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Systems Biology in Periodontitis
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Systems biology is a promising scientific discipline that allows an integrated investigation

of host factors, microbial composition, biomarkers, immune response and inflammatory

mediators in many conditions such as chronic diseases, cancer, neurological disorders,

and periodontitis. This concept utilizes genetic decoding, bioinformatic, flux-balance

analysis in a comprehensive approach. The aim of this review is to better understand the

current literature on systems biology and identify a clear applicability of it to periodontitis.

We will mostly focus on the association between this condition and topics such as

genomics, transcriptomics, proteomics, metabolomics, as well as contextualize delivery

systems for periodontitis treatment, biomarker detection in oral fluids and associated

systemic conditions.

Keywords: systems biology, periodontitis, genetic decoding, genome, transcriptome, proteome, metabolome,

meta-transcriptome

INTRODUCTION

Systems biology is a promising scientific discipline that aims at understanding the biological
organisms and the multilevel interconnections between their different cell constituents (1, 2).
It utilizes different quantitative, experimental and computational methods to decode genetic
information, protein activities and signaling pathways in the cells, tissues, and organisms (3–5).

An important applicability of this field is the tracking of molecular changes that occur in
pathological events (6) such as periodontitis. Periodontitis is a chronic multifactorial inflammatory
disease associated with dysbiotic plaque biofilms and characterized by progressive destruction of
the tooth-supporting apparatus (7).

In order understand the pathogenesis of periodontitis, studies have reported isolated biological
regulatory mechanisms instead of utilizing integrated systems (8–12). Biological systems study
models allow for the integrated investigation of local host factors, microbial composition, in
periodontal tissue as well as systemic immune response (13). It better replicates biology of the
biofilm-gingival interface in specific patients and provides insight into their clinical management
(6, 14).

Unfortunately, this approach is in its infancy, and there is limited data available, especially as
it relates to periodontitis. In this review, we will mostly focus on systems biology as an emerging
approach to periodontal studies, with the potential of bringing accurate diagnosis and treatment
closer to a translational reality, as well as creating a scientific basis for future studies to elucidate
and enrich this thematic.

KEY PRINCIPLES OF SYSTEMS BIOLOGY

Systems biology is a new discipline that studies the molecular diversity of living
systems, by identifying principles and patterns and integrating them through complex
models of regulatory mechanisms (15). It involves computational analysis, mathematics,
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and physical concepts (1, 2). Furthermore, it focuses on complex
interactions within biological systems, using a holistic approach
to conducting modern research (14).

Despite being a new field and integrating biological systems
in its entirety, systems biology can also be analyzed from the
perspective of traditional scientific methodology including test-
based hypothesis (3). When we think about the differences
between healthy conditions and illnesses, it is certainly
expected that there are different protein expressions in these
seconds due to the disturbances suffered at the genetic
level. This is what systems biology is based on when
addressing inflammatory processes and diseases in general
(16). The investigation encompasses genomics, transcriptomics,
proteomics, metabolomics with the goal of data integration. In
this review we will discuss each one in detail with the objective of
intertwining all of them.

The investigation of candidate molecular biomarkers for
the diagnosis and prognosis of inflammatory diseases through
bioinformatics analysis of gene expression datasets is an example
of systems biology application (11). Specifically, regarding oral
diseases, in the last decade many studies have been using systems
biology in their searches, although this knowledge field is not
completely explicit (17–21). Furthermore, recent advances in
sequencing technologies allow researchers to profile disease-
associated microbial communities, quantify microbial metabolic
activities and host transcriptional responses, and correlate to oral
diseases such as periodontitis (22–25). The potential limitations
in systems biology refer precisely to the scarce literature and
the diversity of imprecise definitions. Classic terms such as “a
new type of biology” or “the successor to molecular biology”
cannot fully explain this new discipline that aims to integrate
biology and technology from different points of view (1, 3).
These limitations could be overcome by an extensive and
continuous discussion and, even more, by a formal meeting
between biologists and scientists from different areas with the
aim of standardizing concepts, classifications and objectives of
this complex knowledge.

