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In recent years there has been growing interest in the use of machine learning across
the pharmacovigilance lifecycle to enhance safety monitoring of drugs and vaccines.
Here we describe the scope of industry-based research into the use of machine
learning for safety purposes. We conducted an examination of the findings from a
previously published systematic review; 393 papers sourced from a literature search
from 2000–2021 were analyzed and attributed to either industry, academia, or
regulatory authorities. Overall, 33 papers verified to be industry contributions were
then assigned to one of six categories representing the most frequent PV functions
(data ingestion, disease-specific studies, literature review, real world data, signal
detection, and social media). RWD and social media comprised 63% (21/33) of the
papers, signal detection and data ingestion comprised 18% (6/33) of the papers, while
disease-specific studies and literature reviews represented 12% (4/33) and 6% (2/33)
of the papers, respectively. Herein we describe the trends and opportunities
observed in industry application of machine learning in pharmacovigilance, along
with discussing the potential barriers. We conclude that although progress to date
has been uneven, industry is very interested in applying machine learning to the
pharmacovigilance lifecycle, which it is hopedmay ultimately enhance patient safety.
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1 Introduction

The vast increase in the volume of safety reporting over the last years was only exacerbated
during the global COVID-19 pandemic. The introduction of new vaccines and medicines in
response to the pandemic resulted in more than 1.8 million new safety reports. Enabling the
safety community to cope with the onslaught of data has led to increased interest in automating
pharmacovigilance (PV) activities within the pharmaceutical industry and prompted safety
organizations to advance their technological capabilities (Rudolph et al., 2022).

Even before the pandemic, automation and its potential benefits for PV activities were well
recognized (Kassekert et al., 2022). Rules based automation, also known as robotic process
automation (RPA), are well established and have been routinely used for several years by
companies to assist in the processing of individual case safety reports [ICSRs; see (Kassekert
et al., 2020) for an example]. Here, we have adapted the RPA benefit diagram first described by
(Vitharanage et al., 2020). Benefits realized through RPA include increased timeliness of data
ingestion, higher quality case processing, and reduction in the manual efforts required of case
processors. Furthermore, through automation, additional, indirect benefits to PV functions
have been realized, such as increased operational reliability, improved job satisfaction, and
increased transparency in data management processes (Figure 1). Thematic groups of the nodes
are identified by their color, while interdependencies between graph nodes are deduced
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intuitively and deserve future investigation to refine. Each node of the
RPA graph is expanded in greater detail with full descriptions in
(Table 1).

There has been a growing interest in applying machine learning
(ML) across the entire PV lifecycle, from data ingestion and quality

control to regulatory or health authority reporting and signal
detection. Currently, it is not obvious to what extent ML can be
used for routine, operational PV activities and the practical
implications this will have for patient safety. More simplistic ML
applications such as association rule analysis, or disproportionality

FIGURE 1
The benefits of robotic process automation.

TABLE 1 Details on the benefits of robotic process automation (RPA).

Node Phase Benefit Description

Expected Benefits

A Before RPA Enforcement of organizational policies Automation defaults to observing organizational policies in a systematic way

B Introduction
of RPA

Improvement in time efficiency Reduction in time for case processing and booking

D Introduction
of RPA

Reduction of manual tasks and workload Reduction of repetitive, mundane, tedious manual tasks

E Introduction
of RPA

Improvement in data accuracy Automate data processing in systematic way. Decrease potential errors and mistakes
in safety case review and processing

F RPA in
Systematic Use

Decrease in compliance risk Timelier fulfillment of compliance and audit requirements for regulatory bodies

G RPA in
Systematic Use

Improvement in human resource utilization Better utilization of staff, focus on cases which require human intervention

J RPA in
Systematic Use

Return on investment Increase capability for high volume case processing without increasing staff

K RPA in
Systematic Use

Increase in operational reliability Allows the organization to operate reliably, even when faced with unexpected
challenges

Unexpected Benefits

C Introduction
of RPA

Improved employee participation Staff is relieved from repetitive tasks and able to focus on improving overall business
processes and decision making

