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Statistical learning and
mathematics knowledge: the
case of arithmetic principles

Hyun Young Cho*, Marina Vasilyeva and Elida V. Laski*

Lynch School of Education, Boston College, Chestnut Hill, MA, United States

Statistical learning—an unconscious cognitive process used to extract

regularities—is well-established as a fundamental mechanism underlying

learning. Yet, despite the prominence of patterns in the number system and

operations, little is known about the relation between statistical learning

and mathematics knowledge. This study examined the associations among

statistical learning, executive control, and arithmetic knowledge among first

graders (N = 54). The relations varied by operation. For addition, children

with greater statistical learning capacity responded more quickly to problems

that were part of a principle (i.e., commutativity) pair than to unrelated

problems, even after accounting for baseline performance, executive control,

and age. For subtraction, results indicated an interaction between children’s

baseline subtraction performance and their statistical learning on accuracy.

These findings provide an impetus for testing new models of mathematics

learning that include statistical learning as a potentially important mechanism.

KEYWORDS

statistical learning, arithmetic principles, commutativity, patterns, numeracy, domain
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Introduction

Implicit learning of patterns and regularities, known as statistical learning, is a core

attribute of human cognition (Saffran et al., 1996; Fiser and Aslin, 2002; Krogh et al.,

2013; Schapiro and Turk-Browne, 2015). Characterized as automatic, associative, and non-

conscious, statistical learning is considered distinct from intentional, explicit learning

(Gebauer andMackintosh, 2007; Arciuli and Simpson, 2011). Statistical learning is believed

to play a role in the acquisition of various kinds of knowledge from social understanding

(Ruffman et al., 2012) to the components of language (Erickson and Thiessen, 2015). To

our knowledge, however, there has been no previous investigation of whether statistical

learning is related to the acquisition of numerical knowledge, despite the prominence of

patterns and regularities in the number system and operations. In the present study, we

examined whether individual differences in statistical learning are related to children’s

ability to solve arithmetic problems.

Statistical learning and arithmetic

Statistical learning is well-established as a fundamental mechanism underlying learning

and development throughout the lifespan (c.f. Krogh et al., 2013). It contributes to learning

regularities across a wide range of domains of cognition, including visual and auditory

perception, social cognition, face recognition, and syntax acquisition (Ruffman et al., 2012;

Kidd and Arciuli, 2016). Most recently, it has been implicated in the acquisition of reading
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skills, including the regularities between letters and sounds in word

reading and spelling across languages (Treiman and Kessler, 2022).

Arciuli and Simpson (2012) found that individual differences in

kindergartners’ statistical learning predicted their scores on the

reading subset of the Wide Range Achievement Test, even after age

and attention had been taken into account. Thus, statistical learning

has been found to be an important mechanism for learning not

only simple artificial patterns over just a few minutes in the lab but

also complex real-world relations underlying academic knowledge

typically considered to be acquired via slow, explicit processes.

Akin to reading, mathematics operations are founded upon

patterns and regularities (Collins and Laski, 2015; Rittle-Johnson

et al., 2019). These regularities exist at multiple levels such as the

repetition of the digits 1–9 in each decade of the count sequence,

the successor principle relating count words to quantities (e.g.,

each successive number in the count string represents an increase

in quantity of exactly one), the correspondence between place-

value notation and base-10 structure, and arithmetic principles

that dictate consistent properties of operations (e.g., if a + b =

c then b + a = c). The ability to deduce rules and structure, as

indicated by patterning knowledge, has been found to be related

to both procedural and conceptual mathematics knowledge from

preschool through college (MacKay and De Smedt, 2019; Wijns

et al., 2021; Borriello et al., 2023). Given that statistical learning

is responsible for implicit learning of patterns, it may be the most

proximal process accounting for the relation between individual

differences in pattern knowledge and mathematics outcomes.

Arithmetic, like other aspects of mathematics, involves

understanding regular relations among numbers and between

operations, generally referred to as arithmetic principles (Gilmore,

2006). Two fundamental arithmetic principles are commutativity

and inversion. The commutativity principle describes regularities

in the relations between the addends and the sum of addition

problems: the order of the operands does not influence the

outcome. The inversion principle describes regularities in the

relations between addition and subtraction: the inverse operation

will result in the same value with no net change (i.e., if c–

a = b, then a + b = c). Individual differences in the extent

to which children demonstrate knowledge of these principles

have implications for both concurrent and future problem-solving

(Steinberg, 1985; Christensen and Cooper, 1991; Canobi et al.,

1998). For example, Canobi et al. (1998) designed a study in

which children’s conceptual understanding was measured by the

ability to spontaneously use arithmetic principles in problem

solving and to recognize and explain them when prompted.

They found that 6–8-year-olds who recognize commutativity-

based relations between consecutive problems solve problemsmore

quickly and accurately than those who demonstrated relatively

poor conceptual understanding. Detecting these regularities in

arithmetic may facilitate arithmetic learning by leading to a

reduction in the number of addition/subtraction combinations

children need to learn because automatizing the response to one

problem can generate the response to a related one (Ginsburg,

1989).