SYSTEMS BIOLOGY CONCEPTS IN
PERIODONTITIS

Systemic Decoding of Periodontal
Inflammation
According to the current model of periodontitis pathogenesis,
the complex interactions between plaque bacteria, host genetic
factors and acquired environmental stressors must be considered
(25, 26). Although bacteria present in the plaque biofilm
initiate inflammation, intrinsic host factors and environmental
stressors modulate the magnitude, duration, and extent
of an inflammatory response (27, 28). Understanding the
molecular mechanisms underlying the pathogenesis as well
as the development of efficient therapeutics is even more
important since periodontitis is linked to other metabolic and/or
systemic diseases including diabetes, cardiovascular diseases,
and rheumatoid arthritis (23, 29–31). Currently, many studies
have evaluated genomics, proteomics and metabolomics in an

isolated and non-integrated manner, therefore, combining all
these approaches in a systematic way will allow us to better
understand and treat the disease.

Genomics in Periodontitis
The identification of the causal variant(s) that increase the
susceptibility/resistance to periodontitis can be done byGenome-
wide Associated Studies (GWAS). In fact, GWAS has provided
insight into novel loci and biological processes plausibly
implicated in this complex biofilm-dependent disease (31–
38) through human and animal studies (17, 39, 40). Other
studies have also discussed the current knowledge on genomics
considering inflammatory cytokines and polymorphisms related
to periodontitis (35, 36, 41, 42).

Themeta-analysis byMunz et al. (43), that included 16 studies
comprising 5,095 cases and 9,908 controls, identified novel
risk loci of periodontitis. The same group performed a GWAS
meta-analysis on coronary artery disease and periodontitis. The
study revealed that the molecular pathway shared by these two
conditions involves a novel risk locus (VAMP8) (44).

The use of GWAS to understand periodontitis has suggested
that there are many potential contributors to periodontitis,
reinforced that some genes should be further investigated and
validated the importance of many genes that we already know
are relevant to periodontitis. Moving forward the integration
of data obtained from GWAS in patients and in animal
models with the microbiome and proteome will allow a broader
view in the mechanisms underlying periodontitis and may
serve as a foundation for a more personalized treatment
approach (17, 40, 45).

Transcriptomics in Periodontitis
Transcriptomics refers to the complete set of gene transcripts
or RNA transcribed in a given cell type, tissue or organism
for a specific physiological or pathological condition (46).
It studies and interprets the key functional output of the
genome, comparing cells or tissues under defined conditions or
disease states to identify changes in gene expression (47–49).
Transcriptomics can efficiently narrow down candidate genes
associated with multifactorial diseases, assist in the investigation
of underlying mechanisms of diseases and the identification
of biomarkers for diagnosis and prognosis (6, 11, 50, 51).
Studies evaluating the transcriptome of periodontitis have been
performed human and in animal models (Table 1).

When evaluating the transcriptome, clinical studies have
observed increased periodontal inflammation due to increased
oxidative stress, innate immune response regulation (57), and
collagen degradation (18, 23, 58, 60). For instance, Suzuki et al.
(11) investigated a candidate molecular biomarker for diagnosis
and prognosis of periodontitis through bioinformatic analysis of
pooled microarray gene expression datasets in Gene Expression
Omnibus (GEO). The study observed that IL-1β is one of the
upstream regulators of CSF3 and CXCL12, both up-regulated and
related to the inflammation process and bone loss in periodontitis
(Table 1) (11).

A clinical study performed RNA sequencing (RNA-seq) of
peripheral blood monocytes (PBMs) in periodontitis cases and
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TABLE 1 | Transcriptomics in periodontal inflammation by RNA sequencing data.

Reference Study

design

DNA extracted

from

Technology DEGssequenced Protein regulated Periodontitis groups

outcome

Maekawa

et al. (52)

In vivo Gingival tissue Illumina MiSeq Innate immune

response-related genes

(S100a8 and S100a9)

CTSK and MMP9 Neutrophil chemotaxis

Liu et al. (53) Clinical Peripheral blood

monocytes

Illumina TruSeq FACR and CUX1 TNF and

lipopolysaccharide

↑PBMs gene expression,

endocytosis, cytokine

production and apoptosis

Corrêa et al.