H RPA in
Systematic Use

Improvement in transparency, visibility and better
understanding of processes

Business processes and business rules are judiciously executed, processes are
documented and explainable to stakeholders

I RPA in
Systematic Use

Improvement in job satisfaction Empower staff to focus on the most important tasks which lead to better job
fulfillment
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analysis, have been used routinely for signal detection in most
organizations (Bate and Evans, 2009). Spontaneous safety reports
are routinely analyzed using this family of methods as part of
holistic PV management systems (Almenoff et al., 2007). The use
of ML in other PV applications however is not routine, although there
are isolated reports of ML use for purposes other than signal detection,
for example, detection of duplicate spontaneous reports (Norén et al.,
2007; Bate and Luo, 2022).

The objective of this paper is to describe the scope of industry-
based research into the use of ML for safety purposes, and in
particular PV.

2 Unravelling the routine use of ML in PV

A recently published systematic review on the history and use of
ML in PV was conducted by evaluating the published literature from
2000–2021 (Kompa et al., 2022). In this scoping review, 393 papers
met the criteria for analysis and were analyzed across several metrics
including types of safety data used, types of ML models built, and
specific PV subtasks addressed. We conducted a thorough
examination of the findings of the systematic review (Kompa et al.,
2022) to derive a better understanding of the routine use of ML by the
pharmaceutical industry and herein present our findings. First, the
contributors and affiliations of the 393 papers were reviewed and each
paper was attributed to one of three sources (industry, academia, or
regulatory authorities). To be included in the original systematic
review, the published literature was limited to English papers
including “ML terms related to disproportionality analysis,
common to PV research, as well as modern ML techniques (e.g.,
deep learning).” (Kompa et al., 2022). This analysis is subject to these
same limitations, and possibly excludes active ML work in the industry
which has not been published in peer reviewed literature.

2.1 Attribution assignment

We created an algorithm to automatically perform the attribution
function, by searching the authors and affiliations, conflict of interest
statements, and sources of funding (grants or sponsorship) of the
393 papers. A list of the top 80 pharmaceutical companies was
compiled to allow us to link a particular paper to one or more
companies through keyword identification. Regulatory papers were
identified similarly using a smaller subset of terms (e.g., FDA, EMA)
while the remaining articles were labeled academic papers which did
not contain either an industry partner name or regulatory affiliation in
either the articles authorship or funding disclosures. The algorithmic
generated results for industry-associated publications were then
manually reviewed and verified.

Initially, industry-associated articles in this analysis include
papers that were either sponsored by one of the companies on the
list or have at least one author affiliated with one of the companies
on the list. However, in practice, for these industry-associated
publications, a broad inclusive definition of ‘industry’ was taken
based on text written in the publications. Publications were
included where pharmaceutical industry were involved directly,
as co-authors or according to acknowledgements, or sources of
funding (i.e., had funded or partially funded the works).
Additionally, if more than one academic author declared

industry funding, even if not directly related to the manuscript,
we considered it in scope as the foundational work funded by
industry could have influenced the work presented in the article.
Moreover, as the list of publications was generated for this
manuscript using an automated objective filter of the original
systematic review, manual review of the output was then used to
remove articles not fulfilling our definition of ‘industry’ for this
manuscript from the analysis set.

Forty-three papers were attributed to industry by the algorithmic
process, and after manual review of these papers, 33 were verified to be
industry contributions. Most of the misclassifications were due to
partial term matches of company names. There were less than five
articles where the paper did include a company author, but the work
was largely regulatory sponsored, and other misses included product
mentions of a pharmaceutical company that was not leading the
investigation of the manuscript in question. For each of the
classifications, all papers were assigned to only one of the three
categories (industry, academic, or regulatory).

The breakdown by contributor type provides insight as to the
datasets used, the types of models constructed, and the specific PV
tasks being addressed by industry, academia, and regulatory bodies
(Figure 2A–C).

Many papers used traditional disproportionality analysis (DPA)
methods (Figure 3), and such studies made up most of the signal
detection research papers across all contributor types.

