of Toll-like
receptors and pattern recognition receptors to detect necrotic
and injured tissue or foreign LPS from invading microbes in
order to sense and respond appropriately (49, 50). Macrophages
specifically respond to oral periodontal pathogens. When
stimulated with Porphyromonas gingivalis and Aggregatibacter
actinomycetemcomitans, macrophages demonstrated an
inflammation propagating response via the production of
pro-inflammatory cytokines (45). Interestingly, the macrophages
demonstrated an ability to mount a unique response to the
individual pathogen, with A. actinomycetemcomitans stimulating
increased expression of chemokines that promote T cell
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recruitment. In the presence of increased microbial infection,
macrophages act to elevate the immune response. Macrophages
release pro-inflammatory cytokines (iNOS, TNFα, IL-1β, IL-6)
that propagate further immune cell recruitment (51). To further
elevate the immune response, macrophages also function as
antigen presenting cells to stimulate T cell activity and promote
an adaptive immune response (45). T cell recruitment is a
characteristic immune response during periodontal disease as
discussed in the following section.

During the active resolution of infection, macrophages
also act to downregulate the inflammatory response and
promote tissue repair. Macrophages resolve inflammation
through the production of arginase and anti-inflammatory
cytokine IL-10 and promote healing of damaged tissues through
the production of growth factors (TGFβ, VEGF) (52, 53).
The anti-inflammatory and pro-inflammatory activities of the
macrophage have generally been defined along a spectrum of M1
(pro-inflammatory) and M2 (anti-inflammatory) macrophage
phenotypes. The understanding of macrophage phenotypes is
continually evolving and beyond the scope of this manuscript.
Therefore, the M1 and M2 phenotype designation will only
be used to generally describe a pro-inflammatory and anti-
inflammatory phenotype without reference to the multitude of
diverse phenotypes continuing to emerge in the field.

It is important to appreciate that the antimicrobial and
immune propagating functions of M1 macrophages are part
of a necessary immune response to effectively defend against
microbial infections. However, the same functions have also
been implicated in the pathogenesis of periodontal disease
where prolonged pro-inflammatory processes ultimately lead
to tissue destruction. M1 macrophages have been identified in
gingival samples of humans with periodontal disease at higher
levels compared to healthy gingival samples. The increased M1
macrophage numbers were also associated with the presence of
increased inflammatory cytokines in the gingiva (54). Similarly,
other studies showed that an increase in M1 macrophages
was associated with increased severity of periodontal disease
whereas an increase in M2 macrophages was associated with
decreased disease severity (55, 56). Proper regulation of the
host response involves the appropriate transition from the
M1 to M2 macrophage phenotypes to resolve inflammation
and to minimize disease severity. Perturbations of macrophage
phenotype as a result of systemic disease or increased age may
contribute to the pathogenesis of many inflammatory conditions,
including periodontal disease.

The effect of age on macrophages is of significant interest and
studies have evaluated the number of macrophages that locally
respond to infection or injury as a function of age. In a mouse
model of periodontal disease, the number of macrophages that
were present in the periodontium was similar in old and young
mice during health, during periodontal disease, and during
disease recovery (57). Others have similarly shown no difference
in macrophage number as a function of age within muscle (58),
or in the periotoeneum (59). Conversely, decreased numbers of
macrophages in the lungs of older humans and mice has been
demonstrated (60, 61).

Recent evidence has suggested that macrophage activity and
the associated phenotypes may be detrimentally affected by age
and such age-related changes may be pathogenic in disease
including periodontal disease (62). However, when using in vitro
study designs, age-related changes to macrophage activity have
demonstrated conflicting results. Studies evaluating cytokine
production by macrophages isolated from old animals and
humans have shown increased (63), decreased (64), or no change
(65) in pro-inflammatory cytokine production compared to
young controls. Similarly, the phagocytic activity of macrophages
was shown to be increased (66), decreased (59), or not changed
(67) as a function of increased age. These conflicting results
may be related to the differences in the in vitro cell culture
environment compared to the in vivo environment. Aging is
associated with changes in the bone marrow microenvironment,
the progenitor cell source of monocyte-derived macrophages
(68). Aging is also associated with higher levels of circulating
pro-inflammatory cytokines, which may have an effect on the
circulating monocytes before being recruited and differentiating
into macrophages (11). Together, these environmental changes
that occur with agingmay have a significant effect onmacrophage
activity that is not readily replicated in the in vitro environment.