While arithmetic principles are often explicitly taught, there

is evidence that children may also incidentally deduce them from

experience (e.g., Prather and Alibali, 2011). For instance, Baroody

and Gannon (1984) noted that a small proportion of kindergartners

who participated in their study discovered commutativity in the

absence of explicit instruction over the course of solving problems

across three sessions. Similarly, although preschoolers are unlikely

to have been explicitly taught the inverse relation between addition

and subtraction, they seem to deduce it from experience; 3- and 4-

year-olds solve inversion problems more accurately than standard

ones when the problems involve sets of objects (Sherman and

Bisanz, 2007; Canobi and Bethune, 2008). At the same time,

even after exposure to explicit instruction of inversion during

kindergarten, not all children demonstrate knowledge of regularity

when solving symbolic problems. Rather, the number of children

who demonstrate knowledge of the inversion principle on symbolic

problems increases between the ages of 5 and 7-years, suggesting

there are differences in children’s ability to detect the regularity

even with explicit instruction (Bryant et al., 1999; Canobi, 2005).

These individual differences may be accounted for, in part, by

children’s statistical learning capacity.

The extent to which individual differences in using arithmetic

principles in problem solving are related to statistical learning

capacity may vary as a function of children’s experience/familiarity

with particular types of problems. When children have a greater

level of experience, they are more likely to have developed

procedural strategies for solving the problem or to have

automatized fact retrieval. These factors might affect the relation

between statistical learning and arithmetic problem solving.

Consider a situation where a child is provided with a problem

that has a solution (e.g., 6 + 3 = 9) and then asked to solve a

second related problem (e.g., 3 + 6 =?). Depending on the child’s

experience/skill with the problem type, using statistical learning to

arrive at a response may affect accuracy, latency, both, or neither.

If a child has already automatized the sum of 3 + 6, there is no

reason to expect they would solve this problem more accurately

or quickly when it is preceded by 6 + 3, even if they recognize

the similarity between the problems. In this scenario, statistical

learning capacity is unlikely to be related to either accuracy or

latency. A second possible scenario involves a child who has not

yet automatized the sum but has some familiarity with a counting

strategy. If the child can execute this strategy correctly with a high

level of consistency, then detecting the commutativity regularity is

unlikely to increase accuracy, but it may lead to a shorter response

time because it would provide a short-cut strategy. In other words,

statistical learning capacity is likely to be related to latency but not

accuracy. If, however, a child is less able to execute the strategy

accurately, then detecting the principle relation between the two

problemsmay be more likely to lead to an accurate response. In this

case, statistical learning capacity is likely to be related to accuracy,

while its relation to response time is less clear. Finally, a third

scenario is possible when a child has such limited experience with

a problem type that it may constrain the very ability to recognize

arithmetic principles due to a lack of knowledge about where to

direct their attention. In this case, statistical learning is unlikely to

be related to either accuracy or latency of problem solving.

In summary, there is reason to believe that individual

differences in statistical learning are related to children’s

proficiency in solving arithmetic problems (captured in both

accuracy and response time) and that this relation may vary
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with level of experience, but no research has tested these

hypotheses empirically.

Statistical learning and executive control

Statistical learning is one of several domain-general cognitive

processes that contribute to learning. As such, it is important to

consider how it is related to other key cognitive processes and

whether it interacts with them in predicting learning. Previous

studies with infants and adults suggest that statistical learning

aids decision-making, action predictions, and memory by creating

a mental framework of the environment based on existing

regularities (Sherman et al., 2020). To date, the issue has primarily

been investigated in the context of language learning. Several

studies indicate that statistical learning tasks tap an ability that

is not correlated with non-verbal intelligence, working memory,

and rapid naming (Conway et al., 2010; Siegelman and Frost,

2015; Kidd and Arciuli, 2016). The findings are less consistent

with respect to executive control processes (Ma and Yu, 2015; Park

et al., 2020). Bulgarelli andWeiss (2016) found no relation between

inhibitory control and statistical learning in a study of artificial

language learning with adults. In contrast, Deocampo and Conway

(2016) found that statistical learning was not only correlated with

attention, conflict response, and inhibition but also mediated their

relation to language learning among 7–12 year-olds. The mixed

findings in the domain of language learning may be due to age

differences across the studies. Examining this issue in the context

of mathematics may provide new insights.

The present study

The central goal of the present paper was to examine the

association between statistical learning and first graders’ arithmetic

principle knowledge. Statistical learning was measured using one of

the most common visual statistical learning tasks—the embedded

triplet paradigm (Arciuli and Simpson, 2011). Children are shown

a series of novel cartoon figures presented in triplets; then asked

in the second phase of the paradigm to determine which of two

triplets (a previously seen triplet or a foil triplet) they had previously

seen. Arithmetic principle knowledge was measured using a task

adapted from previous studies (e.g., Baroody et al., 1983; Canobi,

2009). Children were shown pairs of three term equations where

the first equation in each pair had the answer displayed and was

either related via a principle (i.e., commutativity or inversion) or

not to the second equation. Children who were able to notice the

regularity between the principle pairs (e.g., same addends but in a

different order) would have an advantage in that they could rely

on the answer of the first equation to solve the second (e.g., if 7

+ 2 + 4 = 13 then 2 + 7 + 4 = 13; if 7–4–2 = 1 then 7–4–1 =

2). Using three term equations helped to ensure implicit pattern

recognition was driving the response. Because three term equations

are not familiar to first graders, they would be unable to rely on

automatic fact retrieval and would bemotivated to apply a short-cut

to decrease the difficulty of these equations.

