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Ringwoodite, γ-(Mg,Fe)2SiO4, in the lower 150 km of Earth’s mantle transition zone
(410–660 km depth) can incorporate up to 1.5–2 wt% H2O as hydroxyl defects. We
present a mineral-specific IR calibration for the absolute water content in hydrous
ringwoodite by combining results from Raman spectroscopy, secondary ion mass
spectrometry (SIMS) and proton-proton (pp)-scattering on a suite of synthetic Mg- and
Fe-bearing hydrous ringwoodites. H2O concentrations in the crystals studied here
range from 0.46 to 1.7 wt% H2O (absolute methods), with the maximum H2O in
the same sample giving 2.5 wt% by SIMS calibration. Anchoring our spectroscopic
results to absolute H-atom concentrations from pp-scattering measurements, we report
frequency-dependent integrated IR-absorption coefficients for water in ringwoodite
ranging from 78,180 to 158,880 Lmol−1cm−2, depending upon frequency of the OH
absorption. We further report a linear wavenumber IR calibration for H2O quantification in
hydrous ringwoodite across the Mg2SiO4-Fe2SiO4 solid solution, which will lead to more
accurate estimations of the water content in both laboratory-grown and naturally occurring
ringwoodites. Re-evaluation of the IR spectrum for a natural hydrous ringwoodite inclusion
in diamond from the study of Pearson et al. (2014) indicates the crystal contains 1.43 ±
0.27 wt% H2O, thus confirming near-maximum amounts of H2O for this sample from the
transition zone.

Keywords: IR spectroscopy, water in nominally anhydrous minerals, transition zone, mineral-specific absorption

coefficient, SIMS, Raman spectroscopy, proton-proton scattering, ringwoodite

INTRODUCTION
Ringwoodite was first described in the Tenham meteorite found
in Queensland, Australia, by Binns et al. (1969) and named after
the Australian mineral physicist Ted Ringwood. The first terres-
trial occurrence of ringwoodite was recently reported by Pearson
et al. (2014), who discovered a hydrous ringwoodite inclusion in
ultra-deep diamonds from Juina, Brazil. Ringwoodite is one of
the major components of the Earth’s mantle transition zone (e.g.,
Bernal, 1936; Akaogi and Akimoto, 1977; Anderson and Bass,
1986; Bina and Wood, 1986; Irifune, 1987; Ringwood and Major,
1967) and although nominally anhydrous, ringwoodite is well-
known to incorporate up to 1.5–2 wt% of water as (OH)− point
defects in both laboratory-grown and naturally occurring samples
(e.g., Kohlstedt et al., 1996; Bolfan-Casanova et al., 2000; Smyth
et al., 2003; Pearson et al., 2014).

Water in nominally anhydrous minerals (NAMs) influences
phase relations (e.g., Hirschmann, 2006), melting temperature
(e.g., Hirth and Kohlstedt, 1996; Hirschmann et al., 2009; Tenner
et al., 2012), and physical properties including electrical conduc-
tivity (e.g., Yoshino et al., 2009), thermal conductivity (Thomas
et al., 2012), elasticity (e.g., Jacobsen, 2006), and rheology (e.g.,
Kavner, 2003). Several OH defect mechanisms have been studied

in ringwoodite, mainly involving charge-compensating vacancies
at the octahedral Mg-Fe sites, the tetrahedral Si site, and normally
vacant interstitial sites (e.g., Kudoh et al., 2000; Smyth et al., 2003,
2004; Chamorro Pérez et al., 2006; Blanchard et al., 2009; Mrosko
et al., 2013; Panero et al., 2013; Purevjav et al., 2014; Yang et al.,
2014).

