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Magnetic susceptibility of soils is a common proxy for rainfall, but other factors can
contribute to magnetic enhancement in soils. Here we explore influence of century-
to millennial-scale duration of soil formation on periglacial and alluvial soil magnetic
properties by assessing three terraces with surface and buried soils ranging in exposure
ages from <0.01 to ∼16 kyrs along the Delaware River in northeastern USA. The A
and B soil horizons have higher Xlf , Ms, and S-ratios compared to parent material, and
these values increase in a non-linear fashion with increasing duration of soil formation.
Magnetic remanence measurements show a mixed low- and high-coercivity mineral
assemblage likely consisting of goethite, hematite, and maghemite and/or magnetite
that contributes to the magnetic enhancement of the soil. Room-temperature and low-
temperature field-cooled and zero field-cooled remanence curves confirm the presence of
goethite and magnetite and/or maghemite and show an increase in magnetization with
increasing soil age. These data suggest that as the Delaware alluvial soils weather, the
concentration of secondary ferrimagnetic minerals increase in the A and B soil horizons.
We then compared the time-dependent Xlf from several age-constrained buried alluvial
soils with known climate data for the region during the Quaternary. Contradictory to
most studies that suggest a link between increases in magnetic susceptibility and high
moisture, increased magnetic enhancement of Delaware alluvial soils coincides with dry
climate intervals. Early Holocene enhanced soil Xlf (9.5–8.5 ka) corresponds with a well-
documented cool-dry climate episode. This relationship is probably related to less frequent
flooding during dry intervals allowing more time for low-coercive pedogenic magnetic
minerals to form and accumulate, which resulted in increased Xlf . Middle Holocene
enhanced Xlf (6.1–4.3 ka) corresponds with a wet to dry transitional phase and a previously
documented incision event along the valley bottom. In this case the incision and terrace
development resulted in prolonged surface exposure and more time for the accumulation
of secondary ferrimagnetic minerals, enhancing Xlf . The results of this study agree with
previous modeling efforts, and show that in Quaternary (and possibly pre-Quaternary)
periglacial and alluvial soils and paleosols that weathered for 101–104 years, duration of
pedogenesis, rather than climate, is an important control on magnetic enhancement.
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INTRODUCTION
Increased magnetic susceptibility within soil horizons is a
widespread observable phenomenon that has been a longstand-
ing subject of pedologic, rock magnetic, and paleoenvironmental
research (e.g., Le Borgne, 1955; Mullins, 1977; Maher, 1986; Geiss
and Zanner, 2006). The origins of the increased soil magnetic
susceptibility have often been attributed to the biotic or abiotic
weathering and alteration of hydrous ferric oxides into fine-
grained magnetite and maghemite (e.g., Dearing et al., 1996b;
Singer et al., 1996; Boyle et al., 2010), or generation of magnetite
or maghemite from burning (e.g., Le Borgne, 1960; Thompson
and Oldfield, 1986; Kletetschka and Banerjee, 1995; Oldfield and

Crowther, 2007). These fine-grained magnetic minerals can be
subjected to complex pedogenic pathways, including physical
concentration, dissolution, leaching, or further chemical alter-
ation and may result in more coercive magnetic minerals such
as goethite and/or hematite (Singer et al., 1996; Dunlop and
Özdemir, 1997; France and Oldfield, 2000).

Because soils form as a function of five primary factors (Jenny,
1941), studies have shown that the mechanism(s) responsible for
pedogenic magnetic enhancement are related to climate, organ-
isms, relief, parent material and time. Several paleoenvironmen-
tal studies link soil magnetic enhancement with climate in the
Quaternary (e.g., Kukla et al., 1988; Maher and Thompson, 1995;
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Maher, 1998; Maher et al., 2002, 2003; Geiss et al., 2008; Balsam
et al., 2011) and pre-Quaternary rock record (e.g., Soreghan et al.,
1997; Cogoini et al., 2001). Other magnetic studies have exam-
ined the relationship between soil magnetic properties and soil
age or duration of soil formation (Singer et al., 1992; Vidic et al.,
2004; Torrent et al., 2010). Despite advances in paleoenviron-
mental and paleoclimatic reconstruction, much of the magnetic
research has been performed on successions of buried soils form-
ing on loess parent materials, possibly limiting its application to a
specific depositional environment.

Alluvial soils are a potentially rich resource for paleoenviron-
mental reconstruction when applying an environmental mag-
netic approach in both Quaternary and pre-Quaternary settings.
Although alluvial soils are subject to burial, erosion, and pedofa-
cies evolution, recent research demonstrates that the rock mag-
netic properties of an alluvial Vertisol forming in central Texas is
interpretable in a similar manner as loessal soils (Lindquist et al.,
2011). Lindquist et al. (2011) also noted that magnetic enhance-
ment can mature over centuries. The implications of this work
are that magnetic properties of soils can be used to estimate dura-
tion of soil formation for buried soils at a much higher resolution
than previously studied (Singer and Fine, 1989; Singer et al., 1992;
Vidic et al., 2004).

This study explores the influence of century- to millennial-
scale duration of soil formation on periglacial and alluvial soil
magnetic properties using a river terrace sequence approach
along the Delaware River valley. Pathways of magnetic enhance-
ment are discussed along with an application toward Holocene
paleoenvironment interpretation for the northeastern USA.

MATERIALS AND METHODS
STUDY AREA
The study area is located within the Delaware River basin, east-
ern United States (Figure 1). The middle Delaware River valley
is a partly-confined river valley containing relict glacial and
periglacial landforms and alluvial landforms that include alluvial
fill terraces, floodplains, islands, and gravel bars (Stewart et al.,
1991; Witte, 2001, 2012; Witte and Epstein, 2005; Stinchcomb
et al., 2012).

This section of the Delaware River valley has a unique glacial
and post-glacial history, making it an ideal location to study
magnetic effects on the duration of soil formation for soils
forming from 102–104 years. During the Last Glacial Maximum
(∼18 ka), this portion of the Delaware River valley was com-
pletely glaciated with the southernmost glacial extent ∼24 km
downstream from the Browning site (Figure 1) (Witte, 2001).
Glacial recession occurred ∼16 ka, which led to periglacial depo-
sition, followed by alluvial deposition around 12.8 ka (Stewart
et al., 1991; Witte, 2001). Late Pleistocene incision, a 6–5 ka inci-
sion event and floodplain and terrace reworking for the past
6000 years resulted in discontinuous alluvial terrace development
throughout the reach (Stinchcomb et al., 2012; Witte, 2012). This
16–12 ka history of periglacial and alluvial deposition, and chan-
nel incision resulted in terrace sequences that are no older than
16 ka. And thus, the maximum duration of soil formation for all
soils is ≤16 ka and alluvial terraces record weathering intervals
that range from 101–103 years (Table 1, Figure 2).