A better understanding of how age affects macrophages is
now emerging with the use of next generation sequencing
methodologies. One bulk RNA sequencing study isolated
macrophages that had responded locally to an injury in bone
in old and young mice (69). Macrophages from old mice were
transcriptionally distinct from themacrophages from youngmice
and demonstrated increased expression of pro-inflammatory
cytokines and other genes involved in the propagation of
inflammation compared to young (69). Another study using
single cell RNA sequencing similarly showed that alveolar
lung macrophages from old mice demonstrated increased pro-
inflammatory gene expression compared to the young samples
(70). Interestingly, these age-related transcriptional changes are
not consistent across all immune cell types. A study using single
cell RNA sequencing to analyze immune cells of old and young
mice demonstrated that some cell types showed small age-related
changes whereas others, including macrophages, demonstrated a
unique aging transcriptional profile (71).

Studies that have attempted to directly implicate age-
related changes in the macrophage with the pathogenesis of
periodontal disease have been limited. A recent study showed
that depleting macrophages in old mice enhanced the recovery
from periodontal disease after the ligature was removed, with
improved resolution of inflammation and decreased disease
severity compared to untreated old mice (57). Interestingly,
depletion of macrophages in young mice had no measurable
effect on disease recovery. These findings may suggest that
the age-related defect in macrophage activity is focused
on the resolution of inflammation. Another study similarly
demonstrated the burden of macrophages in old animals, by
showing that depletion of macrophages in old mice improved
fracture healing outcomes compared to non-treated controls
(69). Old animals exhibit delays in fracture healing and cutaneous
wound healing, and studies have demonstrated that the healing
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could be similarly improved in old animals when macrophages
from young mice were transplanted into the old mice (72, 73).

In summary, these studies demonstrate that macrophages
undergo age-related changes that likely contribute to the
pathogenesis of periodontal disease. Significant work within
the periodontal and wider medical fields has supported the
importance of proper regulation of macrophage phenotype in
the prevention of inflammatory-related disease. The emerging
next generation sequencing methodologies are providing a more
accurate assessment of the in vivo phenotype, and such findings
support the conclusion that macrophage phenotypes are affected
by age and assume a more pro-inflammatory phenotype that
may contribute to inflammaging. In the treatment of periodontal
disease, the removal of the bacterial inflammatory stimuli results
in an active shift toward resolution of inflammation driven, in
part, by macrophages. Thus, an age-related delay or perturbation
in the switch to M2-driven resolution of inflammation would
result in the continued propagation of the osteolytic processes
driven by M1 macrophages, or their downstream mediators, and
an increase in disease severity.

T CELLS

The innate immune response is responsible for the initial host
defense to microbial pathogens within the periodontium. The
prolonged presence of pathogens and the sustained innate
immune response will eventually illicit an adaptive immune
response. T cells are an important driver of the adaptive
immune response and demonstrate a heterogenous repertoire
that can recognize a broad range of antigens. Naïve T cells will
interact with antigen presenting cells, such as dendritic cells,
macrophages, Langerhans cells and B cells, that will promote
their differentiation toward a variety of T cell subpopulations that
are equipped to mount a more specific immune response (74).
Many T cell subpopulations have been identified and shown to be
important regulators of health or disease. The discussion below
is limited to the T cell subpopulations that have previously been
characterized within the periodontium.