Because of its likely abundance (>50% of a pyrolite model)
in the lower 150 km of the Earth’s mantle transition zone
(410–660 km depth) and for its ability to incorporate significant
amounts of H2O, we have undertaken this study on determining
the absolute water content in ringwoodite. Infrared (IR) spec-
troscopy is one of the most common tools for analysis of water in
minerals, for which mineral-specific absorption coefficients are
required. The absolute water content in minerals was conven-
tionally determined by quantitative dehydration weight analyses
(e.g., Aines and Rossman, 1984), but more suitable for the typ-
ically very small amounts (μg) of material from high-pressure
and high-temperature syntheses, two additional methods have
been developed: elastic recoil detection analysis (e.g., Aubaud
et al., 2009; Bureau et al., 2009; Withers et al., 2012) and proton-
proton (pp) scattering (e.g., Gose et al., 2008; Thomas et al., 2008;
Reichart and Dollinger, 2009).
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In addition to theoretically based IR calibrations for water
in ringwoodite (Balan et al., 2008; Blanchard et al., 2009),
experimentally determined IR absorption coefficients have been
estimated for ringwoodite either by using general calibrations
(Paterson, 1982; Libowitzky and Rossman, 1997) or from sec-
ondary ion mass spectrometry (SIMS) measurements of water
contents, which we note are usually calibrated against the water
content in silicate glasses or minerals measured by IR. Absorption
coefficients for water quantification have been determined for
ringwoodites with fayalite component (Fa100, Fe2SiO4) through
Fa40 and for pure forsterite (Fo100, Mg2SiO4) composition
(Koch-Müller and Rhede, 2010) but not for compositions span-
ning the likely Fe-content of the mantle transition zone from Fo75
to Fo95.

In this study we calibrate the water concentrations in synthetic
hydrous ringwoodite from IR spectroscopy against independently
determined values from Raman spectroscopy, SIMS and the
absolute H-concentration measured by pp-scattering microscopy.
Broad-beam pp-scattering has previously been applied to mm-
sized samples (Thomas et al., 2008). However, until recently this
quantification technique was not feasible for smaller samples syn-
thesized under very high pressure-temperature conditions in the
multi-anvil press. Here, we employ pp-scattering experiments on
synthetic ringwoodite crystals less than 200 μm in largest dimen-
sion and quantify 3D distributions of atomic hydrogen at μm
spatial resolution. We also present hydrogen depth-profiles and
2D hydrogen maps and H2O concentrations in samples used for
the spectroscopic calibration. We calculate absorption coefficients
for a suite of hydrous ringwoodite with varying Fe- and water
concentrations, test their wavenumber-dependence, and compare
results with literature data. The IR calibration can thus be used
to determine the absolute water content in hydrous ringwoodite,
which we also apply to the natural hydrous ringwoodite inclusion
in diamond reported by Pearson et al. (2014).

MATERIALS AND METHODS
SAMPLES
Samples used in this study were synthesized at high P-T condi-
tions in multi-anvil presses and cover a range of H2O contents
and compositions (Table 1). Chemical analyses and other char-
acterizations of the single crystals used in this study have been
published elsewhere: for samples MA120, MA62, MA56, and
MA75, see Koch-Müller and Rhede (2010), Taran et al. (2009),
and Koch-Müller et al. (2009); Koch-Müller et al. (2011); for sam-
ple SZ0820, see Ye et al. (2012); for samples SZ9901 and SZ0104,
see Smyth et al. (2003); Smyth et al. (2004), Thomas et al. (2012),
and Jacobsen et al. (2004); for sample SZ0570, see Mao et al.
(2011). High-quality, crack- and inclusion-free isotropic single
crystals ranging in longest dimension from 50 to 500 μm were
selected for analyses. The color of the ringwoodites used here
varies from colorless to dark blue to almost opaque depending
on Fe concentration.

3D HYDROGEN MICROSCOPY BY PROTON-PROTON SCATTERING
Proton-proton scattering at proton energies up to 25 MeV has
been used in a broad-beam configuration to perform hydrogen
depth microscopy in mm-sized mineral platelets, as described T
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in Thomas et al. (2008) or Gose et al. (2008). A new detec-
tor setup has been installed at the nuclear microprobe SNAKE
at the Munich tandem accelerator lab that enables 3D hydrogen
microscopy of μm-sized objects by scanning a μm-focused beam.
A detailed description can be found in Reichart and Dollinger
(2009). The protons scattered from an elastic scattering reac-
tion of an incident proton and a hydrogen atom are detected in
coincidence by two pairs of Si-detectors with 16 strips on the
front and back side each. The strips and a narrow timing win-
dow allow filtering of hydrogen events from all other scattering
events with a detection limit below 1 at-ppm (1 atom out of 106