SITE SELECTION, SOIL DESCRIPTION, AND SAMPLE SELECTION
Three profiles occurring along a river floodplain-terrace sequence
form the basis of testing the influence of time on soil magnetic
properties along the Delaware River valley, USA. These profiles
were measured along, a T3, meltwater terrace, a T2, alluvial fill
terrace, and a T0, active floodplain (Figure 1).

Surface and buried soils were described using U.S. Department
of Agriculture (USDA) soil nomenclature (Schoeneberger et al.,
2002) with modifications (see Holliday, 2004, supplementary
material). Bulk samples were collected from each profile for rock
magnetic analyses. Oriented samples were collected from the T2
for thin-section analysis. Soil micromorphology of thin-section
samples were examined and described to determine the relative
degree of soil development within T2 alluvial buried soils (Stoops,
2003).

ENVIRONMENTAL MAGNETIC MEASUREMENTS
The mass-dependent magnetic susceptibility (X) of dried soil
and sediment samples was measured using a Bartington MS2B
magnetic susceptibility meter at Baylor University. Visible root
and plant matter was removed prior to analysis; however, this
material is a negligible portion of the samples. Gravels were
not removed from gravelly horizons. The mass-dependent low-
frequency (Xlf , 450 Hz) and high-frequency (Xhf , 4.5 kHz) mea-
surements were used to calculate the frequency-dependent sus-
ceptibility (Xfd) in percent using the formula:

Xfd = Xlf − Xhf

Xlf
∗ 100.

Additional environmental magnetic characterization experiments
were conducted at the University of Minnesota’s Institute of
Rock Magnetism (IRM) lab. Anhysteretic remanent magneti-
zation (ARM) and isothermal remanent magnetization (IRM)
acquisition and demagnetization were performed using the 2G
Enterprises superconducting rock magnetometer with an in-line
alternating field (AF) demagnetizer. Both ARM and IRM were
acquired in 8 increasing AF steps: 1, 10, 20, 35, 50, 70, 100,
and 120 mT. Room-temperature hysteresis parameters: satura-
tion magnetization (Ms), remanence magnetization (Mr), coer-
civity (Hc), and backfield remanence (IRM) and coercivity of
remanence (Hcr) were obtained using a Princeton Measurements
Corporation MicroMag Vibrating Sample Magnetometer (VSM).
Hysteresis loops were performed in a maximum applied field of
1 T. Isothermal remanence magnetization was measured by satu-
rating the sample to 1 T then applying a backfield IRM in 50 steps
from −0.2∗10−5 to −1 T.

Temperature-dependent remanence properties were measured
using a Quantum Design Magnetic Properties Measurement
System (MPMS). A field cooled (FC), zero-field cooled (ZFC),
low temperature (LT) and room temperature (RT) satura-
tion isothermal remanent magnetization (SIRM) sequence was
performed on representative samples from the three terraces.
The FC-ZFC-LTSIRM-RTSIRM low temperature demagnetiza-
tion sequence begins with a sustained 2.5 T DC field applied to
the samples as they are cooled to 20 K, upon which the field
is switched off and FC remanence was measured in 5 K steps
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FIGURE 1 | Study area. (A) Inset map of eastern North America showing the
Delaware River Basin (gray) (modified from Stinchcomb et al., 2013). (B) The
Delaware Water Gap National Recreation Area showing profile locations (T3,
T2, and T0) mentioned in text (modified from Stinchcomb et al., 2012). The
environmental magnetic properties of these three profiles were examined in

detail here and span three unique geomorphic surfaces: a modern T0 active
floodplain surface (C), a Holocene T2 alluvial terrace (D), and a late
Pleistocene T3 periglacial meltwater terrace (C). The additional profiles noted
in B were used to constrain the weathering duration of buried soils along the
T2 (Table 1) and analyzed for their Xlf (Supplementary Table 5).

upon warming to 300 K. The samples were then cooled back to
20 K in zero-field, and ZFC remanence data were measured in
5 K steps upon warming to 300 K. The final cycle in the mea-
surement sequence for each sample consisted of measuring the
RT-SIRM upon cooling to 20 K and warming to 300 K in 5 K steps.
This measurement sequence is useful for identifying goethite,
evaluating magnetite grain size and the oxidation state of Fe in
minerals (Özdemir and Dunlop, 2010; Bilardello and Jackson,
2013).

RADIOCARBON DATING
Radiocarbon ages from previous work were compiled and used to
delineate the weathering duration for the buried and surface soils
described and sampled (Table 1). The radiocarbon ages were cali-
brated using Calib 7.0 (Reimer et al., 2013). The calibrated ages
and their associated contexts (e.g., soil, alluvium, and cultural
feature) were used to construct a conceptual soil-stratigraphic
model for the study area. This model was used to estimate late
Pleistocene and Holocene pedogenic duration for the soils exam-
ined. The low-field magnetic susceptibility was measured along
previously studied T2 profiles (Stinchcomb et al., 2012, 2013) and
their reported age models (Stinchcomb et al., 2013) were used

to create a magnetic susceptibility time series ranging from ∼11
to 2 ka.

RESULTS
SOIL DESCRIPTION AND AGES
The T3 surface is ∼26 m above river base flow and contains late
Pleistocene glacial-meltwater deposits (Witte, 2012). This land-
form documents post-glacial deposition within the river valley.
Vegetation first appeared on this landscape at 16–15 cal. kyrs
(Peteet et al., 2012), and incision of the landscape to create the
existing terrace feature likely occurred ∼12.8 cal kyrs, based on
previous morphostratigraphic research (Witte, 2001; Witte and
Epstein, 2005) (Figure 2). Based on the maximum age constraints
of the glacial retreat and the basal-peat radiocarbon ages, the T3
has been a stable land surface and actively weathering for ∼16 ka.

The weathering profile along the T3 surface is mapped by the
United State Department of Agriculture (USDA) as the Hoosic
series, a Sandy-skeletal, mixed, mesic, Typic Dystrudept formed
on glacial outwash. The T3 profile description is more devel-
oped than the USDA mapped soil and has a sandy loam to sandy
clay loam texture with an Oa-A-E-Bt1-Bt2-BC-Bw3-BC-C hori-
zon scheme (Figure 3; Supplementary Table 1). The Bt subsoil is

www.frontiersin.org August 2014 | Volume 2 | Article 17 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Quaternary_Science,_Geomorphology_and_Paleoenvironment/archive


Stinchcomb and Peppe The influence of time on magnetic properties

T
a
b

le
1

|
D

e
la

w
a
re

R
iv

e
r

V
a
ll

e
y

ra
d

io
c
a
rb

o
n

d
a
ta

c
o

m
p

il
e

d
fr

o
m

p
re

v
io

u
s

w
o

rk
.