2.2 Industry trend analysis

When looking at the total number of publications devoted to ML
in PV by year (Figure 4), academia dominates, followed by regulatory
bodies (e.g., the US Food and Drug Administration, World Health
Organization, and Centers for Disease Control and Prevention),
whereas industry makes up a small percentage of the overall
publications in the field (8.4%, 33/393).

Over the period analyzed (2000–2021), the number of papers
attributed to industry, academia, and regulatory authorities has
generally increased (Figure 4). Industry appears to have lagged
behind academia in the early 2000s, although some articles that
could be attributed to industry were not included in the review
(Fram et al., 2003; DuMouchel et al., 2004), and it must be
acknowledged that some work in ML originating from industry
predates the time period included of the review (Alvager et al.,
1994; Bate et al., 1998). It may be speculated that industry is not
prioritizing publishing these types of papers in the way academia is,
and therefore industry may be underrepresented.

Of the 33 industry-associated papers included in the analysis, 19
58% (19/33 = 57.6) were attributed to one of nine different companies,
and 14 (42%) were collaborative works that included authors from
more than one company.

2.3 Major trends and opportunities in industry
application of ML in PV

During the manual review process, each of the 33 industry-
associated papers was assigned to one of six primary categories.
These were defined by the authors to capture the major PV
functions performed by ML in each study. These categories
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FIGURE 3
Machine learning methods employed by contributor.

FIGURE 2
Summary of datasets used, primary algorithms, and task type of the included studies by contributor ((A): FAERS = FDA Adverse Event Reporting System,
EHR = Electronic Health Records, VAERS = Vaccine Adverse Event Reporting System, JADER = Japanese Adverse Event Reporting System, KAERS = Korean
Adverse Event Reporting System, WHO = World Health Organization VigiBase (B): ROR = Reporting Odds Ratio, IC/BCPNN = Information Component/
Bayesian Confidence Propagation Neural Network, SVM = Support Vector Machine, LSTM/RNN = Long short-termmemory/Recurrent Neural Network,
CNN=Convolutional Neural Network). (C) Themost common PV tasks for processing and evaluating safety reports include at a high level data ingestion, data
analysis and signal detection.
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included data ingestion, disease-specific studies, literature review
(i.e., for signal detection), leveraging real world data (RWD), signal
detection in spontaneous safety reports, and the use of social media
data (Figure 5). Topic assignments to each paper were performed
manually and can be found in the supplementary data.

RWD (Nordstrom et al., 2007; Gurulingappa et al., 2012a; Cao
et al., 2013; Cheetham et al., 2014; Ferrajolo et al., 2014; Yeleswarapu
et al., 2014; Whalen et al., 2018; Chapman et al., 2019; Choudhury
et al., 2019; Wintzell et al., 2020; Fralick et al., 2021) and social media
(Jimeno-Yepes et al., 2015; Powell et al., 2016; Cocos et al., 2017; Curtis
et al., 2017; Pierce et al., 2017; Comfort et al., 2018; Gupta et al., 2018;
Masino et al., 2018; Gavrielov-Yusim et al., 2019; Gartland et al., 2021)
were the most frequent PV functions represented and, collectively,
comprised 63% (21/33) of the papers included in the review. This is
not surprising, as the use of social media to supplement PV activities
began around 2009, with broader use of social media by the public, and
attracted interest from both industry and academia as a potential
source of safety-related events in near real time. However, more
recently, interest in social media data use has declined because of
accumulating evidence of variable data quality which limits its value
for much (but not all) PV (van Stekelenborg et al., 2019; Powell et al.,
2022). In addition, most social media data is typically characterized as
unstructured data requiring ML-based methods in order to attempt to
glean any insights related to PV activities (Comfort et al., 2018).