(54)

Clinical Subgingival dental

plaque

Quick-gDNA

MicroPrep

16S rRNA IL-6, IL-17 and IL-33 ↑Periodontal inflammation,

severe SLE scores

Zhu et al. (55) In vivo Bone marrow

mononuclear cells

Agilent 2100

Bioanalyzer

Runx2 e Ocn TLR4, AP1 e IL-6 ↑Alveolar bone destruction

↓Osteogenesis

Wang et al.

(56)

In vivo Periodontal tissue Illumina HiSeq SLIT2 MAPK ↑Inflammation, immune

cells infiltration, M1

macrophage polarization,

osteoclastogenesis and

alveolar bone loss

Suzuki et al.

(11)

Clinical Gingival tissue GEO2R CSF3 and CXCL12 ↑IL1B ↑Bone resorption and

inflammation

Guo et al. (21) In vivo Periodontal tissue NanoDrop 2000 ↓miRNA-218 ↑Mmp9 ↑Collagen Types I and IV

degradation,

RANKL-induced osteoclast

formation and inflammatory

factors levels

Kim et al. (23) Clinical Gingival tissue Illumina HiSeq

2000

CSF3, MAFA, CR2,

GLDC, SAA1, LBP,

MME, MMP3,

MME-AS1, and SAA4

↑ICAM1, MMP13, LYN,

CSF3, MMP3, LBP,

and CXCL2. ↑ IL6, IL19

(slightly increased)

Inclusion of EDB exon and

skipping of exon 2 in

BCL2A1

Zhou et al.

(57)

Clinical Gingival tissue Genome-wide

sequencing

FAM126B, SORL1,

PRLR, CPEB2,

RAP2C, and YOD1

FAM126B, SORL1,

PRLR, CPEB2,

RAP2C, and YOD1

The lncRNA-miRNA-mRNA

interaction regulated

signaling pathways,

oxidative stress and innate

immune process

Horie et al.

(58)

Clinical Gingival tissue CAGE-seq DLX5 and RUNX2 Collagen Altered expression of ECM

and collagen degradation

Guo et al. (59) In vivo Gingival tissue HiSeq 2000

System

H19 p-AKT Activation of autophagy via

AKT pathway

Qian et al.

(60)

Clinical Gingival tissue scRNA-seq HLA-DR, CXCL13+,

NLRP3+ genes

HLA-DR, CXCL13+,

NLRP3+

↑Communication between

macrophages and B/T cells

DEGs, Differentially Expressed Genes; SLE, Systemic Lupus Erythematosus; CTSK, Cathepsin K; MMP9, Matrix Metallopeptidase 9; TNF, Tumor Necrosis Factor; PBM, Peripheral

Blood Monocytes; TLR4, Toll-like receptor 4; AP1, Activator protein 1; IL-6, Interleukin-6; MAPK, Mitogen-activated protein kinase; ICAM1, Intercellular Adhesion Molecule 1; MMP13,

Matrix metallopeptidase 13; LYN, Tyrosine-protein kinase Lyn; CSF3, Colony Stimulating Factor 3; LBP, Lipopolysaccharide binding protein; CXCL2, Chemokine (C-X-C motif)

ligand 2; CAGE, Cap Analysis of Gene Expression; EDB, Extra domain B; BCL2A1, BCL2-related protein A1; SORL1, Sortilin-related receptor; PRLR, Prolactin Receptor; CPEB2,

Cytoplasmic polyadenylation element-binding protein 2; p-AKT, Protein kinase; GEO2R, Gene Expression Omnibus database; HLA-DR, Human Leukocyte Antigen – DR isotype; ECM,

Extracellular matrix.

identified 380 genes transcribed from differentially expressed
isoforms (DEx) and suggested a more functionally active
monocyte transcriptome in periodontitis patients compared to
healthy individuals. Furthermore, several of the genes identified
as associated with periodontitis are known for interacting with
invading microorganisms (53).