R
a
d

io
c
a
rb

o
n

C
o

ll
e
c
ti

o
n

L
a
n

d
-

D
e
p

th
b

e
lo

w
S

tr
a
ti

g
ra

p
h

ic
1
4
C

a
g

e
#

C
a

li
b

ra
te

d
m

e
d

ia
n

B
u

ri
e
d

s
o

il
S

o
u

rc
e

la
b

c
o

d
e

lo
c
a
ti

o
n

*
fo

rm
†

te
rr

a
c
e

c
o

n
te

x
t

(y
e
a
r

B
P

)
a
g

e
a
n

d
±2

σ
ra

n
g

e
**

d
e
s
ig

n
a
ti

o
n

s
u

rf
a
c
e

(c
m

)
(y

e
a
r

B
P

)

B
et

a-
22

74
77

M
A

N
3

T1
21

5
A

llu
vi

um
33

0
±

30
38

9
±

82
N

on
e

W
itt

e,
20

01
Y-

24
73

Fa
uc

et
t

T2
15

C
ul

tu
ra

lf
ea

tu
re

55
8

±
10

0
57

5
±

18
3

La
te

H
ol

oc
en

e
so

il
2

R
itt

er
et

al
.,

19
73

Y-
24

74
Fa

uc
et

t
T2

15
C

ul
tu

ra
lf

ea
tu

re
65

8
±

12
0

63
0

±
21

2
La

te
H

ol
oc

en
e

so
il

2
R

itt
er

et
al

.,
19

73
Y-

24
75

Fa
uc

et
t

T2
30

U
nk

no
w

n
11

78
±

12
0

11
03

±
25

4
La

te
H

ol
oc

en
e

so
il

2
R

itt
er

et
al

.,
19

73
B

et
a-

28
02

69
JE

N
T2

10
5

S
oi

l
16

20
±

40
15

07
±

98
La

te
H

ol
oc

en
e

so
il

2
S

tin
ch

co
m

b
et

al
.,

20
12

Y-
23

39
B

ro
dh

ea
d-

H
el

le
r

T2
69

S
oi

l
31

20
±

12
0

33
16

±
30

7
La

te
H

ol
oc

en
e

so
il

1
K

in
se

y,
19

72
G

X
-2

81
63

M
A

N
2

T2
25

0
A

llu
vi

um
32

30
±

40
34

51
±

91
N

on
e

W
itt

e,
20

01
Y-

23
43

Zi
m

m
er

m
an

T2
12

5
C

ul
tu

ra
lf

ea
tu

re
32

30
±

12
0

34
59

±
33

2
La

te
H

ol
oc

en
e

so
il

1
W

er
ne

r,
19

72
Y-

23
40

B
ro

dh
ea

d-
H

el
le

r
T2

10
0

S
oi

l
33

90
±

10
0

36
44

±
24

2
La

te
H

ol
oc

en
e

so
il

1
K

in
se

y,
19

72
Y-

24
78

Fa
uc

et
t

T2
14

5
S

oi
l

34
68

±
12

0
37

43
±

31
5

La
te

H
ol

oc
en

e
so

il
1

R
itt

er
et

al
.,

19
73

U
ga

-5
54

9
U

pp
er

S
ha

w
ne

e
Is

la
nd

T2
17

4
C

ul
tu

ra
lf

ea
tu

re
in

so
il

35
15

±
55

37
86

±
15

9
La

te
H

ol
oc

en
e

so
il

1
S

te
w

ar
t

et
al

.,
19

91
Y-

23
41

B
ro

dh
ea

d-
H

el
le

r
T2

10
0

S
oi

l
35

70
±

10
0

38
70

±
26

8
La

te
H

ol
oc

en
e

so
il

1
K

in
se

y,
19

72
Y-

23
42

B
ro

dh
ea

d-
H

el
le

r
T2

14
6

S
oi

l
36

60
±

12
0

39
97

±
37

7
La

te
H

ol
oc

en
e

so
il

1
K

in
se

y,
19

72
I-5

23
6

Fa
uc

et
t

T2
18

0
S

oi
l

41
50

±
18

0
46

68
±

56
2

La
te

-m
id

dl
e

H
ol

oc
en

e
so

il
R

itt
er

et
al

.,
19

73
B

et
a-

28
08

72
M

A
N

2
T2

36
2

S
oi

l
44

10
±

40
49

88
±

20
6

La
te

-m
id

dl
e

H
ol

oc
en

e
so

il
S

tin
ch

co
m

b
et

al
.,

20
12

I-5
41

1
Fa

uc
et

t
T2

17
6

S
oi

l
44

65
±

13
0

51
12

±
37

3
La

te
-m

id
dl

e
H

ol
oc

en
e

so
il

R
itt

er
et

al
.,

19
73

B
et

a-
26

69
10

B
ro

w
ni

ng
T2

55
U

nk
no

w
n

45
10

±
40

51
63

±
13

6
La

te
-m

id
dl

e
H

ol
oc

en
e

so
il

Le
e

et
al

.,
20

10
G

X
-2

81
62

M
A

N
2

T2
37

0
S

oi
l

45
00

±
40

51
63

±
16

1
La

te
-m

id
dl

e
H

ol
oc

en
e

so
il

W
itt

e,
20

01
B

et
a-

62
43

2
M

an
na

T2
19

1
S

oi
l

45
50

±
18

0
52

00
±

46
1

La
te

-m
id

dl
e

H
ol

oc
en

e
so

il
W

al
la

nd
B

ot
w

ic
k,

19
93

I-5
23

4
Fa

uc
et

t
T2

16
2

A
llu

vi
um

45
80

±
11

0
52

45
±

34
5

N
on

e
R

itt
er

et
al

.,
19

73
B

et
a-

28
92

29
JE

N
T2

18
2

S
oi

l
49

30
±

40
56

53
±

69
La

te
-m

id
dl

e
H

ol
oc

en
e

so
il

S
tin

ch
co

m
b

et
al

.,
20

12
Y-

24
79

Fa
uc

et
t

T2
19

1
S

oi
l

51
98

±
20

0
59

68
±

45
3

E
ar

ly
-m

id
dl

e
H

ol
oc

en
e

so
il

R
itt