other atoms). The energy information of both protons is used
to gain depth information with about μm depth resolution. As
both coincident protons from the pp-scattering reaction have to
be detected at the back of the sample, the scattering geometry
requires unsupported samples. With a proton energy of 22 MeV as
used in our analyses, thin but stable samples can be prepared. Our
samples were ground and polished until they had a final thick-
ness <100 μm (SZ9901 39 μm, SZ0570 71 μm, SZ0820 50 μm).
Crystal edges were glued to copper grids with mesh sizes rang-
ing from 150 to 400 μm. From the scattering probability and the
proton beam current, the number of coincident events from a
certain thickness gives the atomic hydrogen in H-atoms/cm2. We
convert this to H atoms per total atoms using the atomic den-
sity of the samples determined by other methods such as X-ray
crystallography.

IR SPECTROSCOPY
In preparation for IR measurements single crystals were doubly
polished using diamond spray. Unpolarized IR spectra of ran-
domly oriented synthetic ringwoodite were recorded from 1850
to 4000 cm−1 at ambient conditions using a Bruker Tensor 37
FTIR spectrometer with a KBr beamsplitter, globar source, and
Hyperion microscope with MCT detector. Up to 1024 scans were
taken with a resolution of 2 cm−1 through a 100 × 100 μm aper-
ture. The sample thickness was determined using the eyepiece
reticule and stage micrometer scale of the optical microscope.
The final thicknesses varied from 13 to 84 μm depending on the
specimen (Table 1). A linear baseline correction in the integration
limits between 2000 and 3900 cm−1 was applied for all our spec-
tra. Peak positions, integrated absorbances, band maxima, and
area-weighted average (Libowitzky and Rossman, 1996, 1997) of
band positions were determined using PeakFit (Systat Software,
Inc.). We applied a Gaussian/Lorentzian distribution function to
all component bands. Polarized measurements are not needed for
isotropic minerals, where the absorbance is linearly dependent
on the species concentration and thickness of the sample. Here
we use one-directional absorbance values derived from unpolar-
ized spectra of cubic ringwoodite and multiply them by three for
subsequent calculations.

RAMAN SPECTROSCOPY
The same single crystals used in the IR study were charac-
terized with confocal microRaman spectroscopy with no addi-
tional sample preparation required. All analyses were performed
in backscattering geometry using an Andor Shamrock 0.3 m
spectrograph (1800 grooves/mm grating) coupled to an Andor

Newton DU970 EM-CCD camera, an Olympus optical micro-
scope and a long working distance Mitutoyo 100× objective
(LWD VIS, NA = 0.70, WD = 6.0 mm). The 458-nm line of
a solid-state Melles Griot laser source with ∼250 mW output
power was used for sample excitation. Laser intensity at the sam-
ple was ∼18 mW. For all measurements a confocal aperture of
100 × 100 μm was used and spectra were acquired from 50 to
1300 cm−1. Counting times ranged from 10 to 100 s with 3 accu-
mulations. Counting times for spectra in the frequency range
from 2800 to 4000 cm−1 were 100 s at 5 accumulations. After
a linear baseline correction was performed, spectra were inte-
grated between 2000 and 3900 cm−1. The KOG glass (Thomas
et al., 2008) was used as reference material. A molar volume
correction factor of 0.79 for differences between sample and ref-
erence material was used for quantification (see Mrosko et al.,
2011).

SECONDARY-ION MASS SPECTROMETRY
SIMS measurements of hydrogen in ringwoodite were carried
out on the Cameca NanoSIMS 50L scanning ion microprobe at
the Carnegie Institution of Washington. Polished single crystals
were mounted in indium. To flatten the surface and fill cavi-
ties around the crystals, the whole assembly was pressed carefully
with 4.9 t in a hydraulic hand press. The 16OH− signal was stan-
dardized using natural and synthetic minerals described in Koga
et al. (2003) and Hauri et al. (2006): olivines SynFo100, SynFo68,
GRR1012, KLV-23; orthopyroxenes KBH-1, India, Kenya, A288;
garnets MON-9, ROM263-9, ROM263-25, ROM263-52; clinopy-
roxene PMR-53. We also used additional olivines and pyroxenes
from the Monastery kimberlite that were studied by Bell et al.
(2004): olivines ROM177, ROM250-13, ROM250-2; clinopy-
roxenes ROM271-10, ROM271-16, ROM271-21; orthopyroxene
ROM273. Detailed analytical setup and methodology infor-
mation is described in Hauri et al. (2006) and Koga et al.
(2003).