In murine models of periodontitis, transcriptomics have
associated: (a) proteins present in bone marrow cells with
increased alveolar bone destruction and decreased osteogenesis
(55); (b) MAPK with increased inflammation, M1 macrophage
polarization, osteoclastogenesis (56) and (c) Mmp9 with collagen
type I and IV degradation, besides RANKL-induced osteoclast

formation, both in the DNA extracted from periodontal
tissue (21).

For instance, in trying to identify the relevant differentially
expressed genes and clarify the mechanism underlying alveolar
bone loss using ligature-induced periodontitis in mice, Maekawa
et al. (52) performed an enrichment analysis of gene ontology
terms. This study revealed that neutrophil chemotaxis and
inflammatory responses were significantly enriched in the
gingival tissues around teeth where periodontitis was initiated
through a ligature model (52).

A study aiming to obtain insights into periodontitis etiology
combined GWAS and transcriptomic data from mouse and
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humans. This study was able to further identify two sets of
periodontitis (chronic and aggressive) (61).

More recently, the literature has shown advanced technologies
to perform single-cell RNA sequencing (scRNA-seq) in terms of
detection of periodontitis and its specific changes. While Takada
et al. (62) identified that the Mohawk homeobox transcription
factor (Mkx) expressed in the periodontal ligament of Wistar
rats was involved in ankylosis and periodontitis, Chen et al.
(63) investigated the osteoimmunological microenvironment in
the periodontitis development by scRNA-seq and identified
more than 50 thousand cells isolated from healthy patients,
individuals with severe chronic periodontitis, and others with
severe chronic periodontitis. Among other findings, enrichment
of TNFRSF21+ fibroblasts with high expression of CXCL13
was detected in patients with periodontitis compared to
healthy subjects.

In addition to these authors, Agrafioti et al. (64) also used
single-cell RNA-sequencing and decoded the role ofmacrophages
in periodontitis and type 2 diabetes. They observed high
expression of a subunit of NF-κB called RELA in gingival
macrophages of patients with periodontitis with diabetes.

Transcriptomics has advanced our field and is necessary to
help understand periodontitis pathogenesis and to facilitate the
development of more precise biomarkers for disease prevention,
diagnosis and prognosis. The current task is to combine and
utilize the resulting data sets to benefit patient care (65).
Additional related studies and their applied technology can be
seen in Table 1.

Proteomics in Periodontitis
Proteomics is the study of the entire set of proteins expressed
by a cell, tissue or a organism at a particular state/time (66–68).
It supplements the other “omics” technologies such as genomic
and transcriptomics (69). In recent years, several studies have
discussed the use of proteomics in periodontitis (65, 70–73).

Many animal studies have performed proteomics analysis of
periodontitis (74–78). For instance, it has identified interleukin
4 (IL-4) as having protective role in bone destruction due to its
anti-osteoclastogenic action (77).

Human studies evaluating periodontitis through proteomics
have identified many proteins as being different in health
and diseases (79–81). For instance, Bostanci el al. evaluating
gingival crevicular fluid identified that one hundred and nineteen
proteins are different between health patients and disease
subjects (82). Mertens et al. evaluating salivary samples identified
hemopexin, plasminogen and α-fibrinogen in the saliva of
patients with periodontitis compared with healthy subjects (81).
A recent case-control study analyzed the salivary proteome
of individuals with chronic periodontitis and observed that
there is an increase in acidic proline-rich phosphoprotein,
submaxillary gland androgen-regulated protein, histatin, fatty
acid binding protein, thioredoxin and cystatin in patients with
periodontitis (79).

The growing use of proteomic techniques has allowed our
field to better understand the pathogenesis and biomarkers
identification for diagnosis and prognosis.