er
et

al
.,

19
73

I-5
23

7
Fa

uc
et

t
T2

20
6

S
oi

l
55

90
±

20
0

63
92

±
45

8
E

ar
ly

-m
id

dl
e

H
ol

oc
en

e
so

il
R

itt
er

et
al

.,
19

73
B

et
a-

29
67

21
JE

N
T2

25
7

S
oi

l
59

80
±

40
68

19
±

21
5

E
ar

ly
-m

id
dl

e
H

ol
oc

en
e

so
il

S
tin

ch
co

m
b

et
al

.,
20

12
B

et
a-

26
69

14
B

ro
w

ni
ng

T2
11

0
S

oi
l

59
80

±
11

0
68

28
±

29
7

E
ar

ly
-m

id
dl

e
H

ol
oc

en
e

so
il

Le
e

et
al

.,
20

10
I-5

23
8

Fa
uc

et
t

T2
25

2
A

llu
vi

um
61

90
±

13
5

70
78

±
33

1
N

on
e

R
itt

er
et

al
.,

19
73

B
et

a-
26

69
13

B
ro

w
ni

ng
T2

24
0

S
oi

l
74

20
±

50
82

57
±

10
5

E
ar

ly
H

ol
oc

en
e

so
il

2
Le

e
et

al
.,

20
10

B
et

a-
26

69
12

B
ro

w
ni

ng
T2

25
0

S
oi

l
79

20
±

50
87

60
±

18
8

E
ar

ly
H

ol
oc

en
e

so
il

2
Le

e
et

al
.,

20
10

B
et

a-
28

28
37

JE
N

T2
32

3
S

oi
l

82
80

±
40

92
87

±
14

2
E

ar
ly

H
ol

oc
en

e
so

il
1

S
tin

ch
co

m
b

et
al

.,
20

12
B

et
a-

28
02

67
B

R
D

1
T2

26
0

S
oi

l-a
llu

vi
um

in
te

fa
ce

84
10

±
40

94
49

±
10

7
E

ar
ly

H
ol

oc
en

e
so

il
1

S
tin

ch
co

m
b

et
al

.,
20

12
B

et
a-

28
02

68
B

R
D

1
T2

29
4

S
oi

l
88

00
±

50
98

34
±

26
1

E
ar

ly
H

ol
oc

en
e

so
il

1
S

tin
ch

co
m

b
et

al
.,

20
12

U
ga

-5
48

8
U

pp
er

S
ha

w
ne

e
Is

la
nd

T2
45

0
C

ul
tu

ra
lf

ea
tu

re
in

so
il

93
30

±
54

5
10

62
9

±
15

54
E

ar
ly

H
ol

oc
en

e
so

il
1

S
te

w
ar

t
et

al
.,

19
91

W
-2

99
4

S
H

M
T2

U
nk

no
w

n
C

ha
rc

oa
li

n
m

at
rix

10
59

0
±

30
0

12
37

6
±

16
55

La
te

P
le

is
to

ce
ne

so
il

M
cN

et
t

et
al

.,
19

77
W

-3
13

4
S

H
M

T2
U

nk
no

w
n

C
ha

rc
oa

li
n

m
at

rix
10

75
0

±
60

0
12

45
8

±
##

#
La

te
P

le
is

to
ce

ne
so

il
M

cN
et

t
et

al
.,

19
77

B
et

a-
20

38
65

S
H

M
T2

U
nk

no
w

n
A

rc
ha

eo
bo

ta
ni

ca
lr

em
ai

ns
10

82
0

±
50

12
72

0
±

11
9

La
te

P
le

is
to

ce
ne

so
il

G
in

ge
ric

h,
20

07
B

et
a-

12
71

62
S

H
M

T2
U

nk
no

w
n

A
rc

ha
eo

bo
ta

ni
ca

lr
em

ai
ns

10
90

0
±

40
12

75
9

±
12

5
La

te
P

le
is

to
ce

ne
so

il
D

en
t,

19
99

U
C

IA
M

S
-2

48
65

S
H

M
T2

U
nk

no
w

n
A

rc
ha

eo
bo

ta
ni

ca
lr

em
ai

ns
10

91
5

±
25

12
76

3
±

10
5

La
te

P
le

is
to

ce
ne

so
il

G
in

ge
ric

h,
20

07
B

et
a-

10
19

35
S

H
M

T2
U

nk
no

w
n

A
rc

ha
eo

bo
ta

ni
ca

lr
em

ai
ns

10
94

0
±

90
12

82
6

±
31

8
La

te
P

le
is

to
ce

ne
so

il
D

en
t,

19
99

(C
on

tin
ue

d)

Frontiers in Earth Science | Quaternary Science, Geomorphology and Paleoenvironment August 2014 | Volume 2 | Article 17 | 4

http://www.frontiersin.org/Quaternary_Science,_Geomorphology_and_Paleoenvironment
http://www.frontiersin.org/Quaternary_Science,_Geomorphology_and_Paleoenvironment
http://www.frontiersin.org/Quaternary_Science,_Geomorphology_and_Paleoenvironment/archive


Stinchcomb and Peppe The influence of time on magnetic properties

T
a
b

le
1

|
C

o
n

ti
n

u
e
d

R
a
d

io
c
a
rb

o
n

C
o

ll
e
c
ti

o
n

L
a
n

d
-

D
e
p

th
b

e
lo

w
S

tr
a
ti

g
ra

p
h

ic
1
4
C

a
g

e
#

C
a

li
b

ra
te

d
m

e
d

ia
n

B
u

ri
e
d

s
o

il
S

o
u

rc
e

la
b

c
o

d
e

lo
c
a
ti

o
n

*
fo

rm
†

te
rr

a
c
e

c
o

n
te

x
t

(y
e
a
r

B
P

)
a
g

e
a
n

d
±2

σ
ra

n
g

e
**

d
e
s
ig

n
a
ti

o
n

s
u

rf
a
c
e

(c
m

)
(y

e
a
r

B
P

)