CD4+ T helper cells are the most abundant T cell
subpopulation found in gingiva (75). They are generally further
characterized as Th1 or Th2 subsets. Th1 subsets demonstrate a
pro-inflammatory phenotype that produce a variety of cytokines
and chemokines that can illicit osteolytic processes during
periodontal disease (76–78). The Th2 subsets contribute to an
anti-inflammatory immune response to resolve inflammation or
limit the tissue destructive proccesses (76, 77). Th2 cells act to
resolve inflammation by secreting an anti-inflammatory cytokine
profile and by directing B cell activity. Within the periodontium,
Th2 cells activate and promote the expansion of B cell subsets
that produce antibodies against oral pathogens (55). Diverse B
cell subsets are present in periodontal heath versus disease. Thus,
T cell regulation of B cell subsets is an important function to
maintain periodontal health.

Th1 and Th2 subsets are both present in the gingiva during
health and disease, with a shift toward an increased ratio of
Th1 over Th2 cells occurring during periodontal disease (78).

A further differentiated class of T cells, CD8+ cytotoxic T
lymphocytes, also demonstrate a pro-inflammatory phenotype
and are equipped to kill foreign or infected cells. Cytotoxic T
lymphocytes produce antimicrobial cytokines (TNF-α and IFN-
γ), secrete cytotoxic granules (perforin and granzymes) and can
promote apoptosis of infected host cells (79). CD8+ cytotoxic
T lymphocytes are also found in healthy gingival samples
and increase in quantity during periodontal disease; however,
their pathogenic contribution to periodontal disease is not fully
understood (80). Regulatory T cell (Tregs) are a subpopulation
believed to have important homeostatic roles within tissue. A
body of work has focused on CD4+ Tregs; however, emerging
evidence has supported the presence of CD8+ Treg populations
with similar protective and homeostatic actions (80). Tregs have
anti-inflammatory properties, in part through the production
of IL-10 and TGF-β, that counteract the pro-inflammatory
properties of the other T cell subpopulations (81). Tregs are
protective of alveolar bone loss and can minimize osteolytic
processes even in the presence of gingival inflammation (82).

Th17 cells are a subset of Th1 cells and secrete IL-17 in the
promotion of inflammation (83). They have been implicated in
the pathogenesis of periodontal disease due to IL-17 promotion
of osteoclastic activity (83). Expansion of Th17 cell populations
and the associated increase in IL-17 expression are characteristic
of the pathogenic response in periodontal disease (84, 85). While
multiple cells secrete IL-17, during periodontal disease Th17 cells
represent 80% of the IL-17+ cells, whichmakes them a significant
contributor to the pathogenesis of periodontal disease (84).
Studies have shown that by inhibiting Th17 cell differentiation
in mice, periodontal disease severity was decreased (84).

As discussed here, the multiple subsets of T cells contribute
to the promotion or resolution of inflammation, but both were
found to be present with the periodontium in health and
disease. This demonstrates an ability of the oral microbiota
to illicit an adaptive immune response even in conditions of
health. It also supports the need for a precise balance of pro-
and anti-inflammatory activities to properly respond to the
microorganisms and to limit peripheral tissue damage that would
contribute to periodontal disease. Therefore, it is of interest to try
to understand how age affects the T cell activity

Age-related changes to T cells have been implicated in
contributing to immunosenescence. The thymus is the site of
naïve T cell production and, with increasing age, an involution
of the thymus is observed (86). A reduction in the quantity of
naïve T cells results in a decline of antigen-specific immunity and
a resulting increased susceptibility to infection (86, 87). Further,
age-related changes affecting the T cell antigen-receptors (TCR)
may further limit the expansion and differentiation of T cells.
Signaling through TCR in naïve T cells promotes the initial
clonal proliferation in response to a specific antigen (88). With
increased age, decreased signaling through the TCR or decreased
sensitivity to TCR ligation was demonstrated (89). In addition,
there is evidence of an age-related decrease in co-stimulatory
receptors (CD27, CD28) that are expressed along with TCR in
the differentiation of T cells (90). Together, the evidence supports
that age results in a decrease in T cell antigen specificity. It could
be expected that a decreased ability to mount a specific T cell
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response to oral pathogens may lead to advanced infection within
the periodontium, and this age-related immunocompromised
status may be a pathogenic contributor to periodontal disease.