Metabolomic Approaches to Periodontitis
Periodontal inflammation triggers biological reactions that can
consequently be expressed in metabolic changes (80, 83). The
most common way of analyzing a metabolic network is using
flux-balance analysis, which involves calculating the flow of
metabolites through the network in steady state (84–86). In
recent years, the metabolic networks of whole organisms have
become available and, for instance, the metabolism of intestinal
microbial communities has been reconstructed (87). In oral
biology, despite extensive studies published on the variation
in the oral microbiota and metabolic profiles of patients
with periodontitis, information is still lacking regarding the
correlation between host-bacterial interactions and biochemical
metabolism (88).

Thus far, there have been several longitudinal, cross-
sectional and animal studies evaluating the relationship
between periodontitis and metabolic components behavior
(63, 88–90). When periodontal tissue is in an inflammatory
state, inflammatory factors such as cytokines, bacterial
antigens, various cells, metabolites, and other degradation
products are released in the gingival crevicular fluid (GCF)
(89, 91, 92). By analyzing the oral microbiome and oral
metabolome in periodontitis, in addition to identifying
biomarker molecules, a recent cross-sectional study detected
functional changes in basic metabolism including vitamins,
energy and cofactor (88).

Another cross-sectional study analyzed metabolic profiles in
individuals with aggressive periodontitis and identified, among
other differences, an increase in dehydroascorbic acid and a
decrease in thymidine in gingival crevicular fluid when compared
to healthy individuals (93).

Marchesan et al. (94) performed an analysis of microbiome
microarray data and metabolite data from saliva and assessed
the relationships among plaque microbial composition,
salivary bacterial metabolites and periodontitis phenotypes
in a well-established stent-induced biofilm overgrowth
clinical model. Several newly identified putative periodontal
pathogenic species in the Synergizes and Treponema phyla
were significantly associated with periodontitis parameters
(94). The differential detection of biomarker metabolites
in the GCF, in addition to being an excellent diagnostic
tool, can also be an important strategy in the treatment of
periodontitis (88).

In addition to human studies, in vivo studies have also
applied methodologies based on metabolomic approaches. For
example, an interesting animal study determined the metabolic
effects of periodontitis beyond the mouth such as decreased
plasma lysolipid metabolites, increased liver bile acid synthesis,
decreased brain glucose and increased cysteine and changes in
redox homeostasis in the heart (90).

Applying a similar method, another animal study validated
the association between high fat diet (HFD) and periodontitis
in arginine metabolism (related to M1/M2 macrophage
phenotypes) and observed that HFD was able to increase L-
arginine levels. Periodontitis alone showed enhanced spermidine,
a product related to M2 macrophages (63). Additional related
studies can be seen in Table 2.
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TABLE 2 | Some metabolic approaches in periodontitis.

Authors Study

design

Population Sample Technology Metabolic component and periodontitis

outcomes

Pei et al. (88) Cross-

sectional

30 GCF Gas chromatography-mass

spectrometry

↑Citramalic acid and N-carbamyl Glutamate

↓Carbohydrate metabolism

Ma et al. (89) Cross-

sectional

96 GCF and serum Liquid

chromatography/mass

spectrometry

↑Pseudouridine, l-phenylalanine,

p-hydroxyphenylacetic acid and CRP

↑IL-6patients with ESRD

Ilievski et al. (90) In vivo 20 mice Plasma, liver, brain

and hearth

Liquid

chromatography/mass

spectrometry

Plasma:

↓5-methylthioadenosine (MTA)

↓Citrulline

Liver:

↑7-hydroxycholesterol

↑S-methylcysteine

Brain:

↓Glucose

↓Fructose-6-phosphate

Heart:

↑Cysteine

↑Cysteine-glutathione disulfide

Chen et al. (63) In vivo 42 mice Gingival Tissue Liquid

chromatography/mass

spectrometry

HFD + Periodontitis:

↑L-arginine

↑L-ornithine

↑L-citrulline

Periodontitis alone:

↑Spermidine (M2-related product)

Chen et al. (93) Cross-

sectional

40

patients

GCF and serum Gas chromatography-mass

spectrometry

GCF:

↑Noradrenaline

↑Uridine

↑α-tocopherol

↑Dehydroascorbic acid

↑Xanthine

↑Galactose

↑Glucose-1-phosphate

↑Ribulose-5-phosphate

↓Thymidine

↓Glutathione

↓Ribose-5-phosphate

Serum:

↑Serum urea

↑Allo-inositol Glutathione

↓2,5-dihydroxybenzaldehyde

↓Adipic acid

↓2-deoxyguanosine

GCF, Gingival Crevicular Fluid; CRP, C-reactive protein; ESRD, End-stage renal disease; AI, Inflammation anemia; MDA, Malondialdehyde; TOS, Total oxidant status; TNF, Tumor Necrosis

Factor; PDGF-bb, Platelet-derived growth factor; VEGF, Vascular endothelial growth factor.

Optimizing Drug Delivery Systems for
Periodontitis Treatment
Classic conventional therapy for periodontitis treatment,
including mechanical plaque removal, is sometimes unable
to eliminate bacterial debris in hard-to-reach areas. The
literature is rich in studies that defend and highlight the role
of complementary therapies whose proposal is precisely to
assist in this bacterial control or immune-regulation, including
chemical drugs, probiotics, photodynamic therapy, and systemic
antibiotics (95–99).

In terms of technological innovations and broader
approaches focused on systems biology, advanced drug
delivery strategies using biodegradable nanocarriers
have been proposed to avoid problems such as toxicity

and antibiotic resistance in periodontitis treatment
(100). Among them, a recent study developed computer
simulations using an in situ localized nanogel drug delivery
system for periodontitis and noted that the formulated
nanoemulgel exhibited a remarkable release of 92.4% of
quercetin at the end of 6 h, as compared to that of pure
quercetin-loaded gel (<3% release) (101). The versatility
of distinct nanocarriers allowing for improvement of
their loading and releasing capabilities could be used for
microbiological control, periodontal regeneration, and/or
immunomodulation (100).

Systems biology approaches optimizing drug delivery have
been described by several authors will most likely emerge as
alternatives to the classical treatment of periodontitis (102–107).
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Utilization of Oral Fluids for the Detection
of Biomarkers and Microbiome
Oral fluids may offer the basis for patient-specific diagnostic tests
for periodontitis because it can be easily collected and contains
local and systemic-derived biomarkers. Among them, there is
the GCF which consists of an inflammatory exudate originating
from the gingival plexus of blood vessels in the gingival
corium, subjacent to the epithelium lining of the dentogingival
space (91). In clinical health, the periodontium secretes an
inflammatory infiltrate within the crevicular sulcus (19, 45, 108,
109). In pathological situations, such as periodontitis, as the
disease progresses, the GCF volume increases and inflammatory
mediators including cytokines, arachidonic acid metabolites and
enzymes are upregulated (110).

An ever-expanding pool of GCF proteins associated with
periodontal health or disease has been cataloged over the
years, particularly with the recent implementation of proteomic
technologies which provide a broad qualitative and quantitative
insight of the proteins present in gingival crevicular fluid (82).

In a recent study, Kim et al. performed proteomic analysis of
GCF and identified galectin-10 as a biomarker for periodontitis
(111). Batschkus et al., in turn, aiming to identify and quantify
proteins obtained from CGF of patients with periodontitis,
observed three hundred and seventeen different proteins trrough
by SDS-PAGE and high-resolution mass spectrometry (108).

A similar study, published by Marinho et al. compared the
relative abundance of 104 proteins in the GCF from individuals
with type 2 diabetes mellitus with and without periodontitis. In
patients with diabetes there was an increase in titin, neutrophil
elastase and myeloperoxidase while cathelicidin antimicrobial
peptide decreased in periodontitis cases and annexin decreased
in healthy patients (112).

The use of salivary biomarkers has been heavily employed in
recent years, including in omics approaches because it can be
easily collected and it has low cost (113). For instance, specific
host- or bacteria-derived biomarkers detected in saliva could
indicate the presence or progression/remission of periodontitis
(70, 79, 114, 115). Other recent studies made discoveries in
the proteomics field and saliva diagnosis, including multiplexing
platforms development (116) and rapid-test-kit with Shotgun
proteomics (73).