W
-3

39
1

S
H

M
T2

U
nk

no
w

n
R

ad
io

m
et

ric
11

05
0

±
10

00
12

85
4

±
##

#
La

te
P

le
is

to
ce

ne
so

il
M

cN
et

t
et

al
.,

19
77

;
D

en
t,

20
02

U
C

IA
M

S
-2

48
66

S
H

M
T2

U
nk

no
w

n
A

rc
ha

eo
bo

ta
ni

ca
lr

em
ai

ns
11

02
0

±
30

12
88

1
±

25
1

La
te

P
le

is
to

ce
ne

so
il

G
in

ge
ric

h,
20

07
C

A
M

S
-1

32
15

2
Ta

nn
er

sv
ill

e
B

og
,P

a
B

as
al

la
ke

ag
e

13
84

W
oo

d
fr

om
gy

tt
ja

12
30

0
±

40
14

22
5

±
23

6
Po

st
-L

au
re

nt
id

e
Ic

e,
fir

st
ve

ge
ta

tio
n

ap
pe

ar
an

ce
Pe

te
et

et
al

.,
20

12

W
Q

U
-4

15
Le

ap
s

B
og

,N
Y

B
as

al
la

ke
ag

e
U

nk
no

w
n

B
ul

k
pe

at
12

52
0

±
82

5
14

84
0

±
21

54
Po

st
-L

au
re

nt
id

e
Ic

e,
fir

st
ve

ge
ta

tio
n

ap
pe

ar
an

ce
C

ro
w

l,
19

80
;P

et
ee

t
et

al
.,

20
12

W
-3

37
4

Fr
an

kl
in

H
ill

,P
a

B
as

al
la

ke
ag

e
U

nk
no

w
n

B
ul

k
gy

tt
ja

12
90

0
±

30
0

15
36

4
±

99
6

Po
st

-L
au

re
nt

id
e

Ic
e,

fir
st

ve
ge

ta
tio

n
ap

pe
ar

an
ce

C
ro

w
l,

19
80

;P
et

ee
t

et
al

.,
20

12
Q

W
U

-4
30

E
ch

o
La

ke
,P

a
B

as
al

la
ke

ag
e

U
nk

no
w

n
B

ul
k

gy
tt

ja
13

23
0

±
16

20
15

76
4

±
42

17
Po

st
-L

au
re

nt
id

e
Ic

e,
fir

st
ve

ge
ta

tio
n

ap
pe

ar
an

ce
C

ro
w

l,
19

80
;P

et
ee

t
et

al
.,

20
12

W
IS

-7
81

Ta
nn

er
sv

ill
e

B
og

,P
a

B
as

al
la

ke
ag

e
12

42
B

ul
k

gy
tt

ja
13

33
0

±
12

0
16

03
1

±
35

1
Po

st
-L

au
re

nt
id

e
Ic

e,
fir

st
ve

ge
ta

tio
n

ap
pe

ar
an

ce
W

at
ts

,1
97

9;
Pe

te
et

et
al

.,
20

12

* S
ee

F
ig

u
re

s
1
–3

fo
r

co
lle

ct
io

n
lo

ca
tio

n.
R

ad
io

ca
rb

on
ag

es
fr

om
ba

sa
ll

ak
e

de
po

si
ts

no
t

sh
ow

n.
† S

ee
S

tin
ch

co
m

b
et

al
.(

20
12

)f
or

la
nd

fo
rm

de
ta

ils
.

#
C

on
ve

nt
io

na
lr

ad
io

ca
rb

on
ag

e
w

ith
st

an
da

rd
er

ro
r

**
M

ed
ia

n
pr

ob
ab

ili
ty

ag
e

ca
lc

ul
at

ed
in

C
A

LI
B

7.
0,

us
in

g
In

tC
al

13
ca

lib
ra

tio
n

cu
rv

e
(R

ei
m

er
et

al
.,

20
13

).

a strong brown (7.5YR 5/6) sandy clay loam that has a distinct
increase in reddening and clay concentration than the overlying
A and E horizons.

The T2 alluvial fill terrace surface is 5–11 m above river base
flow and contains late Pleistocene- and Holocene-age alluvial
deposits (Stinchcomb et al., 2012; Witte, 2012). The T2 con-
tains mostly vertical accretion (i.e., overbank flood) deposits that
were subsequently weathered into discrete soils. The weathering
duration of each buried and surface soils vary from ∼0.01 kyrs
to 3.0 kyrs based on radiocarbon age-bracketing and temporally
diagnostic artifacts (Table 1, Figure 2) (Stinchcomb et al., 2012).

The T2 weathering profile is mapped by the USDA as a
Colonie series soil, a mixed, mesic Lamellic Udipsamment formed
on reworked fluvio-glacial material (alluvium). However, this
USDA soil series designation only describes the upper ∼2 m.
Unlike the T3, the T2 is a multi-story profile >5 m thick and
contains ∼11 buried soils that range from loamy sand to silt
loam in texture, which have been the focus of previous inves-
tigations (Stinchcomb et al., 2012, 2013, in press) (Figure 3;
Supplementary Table 2). The buried soils range from weakly-
developed Entisol-like soils with no subsoil development (stacked
A-C horizons) at the surface to moderately developed soils with
ped structure and clay illuviation along pores and ped faces >2 m
depth (Figure 4, Supplementary Table 2). This vertical succession
of pedogenic development does not hold for every T2 profile as
floodplain and terrace reworking can remove portions of the T2
(Stinchcomb et al., 2012). This reworking results in discontinu-
ous profile development across the valley bottom (Figure 2, see
lateral variation T2).

The T0 active floodplain surface lies 1–3 m above river base
flow and frequently floods. Based on a 0.4 ka radiocarbon age
from a basal deposit along a T1, the T0 likely began forming
no later than 0.3 ka. Plastic wrappings are commonly observed
interbedded in the sediments that compose upper portion of the
T0. This suggests that the landform and the near-surface soils
weathering within it formed anywhere from a period of <50–300
years.

The T0 weathering profile is mapped as the Hoosic series, yet
it clearly shows overall less soil development than the mapped
Hoosic series on the T3 terrace surface (Figure 3; Supplementary
Table 3). This is likely a product of the coarse USDA mapping
resolution. Rather, this profile is similar to Udifluvents mapped
immediately flanking the Delaware River channel. The soils
underlying the T0 surface consist of stacked A–C flood deposits
and flood drapes with little evidence of weathering and in some
portions the T0 shows unaltered flood drapes (see Stinchcomb
et al., 2012). A buried Bw horizon (Bwb2) is present toward the
base of the profile.

SOIL MICROMORPHOLOGY
Results from the T2 soil micromorphology show a parent mate-
rial composed of a mixed mineralogy that is dominated by quartz
(Figure 4A). Similar field-based observations were made for the
T3 and T0 profiles (Supplementary Tables 1–3). The parent mate-
rial horizons show less secondary Fe-oxidation and clay illuvia-
tion than the A and B horizons. Soil horizons from the upper por-
tion of the T2 have less illuviated clay and oxidation (Figure 4B)
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FIGURE 2 | Conceptual soil stratigraphic model for the Delaware River

valley study area based on previous work (Witte, 2001, 2012; Witte and

Epstein, 2005; Stinchcomb et al., 2012). The calibrated radiocarbon age
ranges shown document the range of potential surface and buried soil
weathering. Calibrated ages from upland peat bogs document the first
appearance of vegetation after Laurentide Ice Sheet recession based on

basal lake ages (Peteet et al., 2012) (Table 1). Note that weathering duration
estimates for the T3 soils (max − min age = weathering duration) are
∼16 kyrs, based on a ∼16 ka first appearance of vegetation in the region
(Peteet et al., 2012). Weathering duration estimates for T2 soils range from
0.01 to 3.0 kyrs. Weathering duration estimates for T0 soils range from 0.01
to 0.3 kyrs.

than underlying buried soils (Figures 4C,D). Some unweathered
rock fragments in the parent material contain red Fe2O3 (likely
hematite), likely sourced from upstream exposures of terrestrial
“red bed” rocks from the late Devonian. Evidence of weathering
in the soil horizons includes Fe-oxidation in biotite, chlorite schist
and rock fragments (Figure 4B) and production and transloca-
tion of secondary Fe-rich clay minerals (Figure 4C). Magnetite
grains may also be embedded in the glacially-transported biotite
sourced from Grenville gneiss (Dunlop et al., 2006). Oxidation of
Fe(II) is prevalent along chlorite mica and biotite grains. Because
the soils show no evidence of gleying we presume they are well-
drained and therefore aerated. The dissolution of Fe(II) from the
framework of phyllosilicates would experience rapid oxidation in
a soil-forming environment not limited in O2.

MAGNETIC SUSCEPTIBILITY
Low frequency magnetic susceptibility (Xlf ) is typically controlled
by the concentration and grain size of magnetic minerals within a
sample. Low-frequency magnetic susceptibility values for surface
and buried soils in the Delaware River valley forming along T3
and T2 surfaces are higher in A and B horizons relative to C hori-
zons (Figure 3). Xlf values from the A and B horizons within the

T0 – active floodplain are not distinct from C horizon Xlf values
(5–10 ∗ 10−8 m3 kg−1). Overall, the soil horizon Xlf increases as
duration of soil formation increases, with the T3 soil having the
highest values and T0 having the lowest values (Figure 5).