This design allowed us to test predictions about the relation

between statistical learning and arithmetic principle knowledge.

We reasoned that if children responded more accurately and/or

quickly on related than on unrelated pairs of problems, it

could be inferred that they noticed and used the regularity

between the pairs to arrive at their response. We expected that

children with greater statistical learning capacity for identifying

and extracting regularities would be more likely to notice the

relation between the pairs of problems, as reflected in the

accuracy/latency of their responses. Further, we tested the extent

to which individual differences in statistical learning predicted

children’s use of arithmetic principles above and beyond executive

control processes. In particular, we included ameasure of inhibitory

control and cognitive flexibility. Deocampo and Conway (2016)

found that statistical learning is correlated with conflict response

and inhibition among 7–12 year-olds; whereas, working memory

has not been found to be correlated with statistical learning

(Conway et al., 2010).

A second goal was to examine whether the level of experience

with arithmetic problems influences the association between

statistical learning capacity and use of arithmetic principles. We

expected there would be an interaction between children’s baseline

knowledge (as it reflects their prior experience) and their statistical

learning capacity in solving the principle pairs. Further, as students

receive instruction on addition prior to subtraction, arithmetic

operation can also serve as a proxy for the level of experience. Thus,

we included addition items, with which first graders were likely to

have had greater experience, as well as subtraction items, for which

they were likely to be in the earlier learning phase, and expected a

different pattern of results for these two operations.

Most first graders possess procedural strategies for carrying

out addition, which would enable them to accurately solve the

problems regardless of whether they notice the regularity. However,

those who do notice the principle and use it to shortcut the

procedure should respond more quickly. Thus, we hypothesized

that on addition problems, statistical learning would be most

closely related with latency, as opposed to accuracy. With respect

to subtraction items, we did not have specific hypothesis but

conducted exploratory analyses. Because children were likely to

have less experience with subtraction, we did not expect them

to be highly accurate with this operation. It is possible that

noticing and taking an advantage of the regularity may facilitate

generating accurate responses, but it is also possible that at least

some level of experience is needed to know where to direct one’s

attention to identify regularities (Casco et al., 1998; Deocampo and

Conway, 2016). Given this uncertainty with respect to accuracy,

we also did not have specific predictions with respect to latency on

subtraction items.

Method

Participants

Participants included 54 first graders (55.6% female; M = 6.67

years, SD = 0.56; 5.7–7.6) from primarily high-income families

(76% of parents had received a bachelor’s degree or higher). Based

on parental reports, 54% of participating children were White,
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17% Black or African American, 2% Hispanic, 4% Asian or Asian

American, and 23%multiracial. Children were recruited from three

different schools in the Greater Boston area. Children completed

the tasks individually with an experimenter in a quiet room in

schools. Based on a sensitivity power analysis of the paired t-test

using G∗Power (Version 3.1; Faul et al., 2007), the smallest effect

size that can be observed given a sample size of 54, p-value of 0.05,

and 80% power is d = 0.39.

Researchers received approval to conduct this study from their

university’s Institutional Review Board (Protocol #: 22.092.01).

Both written parental consent and verbal child assent were obtained

for each participant.

Procedure and measures

Children were tested individually by an experimenter in the

Spring of the school year. Based on the scope and sequence of

the first-grade curriculum and the Common Core Mathematics

Standards, by the time of testing, children had been exposed

to arithmetic instruction focused on addition, subtraction, and

different strategies for solving problems within 20. These strategies

include using fingers to count-all or count-on and retrieval of facts.

During the testing session, children completed an executive control

task, arithmetic principle task, and visual statistical learning task,

in that order. All of the measures were administered on a computer

using OpenSesame, Version 3.312.

Statistical learning
Statistical learning was assessed using a modified version of

an established measure of visual statistical learning, with good

internal consistency (Cronbach’s α = 0.83) and split-half reliability

(Guttman’s λ= 0.72) (Fiser and Aslin, 2002; Brady and Oliva, 2008;

Arciuli and Simpson, 2011; Arnon, 2020). The stimuli included 12

unique alien characters grouped arbitrarily into four base triplets

(ABC, DEF, GHI, JKL, where each letter represents a different

alien). A base triplet was always presented in the same order. For

example, for the base triplet ABC, whenever stimulus A appeared

on a screen, it was always followed by B, which was then followed

by C.

The procedure began with two rounds of practice to ensure

children knew how to respond in the familiarization phase. In

the first round, one triplet was presented with the last alien

appearing twice; all four characters appeared simultaneously on

the computer screen. Children were told that whenever they see

an alien appearing twice in a row, they should say “same.” In the

second round, three triplets were presented similarly to the first

round (with the last character repeated) so that children could

practice the procedure again.

The practice was followed by the familiarization phase, in which

children learned the order of the aliens in the base triplets that

would be used on test trials. These base triplets were unique from

the triplets that had been presented as practice trials. Aliens were

displayed on the screen one at a time, with a blank screen appearing

between each successive alien for 500 msec. Each of the four base

triplets was shown 24 times in a random order. For six of these 24

FIGURE 1

Example of the statistical learning task.

instances, the third alien in the triplet was repeated twice in a row

(e.g., ABCC-GHI); children were told to say “same” whenever they

saw an alien appearing twice in a row. These trials helped ensure

that children paid attention to the familiarization phase.