RWD has long been used by industry for pharmacoepidemiologic
studies and across the drug and vaccine development lifecycle (Bate
et al., 2016; Gatto et al., 2019; Garcia-Gancedo and Bate, 2022). The
use of ML for the wider use of RWD continues to attract interest for
routine PV activities, and we anticipate this trend to continue. Like
social media data, RWD contains unstructured data, and recent
research seeks to unlock value from such data in addition to the

structured data in electronic healthcare records. Natural language
processing (NLP) and more sophisticated ML is particularly being
applied to knowledge extraction from clinical notes in electronic
healthcare records (Weiss et al., 2018).

Signal detection in spontaneous reports (Voss et al., 2017; Peng
et al., 2020) and data ingestion (Gurulingappa et al., 2013;
Abatemarco et al., 2018; Schmider et al., 2019; Routray et al.,
2020) represent just under one-fifth (18%, 6/33) of the industry-
associated papers included in the review. This aligns with our
expectation that routine PV operations utilize ML to automate and
improve capabilities. Literature review, which is a routine PV
activity, is represented by approximately 6% (2/33) of the papers
(Gurulingappa et al., 2012b; Christensson et al., 2012). The
remaining studies (12%, 4/33) focused on individual, disease-
specific safety issues (Yang et al., 2009; Ratcliffe et al., 2010;
Suzuki et al., 2015; Antonazzo et al., 2018).

When compared with the pharmaceutical industry in general, and
PV functions in particular, the use of ML appears to be further
advanced in other sectors and/or industries, such as manufacturing,
finance, and air transportation (Kenyon, 2021; TrifectaDirectory.com,
2021). Given the complexity of medicine, it is difficult, if not
impossible, to capture the relevant information in rules (Schwartz
et al., 1987) and, given the complexity of PV (Ghosh et al., 2020; Lewis
and McCallum, 2020) coupled with large volumes of data, it seems
logical that automation and ML will eventually be used routinely and
widely in this sector.

Our own experience, and the results of our analysis of the scoping
review by Kompa et al. (2022) show that industry is, at this time, very
interested in applyingML to the PV lifecycle. AsML tools improve, we
expect that they will demonstrate their value above and beyond
traditional software and procedural approaches to PV functions, as

FIGURE 4
Number of PV/ML applications published yearly by contributor.
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is already occurring for routine use of specific tasks, such as employing
NLP for more effective screening of literature articles for identifying
mentions of suspected adverse events (Glaser et al., 2021). Confidence
in, and alignment for the need for such tools is necessary to
demonstrate value and engender trust, particularly from regulators.
We anticipate that improvements in ML will produce clear benefits to
the PV system and may enhance patient safety.

The myriad of overlapping guidance documentation provided to
industry causes many to ponder what industry should do, especially if
regulatory authorities have different views on the need for and
capabilities of ML-enabled PV functions. Clearly fair and safe systems
that are trusted by all stakeholders are needed. However, attempting to
satisfy all stakeholders may result in a loss of efficiency and the work
required to maintain a multifaceted ML-based PV system might exceed
the value of the system itself. It is hoped that public-private partnerships
such as the Council for International Organizations of Medical Sciences
(CIOMS) (Tsintis and La Mache, 2004) may be useful in plotting a
course. Indeed, CIOMS recently launched an initiative on AI (Working
Group XIV Artificial Intelligence, 2023).

There are many barriers to widespread adoption of ML in PV. These
barriers include: the heterogenous nature of PV data; difficulty
interpreting the output of ML algorithms; and the lack of performance
criteria to determine the acceptability of the output of ML algorithms
(Bate and Hobbiger, 2021). Recently, Kassekert et al. (2022) argued that
the twomajor challenges for industry in implementingML for PV are the
risks associated with obtaining adequate training data sets and perceived
risk in an emerging regulatory environment (Supplementary Material).

For ML-based systems to succeed in PV, they need to be highly
efficient, capable of handling rapid changes in volumes of safety
reports and able to learn and incorporate human-in-the-loop
mechanisms for identifying novel or unusual patterns and activity.
Effective ML should be capable of distinguishing exceptions for
human review which may be indicative of data quality issues or a
new emerging safety issue (Kjoersvik and Bate, 2022). As this
technology evolves, it is important to consider best practices for
adoption and validation of these systems, along with consistency of
their approach (Huysentruyt et al., 2021).