Other age-related changes to T cells appear to result in
an up regulation of an inflammatory response that could
also contribute to disease pathogenesis. Age-related changes
to CD4+ T helper cells have been reported to affect their
responsiveness to receptor stimulation, resulting in a decreased
Th2 response and a preference toward Th1 differentiation
(91, 92). The increased Th1 response is associated with the
increased pro-inflammatory cytokines that may drive, in part,
the inflammaging phenotype associated with increased age.
In addition, the higher ratio of Th1 cells over Th2 cells
was found to be associated with increased alveolar bone loss,
which may also be a contributor to the increased prevalence
of periodontal disease with increased age (78). The Th17 cell
population also demonstrates age-related changes that may
contribute to a higher prevalence of periodontal disease. As
discussed above, Th17 cells are potent pathogenic mediators
in periodontal disease (83). Interestingly, with increased age,
homeostatic expansion of Th17 cells within the gingiva was
increased in old mice compared to young (93). Similarly, in
human subjects higher circulating levels of Th17 cells were
found in old subjects compared to young (94). It is not fully
understood what drives the age-related increase in Th17 cell
expansion. One possible explanation is that there is an age-related
increase in the cytokines that promote Th17 cell expansion,
IL-6 and IL-23 (95). While there are multiple sources of IL-
6 and IL-23 secretion during disease, the M1 macrophage
phenotype demonstrates increased expression of both cytokines
during the propagation of inflammation (95). The previous
section described an age-related shift in macrophage phenotypes
toward M1. Interestingly, this age-related shift in macrophage
phenotype may further drive a dysregulated inflammatory
response by promoting Th17 cell expansion. More work is
needed to understand how age-related changes may drive
pathogenic interactions amongst immune cells in the promotion
of periodontal disease.

FUTURE DIRECTIONS AND CONCLUSION

Proper regulation of the host immune response is critical in
maintaining periodontal health. As discussed here, age-related
changes affecting neutrophils, macrophages, and T cells appear
to promote a pathogenic immune response and contribute to
the increased prevalence of periodontal disease in older adults.
The burden of disease in older adults is well appreciated across

dentistry and medicine. The field of geroscience works to

understand how age-related physiological changes contribute
to diseases that impact older adults. An improvement in our
understanding of the basic cellular and molecular changes that
occur with age will translate to amore targeted and individualized
clinical care that focuses on the specific altered physiology that
occurs with increased age. Research has already been performed
showing the benefit of targeting the age-related perturbations to
the immune system to improve outcomes in aging populations.
Indeed, replacing components of the immune system of young
mice into old mice, either by bone marrow transfer or
heterochronic parabiosis, has demonstrated significant benefit
in many different disease and injury models including fracture
healing, skeletal muscle regeneration, cognitive performance, and
Alzheimer’s disease (73, 96–98). The macrophage has emerged
as a promising therapeutic target to treat age-related diseases
due to our increasing understanding of its pathogenic changes
that occur with age (99). Depletion of macrophages during the
recovery of periodontal disease or during the fracture healing
in mice resulted in improved outcomes in old mice (57, 69). In
addition, injecting young macrophages into old mice improved
cutaneous wound repair (72). The beneficial effects of the drug
metformin on reducing the effects of age-related physiological
changes have been shown to be, in part, through limiting
macrophage differentiation and activation (100). Translating this
approach to target macrophages in humans has largely focused
on the treatment of cancer, as macrophages have been shown to
contribute to tumor initiation, infiltration, and metastasis (101).
In summary, the potential benefit of targeting the age-related
physiological changes to treat disease in older adults is promising.
Further work is needed to arrive at a better understanding of
the changes that occur to key cellular regulators of the immune
response in order to develop effective therapeutic targets.
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