Finally, the test phase was conducted, where each of the 30 total

trials included two versions of a base triplet–one that children had

seen during familiarization and one they had not seen before (e.g.,

ABC or ACB). The children were prompted to identify which of the

two versions of the base triplet had appeared during familiarization

(Figure 1). The correct choice and the foil were randomly arranged

across trials so that in half the trials, the correct base triplet

appeared on the left, and in the other half, it appeared on the right.

The outcome measure was the percentage of correctly identified

triplets in the test phase, with 50% being chance performance.

Executive control
Children’s inhibitory control and cognitive flexibility were

measured with the Shape School task (Espy, 1997). The

task included four conditions that were presented in a fixed

order: baseline, inhibition, cognitive flexibility, and inhibition +

flexibility. For each condition, the children saw 15 “shape figures”

(i.e., circles or squares with cartoon faces) arranged in a 5× 3 array

on a computer screen. In each array, there was an equal number of

red, blue, and green shape figures.

In the baseline condition, the cartoon faces were emotionally

neutral. The child’s task was to name the color of each figure

as quickly as possible. In the inhibition condition, the figures

were presented with one of two facial expressions–happy or sad.

Children were instructed only to name the color of the figures

with happy faces; this required children to name the color of nine

figures and inhibit their impulse to name the color of the other six.

In the cognitive flexibility condition, all shape figures had neutral

faces but varied in whether they had a hat on. Children’s task was

to name, as quickly as possible, the shape of the figures with hats

and to name the color of the figures without hats. Finally, children
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were presented with the inhibition + cognitive flexibility condition,

where the figures varied both in facial expression (happy/sad) and

in whether they had hats. Children’s task was to name an attribute

(either color or shape depending on the presence of hat) for only

happy-faced figures. In all conditions, children received practice

with feedback before proceeding to the test trials.

As soon as the children completed their verbal response, the

experimenter pressed a button to automatically code response time

and manually code accuracy. For each condition, the number of

stimuli named correctly and the total time needed to name all

stimuli were used to calculate an efficiency score: Efficiency score

= (number correct–the number of errors) / total time (sec). A

higher efficiency score indicates greater cognitive inhibition and

flexibility. The Shape School task demonstrated adequate reliability

in prior research with preschoolers (Espy et al., 2006): baseline (α

= 0.56), inhibition (α = 0.71), cognitive flexibility (α = 0.80), and

inhibition + flexibility (α = 0.74). The reliability for this task in

the current sample also showed adequate reliability: baseline (α =

0.62), inhibition (α = 0.73), cognitive flexibility (α = 0.82), and

inhibition+ flexibility (α = 0.77).

Arithmetic principle task
The arithmetic principle task included problems with totals

within 20: addition problems with three addends and subtraction

problems with a minuend and two subtrahends. The task involved

four blocks of problems presented in a fixed order: small addition

problems, large addition problems, small subtraction problems,

and large subtraction problems. The small problems included

addends or subtrahends within five, whereas the large problems

included addends or subtrahends <5.

The problems were grouped into either baseline pairs or

principle pairs. For the 12 baseline pairs, the two problems were not

related via any arithmetic principles, so the accuracy and latency

of solving the second problem were not expected to be influenced

by solving the first. For the 12 principle pairs, the two problems

were related via the commutativity principle for addition (e.g., 7

+ 2 + 4 = 13 followed by 2 + 7 + 4 = ___) or via the inversion

principle for subtraction (e.g., 12–6–4 = 2 followed by 12–6–2 =

___). Because the problems were related via a principle, the first

problem was expected to prime the solution to the second. A total

of 24 pairs of problems were given on the arithmetic task.

Children were first presented with a block of small addition

problems that included four baseline and four principle pairs;

the pairs were presented in a different random order for each

child. Then, they were given a block of large addition problems,

which included four principle pairs and no baseline pairs to avoid

fatigue. The two addition blocks were followed by the small and

large subtraction problems with the same structure. Problems

comprising each pair were presented successively on a computer

screen one at a time. The first problem in each pair included

the answer. Children were given as much time as they wanted to

look at the problem and confirm the answer by typing it on the

keypad. Then, the first problem disappeared; children were shown

the second problem of the pair and asked to type the answer. As

children entered the numerical response to the problems using

the external keypad, they could see it on the computer screen

and were allowed to change their answer up to the point they

hit the “enter” button. Response time for each problem was

calculated automatically by OpenSesame as the duration between

the presentation of the problem and when children hit “enter.”

Performance on the small baseline problems provided a

measure of children’s arithmetic skill, while performance on

the principle problems provided a measure of children’s ability

to recognize and use the arithmetic principles. A difference in

accuracy or latency between the baseline and principle small

problems would suggest that children were able to notice the

relation between the pairs in the principle condition. A difference

in accuracy or latency between the small principle problems and

large principle problems would suggest that the ability to detect the

regularity varied by problem difficulty. To ensure that the latency

measure did not include noise from guessing, it was calculated

only for correct responses. The arithmetic tasks showed adequate

reliability: for addition, baseline (α = 0.67) and principle (α =

0.88); for subtraction, baseline (α = 0.66) and principle (α = 0.87).