The Xlf values from the T2 surface and buried soils vary
from 6 to 38 ∗ 10−8 m3 kg−1. Higher Xlf values occur within
the well-developed early and middle Holocene buried soil hori-
zons that contain Fe-rich clay coatings (Figures 4C,D). Whereas,
lower Xlf values occur within the more weakly developed soils
that show little to no evidence of clay illuviation (Figure 3, e.g.,
see stacked A-C soils toward top of profile) (Figure 4B). The fre-
quency dependent magnetic susceptibility, Xfd, varies from ∼0
to <15 for soils and sediment from all three terraces. The Xfd vari-
ability is high in the T2 and T0. This variability in the Xfd could be
due to varying contributions of superparamagnetic (SP) particles
between soils (Dearing et al., 1996a) or noise from the Bartington
MS2B.

MAGNETIC REMANENCE
Within the T3, T2, and T0 profiles, the IRM and ARM values show
similar depth profiles when compared with the respective Xlf data
(Figure 3). All Xlf , IRM, and ARM values are larger in the A and
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FIGURE 3 | Magnetic characterization results for the T3, T2, and

T0 profiles. The T3 soil began forming after 16 kyrs BP, but before
12.8 kyrs BP based on a late Pleistocene buried soil recorded at the
base of some T2 profiles (Gingerich, 2013). The 10.6 ka age from

the base of the T2 profile is inferred from downstream at the
Upper Shawnee Island site (Stewart et al., 1991). The 1.0 ka age
from the top of the T2 profile is inferred from diagnostic late
Holocene pottery.

B horizons relative to the C horizons in the T3 and T2 landforms
showing a relative increase in magnetic minerals in the soil hori-
zons (A and B) relative to the parent material. The youngest T0
floodplain landform shows no significant difference between the
soil and C horizons indicating no magnetic enhancement relative
to parent material.

The S-ratio provides an estimation of the relative propor-
tions of magnetically soft vs. magnetically hard minerals in the
assemblage (Evans and Heller, 2003). In the T0, T2, and T3
terraces, S-ratio values are elevated in A and B horizons com-
pared to C horizons indicating that the soil horizons (A and
B) contain more magnetically soft minerals such as magnetite
and maghemite. Although the T0 has high S-ratio indicating soft
magnetic minerals, it has low Xlf and Ms. These data suggest that

although the magnetically soft minerals are in low concentration
in the T0, they still dominate the S-ratio signal.

The gradient-acquisition plots of backfield remanence curves
show a mixture of at least two magnetic minerals (Figure 6). The
plots show a large, low coercivity peak (between 0.01 and 0.1 T)
mineral assemblage dominant in the soil (A and B) horizons and
a much smaller, high coercivity peak (between 0.1 and 1 T) min-
eral in the C horizons. These data suggest a mineralogy consisting
of both low (magnetite/maghemite) and high (hematite/goethite)
coercivity minerals. With the exception of the T2, Bwb8 hori-
zon, the soil B horizons show higher magnetic remanence with
increasing age of landform, i.e., the magnetic remanence of T3
> T2 > T0. Interestingly, the gradient-acquisition plots suggest
that the clay lamellae sampled in this study are composed of
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FIGURE 4 | Photomicrographs from T2 alluvial soils showing range of

development. All images are oriented with vertical up toward the image
top. XPL, cross-polarized light; PPL, plane-polarized light. (A) parent
material from base of T2 showing quartz, mica, and rock fragments (PPL).
(B) Sand grains in a porous matrix with little to no illuviated clay; from Ab
horizon, ∼76 cm below surface (XPL). (C) Fe-rich clay coatings along sand
grains in Bwb horizon, ∼236 cm below surface (XPL). (D) Fe-rich clay
coating along channel pore in Btb horizon, ∼380 cm below surface (XPL).
(E) Weathered biotite grain with oxidized zones (oxidized magnetite,
maghemite?) (PPL). (F) Magnified view of C showing evidence of oxidation
of Fe(II) to Fe(III), possibly maghemite (PPL).

high-coercivity minerals. No low-coercivity minerals are present
in the lamellae.

The ratio of ARM to IRM (ARM/IRM) provides a relative
estimate of the fine-grained SD-like particle concentration (King
et al., 1982; Geiss et al., 2004; Lindquist et al., 2011). Because the
S-ratio and backfield remanence suggest the presence of a low-
coercivity mineral such as magnetite or maghemite, we can infer
the ARM/IRM ratio indicates changes in the relative concentra-
tion of fine-grained magnetite/maghemite. The ARM/IRM data
for the T3 and T2 alluvial soils show higher concentrations of SD-
like particles (magnetite/maghemite) in the soil horizons relative
to the C horizons (Figure 3), which is corroborated by mag-
netic hysteresis measurements discussed below. The ARM/IRM
values are fairly uniform throughout the T0 soils. Further, the
ARM/IRM values from soil horizons increase with increasing age
of the landform (T0–T3).

MAGNETIC HYSTERESIS
The hysteresis parameters are summarized in the Dunlop-Day
plot (Figure 7) and shown with respect to depth for each alluvial
terrace profile (Figure 4) (Day et al., 1977; Dunlop, 2002). The

FIGURE 5 | Quantile box plot of Xlf by terrace for the Delaware River

Valley study area. The horizontal quantile lines represent, from bottom to
top, the minimum, 10, 25%, median, 75, 90%, and maximum. The Xlf

values are for soil only, no C, transitional C, or lamellae horizons were
included in this analysis. An ANOVA and Tukey test show that the means
are significantly different between the three groups (p < 0.05).

T3, T2, and T0 soils plot within the SD, PSD, and SP-SD mix-
ture fields. The T3 alluvial soil has overall lower remanence ratios
(Mr/Ms) and coercivity ratios (Hcr/Hc) compared to the T2 and
T0 soils. This indicates a possible lower ratio of high coercivity
minerals (hematite/goethite) to lower coercivity minerals (mag-
netite/maghemite) in the T3 alluvial soil relative to the younger
T2 and T0 soils (Jackson et al., 1990). The Mr/Ms and Hcr/Hc for
the T0 plot in the PSD field and are similar to samples from the
T2 alluvial soils.

The majority of samples that plot in the SP-SD mix-
ture field are from C, BC, lamellae, or inter-lamellae hori-
zons. Therefore, parent material is largely composed of SP-SD
grains, whereas the soil horizons are composed of grains in
the SD and PSD fields. Magnetic minerals in soil have been
shown to plot in the PSD field and usually indicate a mix-
ture of SD, MD, SP-SD grains (Dunlop, 2002; Evans and Heller,
2003).