Systemic Conditions, Periodontitis and
Systems Biology
Systemic diseases with increased inflammation are frequently
linked to increased risk of periodontitis (117, 118). Some of the
systemic conditions linked to periodontitis described below are
diabetes mellitus, cardiovascular diseases, metabolic syndrome
and systemic lupus erythematosus.

Diabetes mellitus, a group of metabolic diseases characterized
by hyperglycemia resulting from defects in insulin secretion,
insulin action, or both (119), shares a bidirectional relationship
with periodontitis (120). Because of that, there have been
many studies that addressed such conditions simultaneously
under different clinical and biological perspectives and with
different study designs (121–125). As an example, sequencing

16S rDNA in subgingival dental plaque from patients with type
2 diabetes allowed the authors to quantify 110 metabolites and
415 lipids, but the most important findings were that the cross-
omics correlation analysis revealed a novel microbial metabolic
pathway and significant associations of host-derived proteins
with periodontitis (126).

Other systemic conditions associated with periodontitis are
cardiovascular diseases, whose incidence, especially coronary
artery disease and atherosclerosis, have been increasing
alarmingly (127–129). Atherosclerosis and periodontitis utilize
common inflammatory signaling pathways and in addition,
bacteria associated with periodontitis have been identified in
atherosclerotic plaque specimens (92, 130–132). A review by
Mirnejad et al. focused on the most important bacterial species
involved in cardiovascular diseases and periodontitis presented
recent findings about the proteomic evaluation of virulence
factors of these bacteria (132). Another review by Pietiäinen
et al. (133) summarized possible molecular mediators between
the dysbiotic oral microbiota and atherosclerotic processes, and,
among others, included a study that performed Pyrosequencing
of bacterial 16S rRNA genes in oral swabs which did not reveal
significant differences between patients with atherosclerosis and
controls (133, 134).

System biology studies have also been able to link metabolic
syndrome, a group of conditions defined by the presence of
obesity, dyslipidemia, hypertension, and deglycation leading to
an increased risk of diabetes and cardiovascular disease (118)
to periodontitis (135, 136). An association with systemic lupus
erythematosus (SLE) and periodontal disease has also been
observed by sequencing the V4 region of the 16S gene (54).

Studies focusing on how periodontal inflammation may affect
systemic conditions are necessary, not only to investigate the
mechanisms underlying this inflammatory process, but also to
establish therapeutic strategies (137). Applying the concepts of
system biology in these investigations is as important as the
need to clarify this new discipline and integrate it with classical
disciplines such as periodontal medicine and systemic diseases.

Some possible future directions for systems biology in
periodontitis may include computer-aided design software
development and finite element analysis for inflammatory
assessment, bone loss, and bone regeneration, as well as
innovative computed radiology and ultrasound for tissue
regeneration analysis.

In the clinical field of implantology there is a remarkable
applicability of new technologies, including computed radiology
and resonance frequency analysis (RFA) of osseointegration
around implants. An example of this is the Osstell R© device,
which consists of a small piezoelectric transducer in which the
RFA is automatically converted into an index that informs the
Implant Stability Coefficient via software (138).

CONCLUSIONS

This review analyzed different studies in periodontology that
have applied partial systems biology concepts in their thematic
and methodological approaches. Even though, it is an emerging
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area, it is strongly intertwined with what has been studied
for years in terms of periodontitis diagnosis and treatment.
Going from traditional biological approaches to a systemic
investigation model, adding OMICS technology, has already
taken important steps. Although translating the OMICS data
into clinical approaches is challenging, the oral microbiome
plays a key role for different systemic or oral conditions
such as periodontitis. Therefore, profiling subgingival bacterial
communities by omics methods is a great tool for early detection
of periodontitis biomarkers. It is suggested that new studies need
to be developed not only to enrich this topic, but also to better
investigate periodontitis and other oral conditions.
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