Results

Absolute level of performance on each of
the key measures

Children’s performance on the statistical learning, executive

control, and arithmetic principle tasks are reported in Table 1.

All measures showed sufficient variance, and there were no floor

or ceiling effects. For the statistical learning task, we compared

children’s performance to the chance level. A binomial test

indicated that the average accuracy on this task was above

chance (M = 0.60 SD = 0.14, p < 0.001). The percentage of

individual children performing above chance was 66.7%. For the

executive control task, we compared children’s performance across

conditions. A repeated measures ANOVA using Shape School

condition as the within-subject factor and the efficiency score as

the dependent factor found a main effect of condition [F(1.76, 93.28)
= 180.99, p< 0.001, η2p = 0.77]. Post hoc analyses with a Bonferroni

adjustment indicated that children’s efficiency scores were lower in

the inhibitory control + cognitive flexibility condition (M = 0.33,

SD= 0.18) than in the cognitive flexibility condition (M= 0.47, SD

= 0.18), which in turn were lower than in the inhibition condition

(M = 0.96, SD = 0.28), all p’s <. 05. These results are consistent

with previous findings in terms of both the mean efficiency scores

and the pattern across conditions (Espy et al., 2006).

For the arithmetic principle task, we first examined children’s

performance on small problems, which varied as a function of

operation (addition vs. subtraction) and problem type (baseline vs.

principle). A 2 (operation) X 2 (problem type) repeated measures

ANOVA using arithmetic accuracy as the dependent variable found

a main effect of operation; children were more accurate [F(1,53) =

10.26, p < 0.01, η2p = 0.16] at solving addition than subtraction

problems across both types of problems. No effect was found for

problem type; children’s accuracy was comparable on baseline and

principle problems [F(1,53) = 0.19, p= 0.67, η2p = 0.003].

A parallel repeated measures ANOVA was conducted using

arithmetic latency as the dependent variable, except that this

analysis examined response time only on correct responses. The
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TABLE 1 Descriptive statistics, N = 54.

Tables/Measures M SD Min. Max.

Statistical learning 0.60 0.14 0.33 0.87

Executive control

Inhibitory control 0.96 0.28 0.41 1.62

Cognitive flexibility 0.47 0.19 −0.11 0.89

IC & CF 0.33 0.18 −0.07 0.86

Baseline

Arithmetic accuracy

Overall 0.59 0.28 0.00 1.00

Addition 0.64 0.31 0.00 1.00

Subtraction 0.55 0.34 0.00 1.00

Arithmetic latency (sec)

Overall 15.45 7.34 3.59 42.59

Addition 15.99 6.20 6.88 32.80

Subtraction 17.10 11.74 3.29 63.56

Principle

Arithmetic accuracy

Overall 0.56 0.30 0.00 1.00

Addition 0.65 0.31 0.00 1.00

Subtraction 0.52 0.31 0.00 1.00

Arithmetic latency (sec)

Overall 15.44 9.87 2.54 60.87

Addition 11.81 6.55 2.32 28.99

Subtraction 16.83 13.21 1.27 72.12

results indicated main effects of both operation and problem type:

children were faster [F(1,39) = 9.47, p < 0.01, η2p = 0.20] at solving

addition than subtraction problems and were faster at solving

principle than baseline problems, M = 11.81 s vs. M = 15.81 s,

respectively [F(1,39) = 8.90, p < 0.01, η2p = 0.19]. In addition,

the results found a significant interaction between operation and

problem type for children’s arithmetic latency [F(1,39) = 4.95, p

< 0.05, η2p = 0.11]. That is, children were faster at solving small

principle addition problems than subtraction ones.

Next, we compared children’s performance on small and large

problems. Because all baseline problems used small terms, this

analysis included only the principle problems. A 2 (operation)

× 2 (problem size) repeated measures ANOVA using arithmetic

accuracy as the dependent variable found amain effect of operation;

children were more accurate [F(1,53) = 5.17, p < 0.05, η2p = 0.09] at

solving addition than subtraction problems. No effect was found

for problem size; children’s accuracy was comparable on the small

and large principle problems [F(1,53) = 2.42, p = 0.13, η2p = 0.04].

A parallel repeated measures ANOVA using arithmetic latency

(on correct responses only) as the dependent variable found main

effects of both operation and problem size: children were faster

[F(1,36) = 11.27, p < 0.01, η2p = 0.24] at solving addition than

subtraction problems and also faster at solving small principle

problems than large ones,M= 13.59 s vs.M= 16.33 s, respectively

[F(1,36) = 6.05, p < 0.05, η2p = 0.14].

Correlational analyses

Table 2 shows a full correlation matrix. Here, we focus on the

correlation analyses that were central to the research questions.

Statistical learning and executive control
Individual differences in statistical learning were not correlated

with any of the measures of executive control: inhibitory control

[r(52) = 0.00 p = 0.99], cognitive flexibility [r(52) = 0.24, p = 0.08],

and both processes combined [r(52) = 0.01, p= 0.93].

Executive control and arithmetic
Individual differences in each measure of executive control –

inhibitory control, cognitive flexibility, and inhibitory control +

cognitive flexibility - were correlated with each other (p’s < 0.05).