Case studies describing the application of advanced analytics to
perform specific tasks in pharmacovigilance are provided in Table 2.

It is instructive to see how ML is used for safety purposes in
other industries. In the air transportation industry, updating
accident models has historically been a cumbersome process
because of the long period required to review and digest the
information contained in long, detailed and highly technical
accident reports prepared by safety specialists (Morais et al.,
2019). Morais and colleagues developed an ML tool that uses
text recognition and text classification, combined with a support
vector machine for classifying text according to a predefined
taxonomy, to create a ‘virtual risk expert’ that automatically
extracts relevant information from accident reports. The
Bayesian network tool was trained on several previous accident
reports, while the report for the 2018 Lion Air Boeing 737-8 Max
accident provided an opportunity to show the feasibility of the tool
for rapidly updating an existing accident model. When the ‘virtual

FIGURE 5
Major trends and topics relating to machine learning in industry-attributed papers (Classical machine learning includes typical statistically based ML
methods such as NLP, clustering and classification tasks not based on neural networks).
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risk expert’ was trained exclusively with aviation safety reports it
achieved 85% accuracy, whereas if chemical safety reports were
included, it achieved 91% accuracy, showing the value of cross-
discipline knowledge transfer.

3 Discussion

There has been a marked increase in the use of ML to perform PV
functions in the pharmaceutical industry, not just for signal detection,
but across the PV lifecycle. The supplementary value of ML when
combined with rules-based approaches for fields as broad and complex
as medicine, and therefore implicitly PV, makes the inevitability of
more widespread ML clear (Schwartz et al., 1987; Rajkomar et al.,
2019). As ML use in PV matures, we anticipate seeing even more
research, of higher quality and with a greater impact that will
eventually lead to routine use of this technology.

While the opportunities are clear, challenges remain to more
widespread use of ML across the entire PV lifecycle.

In their scoping review, Kompa et al. (2022) highlighted
attributes considered to be best practices in the ML literature.
These include appropriate inductive biases, no obvious test-train
leakage, tuning hyperparameters, and cross validation. In practical
terms, this means using a pre-trained model, rather than building a
bespoke model ‘from scratch’, using external information or data,
and using data or code that is in the public domain. Among the
393 papers analyzed, 42 (approximately 10%) reflected these best
practices. Of note, most studies (73%) reported using ‘off-the-shelf’
methods with little to no problem-specific adaptation or domain
knowledge. In our analysis, we identified just one industry-

associated paper that clearly reflected these modern best
practices. It is important to note that no systematic analysis is
exhaustive and inevitably some publications will be missed due to
the prespecified criteria limiting the search. Furthermore, not all
ML used routinely in industry will be published in papers so there
may be some omissions in our perspective resulting from that. Also,
as our review focused on publications from a list of the top
80 pharmaceutical companies, we acknowledge there may well
be publications from companies outside of this list which are
therefore not included in our review. Despite this, we would add
that we are unaware of any evidence that suggests any differences in
routine ML usage, more broadly and unpublished.

There are many reasons why the use of ML for PV does not
more frequently meet or exceed best practice criteria. Whether data
even exist or are available is a general challenge in PV, considering
for example, the situation in low- and middle-income countries.
The sheer volume of data to sift through is often a challenge,
especially given the heterogeneity of safety data and issues. Limited
access to databases, for privacy reasons or other concerns, is
another constraint. These challenges contribute to the
discordance between what has been done and what needs to be
done to realize the potential of ML in PV.

The TransCelerate Intelligent Automation Opportunities (IAO)
and Advancing Safety Analytics (ASA) Initiatives are dedicated to
evaluating proposed best practices for the application of
interrogative methods to safety data sources (TransCelerate_
Biopharma_Inc, 2022). The ASA has issued a white paper that
surveyed the current state of signal management, provided a
simplified framework that comprises three stages (detection,
evaluation and action) and identified best practices (Wisniewski

TABLE 2 Case studies describing the application of advanced analytics to perform specific tasks in pharmacovigilance.