TEMPERATURE-DEPENDENT REMANENCE
Low temperature zero-field cooled (ZFC) and field cooled (FC)
remanence measurements were conducted upon warming to
room temperature for subsoil and C horizons from all three ter-
races (Figure 8). The ZFC and FC curves resemble diagnostic
goethite curves (Bilardello and Jackson, 2013). However, the FC
is not quite twice the magnetization of the ZFC, suggesting that
other magnetic minerals are present. The Verwey transition, Tv,
is not present in any of the ZFC/FC data, most likely reflect-
ing the presence of goethite and/or maghemite. The ZFC and
FC curves are irreversible due to unsaturated samples acquir-
ing partial thermal remanent magnetization at low temperatures.
This is due to the high saturation field of goethite (Liu et al.,
2006).
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FIGURE 6 | Coercivity of remanence distribution for (A) T3, (B–D) T2, and (E) T0 soils and (F) clay lamellae.

FIGURE 7 | Dunlop-Day (Day et al., 1977; Dunlop, 2002) plot for

samples from the T3, T2, and T0 profiles. SD, Single-domain magnetic
grains; PSD, Pseudo-single domain magnetic grains; and MD, Multi-domain
magnetic grains.

With increasing terrace and soil development (e.g., soil red-
dening, clay illuviation) the overall net magnetization of ZFC and
FC increases in the subsoil relative to the parent material—C hori-
zons. The C horizons show a relatively consistent magnetization
value for all terraces. Furthermore, the T0 Bw horizon ZFC and

FC magnetization has similar values when compared with the
ZFC and FC data from the corresponding C horizon. This trend in
temperature dependent remanence is similar to that documented
in the susceptibility, remanence and hysteresis data.

The RT-SIRM curves show variability between each of the ter-
races (Figure 9). In the T3 terrace, the increase and then promi-
nent drop in remanence at 110 K (Tv) of the RT-SIRM during
cooling indicates the presence of oxidized magnetite, maghemite
(Özdemir and Dunlop, 2010). Upon continued cooling past the
Tv to 10 K, there is little change in remanence. The Tv in the T2
and T0 terraces is seen as a relatively small drop during cooling in
remanence at ∼110 K and are not as prominent as the Tv in the T3
subsoil horizon. There is a continued drop in remanence past the
Tv to 10 K in both the T2 and T0 terrace samples. The Tv can be
masked by high amounts of oxidation (Özdemir et al., 1993), as
would be expected in a paleosol, perhaps explaining the lack of Tv

seen in the low temperature susceptibility analyses of all terraces
and the suppressed Tv transition seen in the T2 and T0 terraces.

In the T3 and T2 samples, the remanence is not reversible dur-
ing warming back to 110 K. In the T0 terrace sample, remanence
is slightly reversible during warming. This irreversible warming
suggests the presence of PSD maghemite (Smirnov and Tarduno,
2002). On continued warming back to room temperature, there
is no sign of the Tv in the T3 terrace sample and in the T2
and T0 terraces, the Tv is strongly suppressed. This indicates
that the difference in remanence before and after temperature
cycling is representative of the MD portions of the magnetic min-
eralogy and that SD grains hold the remaining remanence after
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FIGURE 8 | Field-cooled (FC) and zero-field cooled (ZFC) remanence

curves from (A) T3, (B) T2, and (C) T0 soil horizons.

cycling. Decrease in remanence upon warming in the T3 and T0
may be an indication of goethite; whereas the plateau and slight
increase ∼250 K for the T2 sample may indicate a weak Morin
transition, Tm, and the presence of hematite (France and Oldfield,
2000).

DISCUSSION
MAGNETIC ENHANCEMENT IN DELAWARE ALLUVIAL SOILS
The high Xlf in A and B horizons in Delaware River alluvial
soils, compared to underlying C horizons, suggests an increas-
ing concentration of ferrimagnetic particles such as magnetite
or maghemite. The Xlf increases in the soil A and B hori-
zons are associated with increasing terrace age and weathering

FIGURE 9 | Room temperature-SIRM (RT-SIRM) curves on cooling and

warming for soils along the (A) T3, (B) T2, and (C) T0 profiles.

duration suggesting that the soil-forming factor time influences
the magnetic susceptibility and magnetic enhancement of soils.
Within the T2 profile, the well-developed soils with clay illu-
viation toward the base of the profile have higher Xlf values
than the weakly-developed soils toward the surface that are cur-
rently mapped as Entisols. This provides further evidence that
within the multistory T2 profile, time affects the soil magnetic
properties.

Interestingly, while the average Xlf for T3 is greater than T2
(Figure 5), some of the T2 buried soils have similar Xlf values to
the T3 landform soil, which formed for at least 104 years longer
than buried soils that once formed in the T2 landform. Xlf is
influence both by magnetic concentration and grain size, thus the

Frontiers in Earth Science | Quaternary Science, Geomorphology and Paleoenvironment August 2014 | Volume 2 | Article 17 | 10

http://www.frontiersin.org/Quaternary_Science,_Geomorphology_and_Paleoenvironment
http://www.frontiersin.org/Quaternary_Science,_Geomorphology_and_Paleoenvironment
http://www.frontiersin.org/Quaternary_Science,_Geomorphology_and_Paleoenvironment/archive


Stinchcomb and Peppe The influence of time on magnetic properties

similarities between Xlf values in the T3 soil and some T2 buried
soils could be function of either factor. Ms is directly proportional
to concentration, and thus likely more faithfully indicates vari-
ability in concentration between the T2 and T3 buried soils. Ms
shows a clear difference between the T2 and T3 soils, and the T3
terrace has much higher Ms that all the T2 buried soils, includ-
ing the soils with similar Xlf values (Figure 3). This indicates that
there has been greater magnetic enhancement in the T3 terrace
than in all buried soils in the T2 terrace. Based on this compari-
son between Ms and Xlf in the T3 and T2 buried soils, we suggest
that the very high values in Xlf in some buried soils in the T2
terrace are a reflection of both increased pedogenesis resulting in
an increase in magnetic concentration, and variability in grain
size. Together this demonstrates that in the Delaware River val-
ley periglacial and alluvial soils pedogenic duration appears to
have the strongest influence on the concentration of secondary
ferrimagnetic minerals.

The gradient-acquisition plots show a magnetic mineral
assemblage dominated by low-coercivity and high-coercivity
minerals. As with other magnetic parameters, the magnetic
remanence values in the soil horizons (particularly B horizons)
increase with increasing terrace age and weathering duration.
Because the Tv is absent in the ZFC/FC plots, we suggest that
maghemite, not magnetite, is the magnetically soft SD grain
primarily responsible for much of the increased magnetic suscep-
tibility in the soil horizons. Lindquist et al. (2011) document a
similar ZFC/FC pattern from alluvial soils in Texas and suggested
it could be the results of goethite and SP maghemite. In this study
however, the RT-SIRM suggests the presence of stoichiometric
magnetite in the T3 terrace and the irreversible warming of all
RT-SIRM analyses indicates the presence of PSD maghemite in
all terraces (Figure 6), suggesting a difference in magnetic min-
eralogy between our Delaware River valley soils and those of
Lindquist et al. (2011).