Further, each measure was positively correlated with children’s

overall arithmetic accuracy. This association held when looking at

accuracy separately for each operation (addition and subtraction)

and for each kind of problem type (baseline and principle; small

and large problems), all p’s < 0.05. In contrast, there were no

correlations between individual differences in executive control and

children’s arithmetic latency for either operation and for different

problem types (p’s > 0.10).

Statistical learning and arithmetic
Statistical learning was related to overall latency on principle

problems [r(52) = −0.29, p = 0.04], but not to overall accuracy on

principle problems [r(52) = 0.24, p = 0.08]. Statistical learning was

not related to latency on baseline problems or accuracy on any kind

of problem (baseline and principle; small and large).

To examine the influence of level of experience on the

relation between statistical learning and arithmetic, we conducted

correlational analyses of the relations to statistical learning

for addition and subtraction as well as for small and large

principle problems separately. For addition, statistical learning was

negatively related to latency on both the small and large principle

problems [r(44) = −0.53, p < 0.01 and r(39) = −0.53, p < 0.01,

respectively]: children with greater statistical learning capacity

solved addition principle problems faster than their peers with less

statistical learning capacity. For subtraction, statistical learning was

not correlated with accuracy or latency on both the small and large

principle problems (all p’s > 0.10). In sum, children’s capacity for

statistical learning was related to arithmetic proficiency, but only

on addition problems.

Regression analyses

To further examine the relation between statistical learning

and arithmetic for each operation and the size of the problem,

we conducted regression analyses to determine whether statistical
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TABLE 2 Pearson correlation matrix (N = 54).

Variable 1 2 3 4 5 6 7 8 9 10 11 12

1. Statistical learning

2. Inhibitory control (IC) 0.00

3. Cognitive flexibility (CF) 0.24 0.35∗∗

4. IC and CF 0.01 0.31∗ 0.43∗∗

5. Age (mo) −0.18 0.13 0.01 −0.04

6. Addition Accuracy: Baseline 0.12 0.40∗ 0.42∗∗ 0.44∗∗ 0.04

7. Addition Accuracy: Principle 0.02 0.33∗ 0.41∗∗ 0.37∗ 0.18 0.80∗∗

8. Subtraction Accuracy: Baseline 0.09 0.34∗ 0.42∗∗ 0.34∗ −0.12 0.50∗∗ 0.61∗∗

9. Subtraction Accuracy: Principle 0.11 0.40∗∗ 0.32∗ 0.31∗ −0.08 0.55∗∗ 0.63∗∗ 0.67∗∗

10. Addition Latency: Baseline 0.18 −0.15 −0.27 0.06 −0.22 −0.08 −0.25 −0.33∗ −0.20

11. Addition Latency: Principle −0.56∗∗ 00 −0.06 0.13 −0.02 0.01 0.27 0.06 0.08 0.11

12. Subtraction Latency: Baseline −0.01 −0.15 0.12 0.23 0.06 0.04 0.10 −0.06 0.00 0.26 0.38∗

13. Subtraction Latency: Principle −0.14 −0.05 −0.25 −0.04 −0.17 −0.07 −0.09 −0.10 0.04 0.18 0.49∗∗ 0.62∗∗

∗correlation is significant at the 0.005 level.
∗∗correlation is significant at the 0.01 level.

TABLE 3 Predictors of latency on principle addition problems.

Predictor β p 95% CI

Executive Control (IC & CF) 0.116 0.42 [−6.37, 14.9]

Statistical Learning∗∗ −1.34 0.01 [−101,−16.8]

Baseline Addition Accuracy −1.12 0.09 [−12.5, 13.9]

Age (mo) −0.129 0.36 [−0.401, 0.147]

SL× Baseline Add. Accuracy 1.40 0.09 [−7.20, 99.7]

R2
= 0.341∗∗

Outcome: Latency (in sec.) on Addition Principle Problems. β represents standardized

coefficients beta. p represents significance. ∗∗p ≤ 0.01.

learning accounted for individual differences in solving principle

problems above and beyond executive control. We also tested

for a moderating effect of level of experience, as measured by

children’s baseline performance, on the relation between statistical

learning and children’s accuracy and latency. Regression models

that were run separately for small and large principle problems

(with accuracy and latency as outcome variables) showed the same

pattern of findings. Thus, we ran the subsequent regression models

combining small and large principle problems.

Statistical learning as a predictor of addition
accuracy and latency

Together statistical learning, baseline addition accuracy,

executive control, and age accounted for 84% of the variance in

first graders’ accuracy on the addition principle problems [F(5,48)
= 55.82, p < 0.05]. Children’s baseline addition accuracy positively

predicted accuracy on principle problems (β = 0.71, p < 0.05),

but statistical learning was not a significant predictor (p = 0.41).

Executive function and age were also not significant (p = 0.66 and

p= 0.80, respectively).

TABLE 4 Predictors of accuracy on principle subtraction problems.