Example Task Described capability

Identification of a safety outcome through combining NLP
extraction of clinical notes with structured data Walker
et al. (2016); Weiss et al. (2018)

Computer-assisted elicitation of rules for case definition
from experts, using candidate cases drawn from medical
records Walker et al. (2016)

The iterative ML-supported technique produced a case
definition that had a sensitivity of 92% and a positive
predictive value of 79% compared with clinical review
alone

Assess the added contribution of unstructured data
extracted from medical text by NLP for detecting acute
liver dysfunction (ALD) in patients with inflammatory
bowel disease (IBD) Weiss et al. (2018)

Inclusion of NLP terms identified an additional 9% of
ALD-onset dates, with consequent earlier recognition in
5% of cases

Social media listening (Twitter and Facebook) for routine
post-marketing safety surveillance Powell et al. (2016)

Process 24 months of data to standardize drug names and
vernacular symptoms, and to remove duplicates and noise

The methodology effectively transformed social listening
data into a usable format for routine post-marketing
safety surveillance

Predict the likelihood of a causal association of an observed
drug–reaction combination in Individual Case Causality
Assessments (ICSR) Cherkas et al. (2022)

Develop a machine learning-based model Results show that robust probabilistic modeling of ICSR
causality is feasible Predictability of the causality
assessment of drug–event pairs compared with clinical
judgment using global introspection (AUC 0.924; 95%
confidence interval [CI] 0.922–0.927). Sensitivity was
0.900 (95% CI 0.896–0.904), and the PPV was 0.778 (95%
CI 0.773–0.783)

Signal validation supported by a machine learning (ML)-
based pre-validation step to improve process efficiency and
consistency Imran et al. (2022)

Cumulative data for six medicinal products [historic
signals of disproportionate reporting (SDR) validations
and individual case safety reports were used to train and
test a ML model

Prediction accuracy of the model ranged from 83% to 86%
over 3 months systematic predictions provided valuable
information and assisted safety experts in reviewing the
SDRs efficiently and consistently

Attitudes of drug safety professionals towards AI in
pharmacovigilance Danysz et al. (2019)

Survey of the general sentiments, expectations and
readiness for AI

Survey results suggest that pharmacovigilance
professionals wish to use their qualifications, skillsets, and
experience in work that provides more value for their
efforts. Machine learning algorithms have the potential to
enhance DS professionals’ decision-making processes and
support more efficient and accurate case processing
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et al., 2020). More recently, ASA initiative members evaluated the
extent of redundancy among three adverse event reporting databases
[EudraVigilance Data Analysis System (EVDAS), FDA Adverse Event
Reporting System (FAERS) and WHO-VigiBase] by determining the
presence or absence of signals of disproportionate reporting (SDRs) for
100 selected products. There were no significant differences in the
number and types of safety signals detectable in the three databases,
which suggests that each database on its own could be used for signal
detection purposes (Vogel et al., 2020). More recently the group has
quantified the extent of ICSR replication in terms of the same report
being sent to the same recipient (van Stekelenborg et al., 2023). More
innovative and effective ways of sharing information could be envisaged
and to ensuremaximal impact ofML-enabled PV, fundamental changes
in PV would be needed (Bate and Stegmann, 2021).

The pharmaceutical industry is investing in automation to
perform PV functions with ML. Industry possesses the process
expertise and can help identify the business needs for the use of
ML, but it will require high technology companies with deep ML
knowledge to provide subject matter expertise. Progress on the
technology side has been slow to accommodate PV functions, and
it can be difficult at this point to separate marketing messages from
tangible, demonstrable benefits with respect to proposed software
solutions (Hauben et al., 2007). Thus, even as technology improves,
manual processing of ICSRs will be required for the foreseeable future.

In conclusion technology holds increasing potential for
automating PV functions in the pharmaceutical industry. ML-
enabled systems hold great promise. To date, progress has been
uneven but there are successes. As barriers to development and
implementation can be reduced or resolved, routine use of ML to
perform PV functions is likely.
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