Iron reduction during microbial respiration produces soluble
Fe2+ in soil (Schwertmann, 1988). Given excess Fe2+, the partial
dehydration of ferrihydrite can lead to the development of mag-
netite, which can subsequently oxidize to form maghemite. This
observation has been noted and suggested in other environmen-
tal magnetic studies on alluvial soils (Singer et al., 1992; Lindquist
et al., 2011) and loess (Geiss et al., 2004; Guyodo et al., 2006).
The end-products of this process (magnetite and maghemite) can
reflect climate (e.g., mean annual precipitation) if enough time
has passed for the soil to develop and reach a steady-state with
respect to climate. However, this does not appear to be the case
for the Delaware River terrace alluvial soils.

Our empirical observations of Delaware periglacial and allu-
vial terraces show that weathering duration has an effect on the
soil magnetic properties. The range of weathering duration for the
Delaware periglacial and alluvial soils, 0.001–16 kyrs, falls within
the active stage of secondary ferrimagnetic mineral (SFM) devel-
opment according to a chemical kinetic model (Boyle et al., 2010).
During this stage, changes in Xlf are dependent upon duration
of soil formation. Because all soils measured along the Delaware
River valley have been forming for no longer than 104.2 years,
time should be the primary influence on the magnetic enhance-
ment of these soils (Boyle et al., 2010, Figure 6A). This agreement

between model output (e.g., Boyle et al., 2010) and our empirical
data from Delaware River valley strengthens the argument here
that Xlf measurements are a good indicator of weathering dura-
tion for periglacial and alluvial soils that formed for <16 kyrs.
This approach could be useful in Quaternary (and possibly pre-
Quaternary) alluvial settings where other means of age-dating are
lacking.

The paleoenvironmental implications of magnetic suscepti-
bility, duration of soil formation and climate relationships are
briefly discussed here using an example from the T2 Delaware
River valley buried soils (Figure 10; Supplementary Table 5)
(Stinchcomb et al., 2012, 2013). In Figure 10A, the intervals with
increased magnetic susceptibility coincide with the occurrence
of widespread buried alluvial soils, which denote landscape sta-
bility and prolonged periods of pedogenesis (Stinchcomb et al.,
2012). Two distinct intervals of increased soil formation dura-
tion occur during the Early and late-middle Holocene. These
intervals correspond with carbon isotope substages IIb and IId,
determined from δ13Csom of the same alluvial soils (Stinchcomb
et al., 2013). The isotope substages are thought to document dry
intervals that have also been documented in previous research
(Kirby et al., 2002; Shuman et al., 2004; Newby et al., 2009,
2011; Mullins et al., 2011). The magnetic susceptibility data adds
new insight into this relationship between floodplain soils and
climate. The enhanced Xlf during the early Holocene coincides
with times of moisture deficit because during dry intervals the

FIGURE 10 | Xlf time series and climate data for northeastern USA

study area. (A) Standardized Xlf for T2 alluvial soils along the Delaware
River Valley (see Figure 1 for profile locations; Supplementary Table 5 for
Xlf data). Vertical gray bars denote enhanced Xlf intervals suggesting
prolonged pedogenesis. (B) Standardized variation in the %C4 plants
(�%C4) for the Delaware River valley (Stinchcomb et al., 2013).
(C) Documented climate intervals for northeastern USA (Shuman et al.,
2004). (D) Documented lake lowstands for Davis Pond, NY (Newby et al.,
2011) and New Long Pond, MA (Newby et al., 2009; Shuman et al., 2009).
The vertical gray bars denote intervals of enhanced Xlf that are inferred
here to reflect times of prolonged alluvial soil formation along the T2.
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flooding would have been less frequent along the T2 landform
and resulted in prolonged duration of soil formation leading to
magnetic enhancement. During the late-middle Holocene inter-
val, enhanced Xlf (6.1 − 4.3 ka) corresponds with a wet to dry
transitional phase and a previously documented incision event
along the valley bottom. In this case the incision and terrace
development resulted in prolonged surface exposure and more
time for the accumulation of secondary ferrimagnetic minerals,
enhancing Xlf . In both early and late-middle Holocene cases, the
magnetic data provide quantitative support for the argument that
those periods of moisture-deficit and terrace formation along
the Delaware River valley lead to longer intervals of alluvial soil
formation that experience less flooding and burial.

Interestingly, although there is evidence for pedogenic mag-
netic enhancement in the Delaware River Valley alluvial soils,
the lack of low-coercivity minerals in clay lamellae suggest that
the pedogenic processes responsible for magnetic enhancement
in the B horizons of most alluvial soils are not occurring in the
lamellae. These data suggest that the dominant processes that
form clay lamellae, clay bridging and clay illuviation, are not
the primary mechanisms causing magnetic enhancement in the
Delaware River valley soils. Rather, clay lamellae and broadly
speaking, clay illuviation, results in increasing concentrations of
highly coercive magnetic minerals such as hematite or goethite.
Because the lamellae are largely composed of Fe-rich clay (e.g.,
vermiculite, see Stinchcomb et al., in press), we suggest here that
this is not likely the source of the magnetite and maghemite.
Rather, we propose that the partial dehydration of ferrihydrite
is occurring proximal to the framework of phyllosilicates. These
zones are likely surrounded by micropore networks where O2

has difficulty diffusing inwards, possibly resulting in a reduced
microenvironment and formation of magnetite and maghemite.

CONCLUSIONS
The results presented in this study show that along the Delaware
River valley the magnetic susceptibility in periglacial and alluvial
soils is at least partly controlled by the duration of soil forma-
tion, or more simply, the time factor of soil development. Soil
horizons are shown to have higher Xlf , Ms, and S-ratios com-
pared to parent material. Further, Xlf , Ms, and S-ratios all increase
with duration of soil formation, or in other words, the T3 soil,
which has undergone the longest duration of pedogenesis, shows
the degree of greatest magnetic enhancement and T0, which has
experienced a short duration of pedogenic development shows
essentially no evidence for an increase in magnetic concentration
over the soils parent material. Within the soils, magnetic rema-
nence shows mixed low- and high coercivity mineral assemblage
likely consisting of goethite, hematite and maghemite that con-
tribute to the magnetic enhancement of the soil. Time-dependent
Xlf from buried T2 alluvial soils were plotted with respect to
age using previously developed age models (Stinchcomb et al.,
2013). The Xlf time-series results show that enhanced soil Xlf

corresponds with dry climate intervals and terrace formation.
We suggest that this is related to less frequent flooding allow-
ing more time low-coercive pedogenic magnetic minerals to form
and accumulate resulting in increased Xlf . The environmental
magnetic research presented here for the Delaware River valley

suggests that in periglacial and buried alluvial soils and pale-
osols that formed for ≤16 kyrs, time is an important control on
magnetic enhancement. Quaternary, and likely pre-Quaternary
paleopedology, must consider duration of pedogenesis (i.e., the
soil forming factor time), in addition to moisture as an impor-
tant factor influencing magnetic enhancement in alluvial soils and
paleosols.
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