Predictor β p 95% CI

Executive Control (IC & CF) 0.121 0.18 [−0.183, 0.979]

Statistical Learning 0.140 0.12 [−0.151, 1.32]

Baseline Subtraction Accuracy∗∗ 0.460 <0.001 [0.483, 1.151]

Age (mo) 0.115 0.19 [−0.005, 0.026]

SL× Baseline Sub. Accuracy∗∗ 0.528 <0.001 [2.05, 4.27]

R2
= 0.676∗∗

Outcome: Latency (in sec.) on Addition Principle Problems. β represents standardized

coefficients beta. p represents significance. ∗∗p ≤ 0.01.

A parallel regression analysis was conducted for statistical

learning as a predictor of children’s latency on addition principle

problems. Together statistical learning, baseline addition accuracy,

executive control, and age accounted for 34% of the variance in

first graders’ latency on the addition principle problems [F(5,42) =

4.35, p < 0.01]. Specifically, statistical learning negatively predicted

children’s addition latency on the principle problems, β = −1.34,

p < 0.01, above and beyond the measure of baseline addition

accuracy, executive function, and age, which were not predictive (p

= 0.09, p = 0.42, and p = 0.36). There was no interaction between

statistical learning and baseline addition, p = 0.09 as illustrated in

Table 3.

Statistical learning as a predictor of subtraction
accuracy and latency

Statistical learning, baseline subtraction accuracy, executive

control, and age accounted for 68% of the variance in first graders’

accuracy on the subtraction principle problems [F(5,48) = 20.07, p<

0.01]. Executive function and age were not significant in predicting

children’s subtraction accuracy on principle problems (p= 0.18 and

p= 0.19). As shown in Table 4, the model indicated a main effect of
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baseline subtraction accuracy and a moderating effect of baseline

subtraction accuracy on the relation between statistical learning

and children’s principle problem subtraction accuracy. There was

a significant interaction between children’s baseline subtraction

accuracy and statistical learning on their subtraction accuracy on

the principle problems, β = 0.53, p < 0.01. This interaction is

illustrated in Figure 2. The interaction was probed by testing the

conditional effects of statistical learning at three levels of children’s

baseline subtraction accuracy, one standard deviation below the

mean, at the mean, and one standard deviation above the mean. As

shown in Figure 2, the strength of the relation between statistical

learning and subtraction accuracy on the principle problems was

strongest among the children with the highest level of baseline

subtraction accuracy (R2 = 0.12).

Statistical learning, baseline subtraction accuracy, executive

control, and age accounted for only 7% of the variance in first

graders’ latency on the subtraction principle problems [F(5,44) =

0.70, p= 0.63]. The lack-of-fit of the regressionmodel was expected

as the correlation between the predictors and the outcome was low

(p’s > 0.10).

Discussion

Previous studies have shown that various domain-general

(verbal and visuospatial working memory, inhibition, and

cognitive shifting) and domain-specific (e.g., numerical magnitude

representations) cognitive capacities are involved in developing

arithmetic knowledge (Siegler and Araya, 2005; Cragg et al., 2017;

Wong, 2023). The current study adds to the understanding of the

processes underlying arithmetic learning by examining the extent

to which individual differences in statistical learning capacity

predict children’s ability to notice and use arithmetic principles.

First graders were shown pairs of three term equations where the

first equation in each pair had the answer displayed and was either

related to the second equation via a principle (i.e., commutativity

or inversion) or unrelated to the second equation. Findings support

the hypothesis that statistical learning is involved in arithmetic

learning and that its involvement depends, in part, upon the level

of experience with arithmetic.

Statistical learning and arithmetic

The present results provide evidence of the involvement of

statistical learning in arithmetic development. Statistical learning

predicted latency for addition only: children with greater statistical

learning capacity responded more quickly to addition problems

that were part of a principle pair than to unrelated problems,

even after accounting for baseline performance, executive control,

and age. For subtraction, statistical learning predicted accuracy

only among those children with high levels of baseline knowledge.

Previous research indicates that children can incidentally deduce

arithmetic principles from experience (e.g., Prather and Alibali,

2011). Combined with this previous research, the current

findings raise the possibility that statistical learning may be an

underlying mechanism by which children extrapolate regularities

in mathematics.

While further work is needed to test this possibility, we

believe it is consistent with recent work pointing to a relation

between patterning skill and numeracy knowledge (Kidd et al.,

2013; Rittle-Johnson et al., 2017; Burgoyne et al., 2019; MacKay

and De Smedt, 2019). Children who do better on patterning tasks

also have greater numeracy knowledge. For instance, children in

first- and second-grade who were better able to complete growing

patterns (e.g., “5, 7, 9, 11,?”) were also better at calculating

number facts, controlling for a broad range of cognitive skills

(MacKay and De Smedt, 2019). Some evidence also supports

a causal relation between patterning ability and arithmetic. For

example, Lüken and Kampmann (2018) found that first-graders

randomly selected to receive instruction on patterning were

more accurate at solving arithmetic problems after 5-months

than children who received business-as-usual instruction. These

findings related to patterning provide convergent evidence that

an individual’s propensity to notice patterns is important for

mathematics learning. Both repeating pattern knowledge and

statistical learning involve noticing co-occurrences and using that

information to make predictions, however, statistical learning can

be considered the more proximal process of the two. Statistical

learning is an implicit process, available as early as infancy; while

patterning knowledge, is explicit and emerges over childhood. In

fact, measures of repeating pattern knowledge require children

to not only notice the pattern but also to articulate how they

arrived at their selection (e.g., Borriello et al., 2023). Thus, it seems

conceivable that an individual’s statistical learning capacity partly

accounts for the relation between individual differences in pattern

knowledge and mathematics outcomes.

Statistical learning for di�erent levels of
experience

We hypothesized that the relation between statistical learning

capacity and the use of arithmetic principles to solve related

problems would vary by the level of experience/skill with particular

problem types. In this study, arithmetic operation served as a proxy

for experience – first graders typically have more experience with

and greater accuracy on addition than subtraction problems. We

found that the statistical learning was related to latency for addition,

but not subtraction. On subtraction problems, baseline knowledge

moderated the relation between children’s statistical learning

capacity and their accuracy on principle problems. Specifically,

among children who scored above themean on baseline subtraction

problems, those with greater statistical learning capacity were more

accurate on subtraction principle problems than those with less

statistical learning capacity. In contrast, there was no relation

between accuracy and statistical learning capacity for those who

demonstrated less prior knowledge of subtraction. Thus, it may

be that a certain level of experience is necessary to be able to use

statistical learning to identify regularities.

There are at least three potential explanations for the

moderating effect of experience. Prior experience with a problem

type may guide children’s attention to relevant patterns, facilitating

the use of statistical learning (Casco et al., 1998; Deocampo and

Conway, 2016). Alternatively, a lack of experience in solving
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FIGURE 2

Interaction between baseline knowledge and statistical learning on accuracy of principle subtraction problems.

particular problems may tax cognitive resources, thereby limiting

the functioning of statistical learning (Kirschner, 2002). Finally, it

may be that children adaptively choose among different strategies

based on the trade-offs between accuracy and speed (Siegler, 1998).

The pattern of findings related to children’s latency and

accuracy provides evidence for this third possibility – an adaptive

choice between statistical learning and other problem solving

approaches. Because first graders have more experience using

procedural strategies with addition than subtraction, we predicted

this would enable them to solve addition problems with relatively

high accuracy regardless of whether they notice the regularity.

Yet, those who do notice the principle and use it to shortcut the

procedure are likely to respond more quickly. Consistent with this

idea, statistical learning predicted children’s latency on principle

addition problems but not their accuracy.

Limitation and future directions

The present study offers initial evidence of the relation between

statistical learning and children’s math knowledge, specifically the

ability to detect and use arithmetic principles. The results add to

the growing body of work suggesting statistical learning is involved

in academic knowledge, typically thought to be acquired primarily

through explicit processes. As with recent results implicating

statistical learning in the acquisition of reading skills (Arciuli and

Simpson, 2012; Treiman and Kessler, 2022), these findings suggest

statistical learning may influence the ease with which children

notice the patterns and regularities in arithmetic.

Yet, further work is needed to establish the reliability and

strength of the association. The current study included a small

number of trials and inferred arithmetic principle knowledge via

speed and accuracy rather than requiring explicit explanations. To

obtain a more complete characterization of the role of statistical

learning in children’s arithmetic principle understanding, future

studies could include a greater number of trials and additional tasks

that tap different dimensions of arithmetic principle knowledge,

such as explicit recognition and use of procedural short-cuts

(Prather, 2012; Robinson et al., 2017). In addition, the current study

did not control for cognitive factors, such as working memory or

patterning skills, that have been shown to predict math knowledge.

For example, to detect the regularity across a pair of principle

problems, one must keep the numbers from the first problem in

working memory and compare them to the second problem to

notice that the addends are the same despite being in a different

order. Several studies indicate that statistical learning tasks tap

an ability not correlated with working memory (Conway et al.,

2010). Thus, if statistical learning is found to predict arithmetic

principle knowledge above and beyond working memory, it would

provide stronger evidence for its influence in extracting regularities

in mathematics tasks. While including a baseline measure of

math performance partly addresses the omitted variable concern,

future studies may benefit from including additional measures to

better understand the complex relations between different types of

predictors and math knowledge.

It would also be worthwhile for future studies to examine the

association between individuals’ statistical learning capacity and

their knowledge of other aspects of mathematics. Various other

early math concepts involve statistical regularities – such as the

repetition of the digits 1–9 in each decade of the count sequence,

the successor principle relating count words to quantities (e.g., each

successive number in the count string represents an increase in

quantity of exactly one), the correspondence between place-value

notation and base-10 structure. Finding an association between

statistical learning and knowledge across various math concepts

would help establish the generality of the relation between statistical

learning and mathematics knowledge.

While the present work does not allow for any causal claims, the

pattern of findings is consistent with the possibility that statistical

learning may serve as a mechanism underlying the acquisition

of mathematics knowledge. There are several potential ways that

future studies could test this possibility. Onemight explore whether

statistical learning mediates the effect of instruction of patterning
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or arithmetic principles on improvement in those skills. Another

might be comparing learning in situations where the regularities are

more or less apparent. For example, the regularities across problems

could be varied systematically (e.g., a practice set of problems with

100% involving commutativity vs. 75% vs. 50%). A finding of better

learning, when regularities are more apparent, would point to the

involvement of statistical learning. Together, these kinds of studies

would extend the current work and provide a basis for models

that include statistical learning as a key process in mathematical

knowledge acquisition.
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