RESULTS
IR SPECTROSCOPY
Unpolarized IR spectra of ringwoodite with forsterite numbers
Fo100-Fo83 are illustrated in Figure 1. Spectra are offset for clar-
ity. The IR spectra show broad absorption bands of OH stretching
vibrations with maxima of the main band ranging from ∼3130 to
3174 cm−1 and additional bands at ∼3656 to 3675 cm−1, 3531
to 3568 cm−1, and ∼2500 cm−1 (see Table 1 and Figure 1). Band
intensities vary and band maxima of the main band shift to higher
wavenumbers with increasing iron content.

RAMAN SPECTROSCOPY
Unpolarized Raman spectra for ringwoodites used in this study
are shown in Figure 2. The spectrum of pure Mg-ringwoodite
(Figure 2A) displays expected Raman modes at ∼322, 444, 665,
794, and 829 cm−1, which are due to antisymmetric (T2g) and
symmetric (A1g) stretching vibrations of the isolated SiO4 tetra-
hedra (Chopelas et al., 1994), whereas an association of the
Raman bands at ∼300 cm−1 and 400 cm−1 with octahedral
cation vibrations is under discussion (McMillan and Akaogi,
1987; Chopelas et al., 1994). Representative spectra for more
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iron-rich samples show similar patterns (Figure 2B), with the
strongest Raman peaks at ∼794 and 835 cm−1 dominating. In
addition, low-frequency bands with slightly varying intensities
and positions at ∼200 cm−1 are present in the Fe-bearing sam-
ples (Figure 2B). These signals might be associated with local-
ized modes generated by Fe substitution (Fe2+, Fe3+) (Kleppe
et al., 2002; Kleppe and Jephcoat, 2006), which explains their
absence in pure Mg-ringwoodite (Figures 2A,B). Additional weak
modes at >700 cm−1 might be associated with vibrations due to
Si2O7 (Kleppe and Jephcoat, 2006). The high-frequency range

FIGURE 1 | Unpolarized IR spectra (black) including band

deconvolution (red) of Fe-free (Fo100) and Fe-bearing hydrous

ringwoodites at room pressure. Spectra show broad absorption features
with band maxima ranging from ∼3130 to 3174 cm−1, from ∼3531 to
3568 cm−1, and from ∼3656 to 3675 cm−1. The feature at ∼2500 cm−1 has
been assigned to overtones by e.g., Hofmeister and Mao (2001) and was
excluded from further quantification calculations. Spectra are offset for
clarity.

(Figures 2A,D) of all samples studied here shows broad OH
band features due to OH stretching vibrations in accordance
with observations from IR spectroscopy, which allow water quan-
tification by Raman spectroscopy. Figure 2C shows the Raman
spectrum of the reference silica glass used in this study containing
332 wt ppm H2O (Thomas et al., 2008). Note, that Figure 2B is
meant for illustrative purposes only; spectra have not been nor-
malized and intensities are given in arbitrary units representing
measurements taken on different days with different count rates,
laser intensities and accumulations, allowing only qualitative
comparison.

WATER CONTENTS AND MINERAL-SPECIFIC ABSORPTION
COEFFICIENTS
Ringwoodite water contents determined by confocal micro-
Raman spectroscopy, SIMS, and pp-scattering (Table 1) are in
good agreement. Based on SIMS analysis, the H2O concentra-
tion of the five samples studied here ranges from 0.36 wt% H2O
to 2.5 wt% H2O (see Table 1). Figure 3 shows hydrogen maps
and depth profiles from selected areas derived from pp-scattering
analyses for μm-sized crystals of Fo100, 90, and 83 super-glued on
copper grids. Depth profiles allow separation of surface water and
internal bulk hydrogen (or glue contamination, see Figure 3A),
measured as H atoms per square cm. Assuming density and com-
position, the depth scale and thickness is calculated from energy
loss of the protons, giving H atoms per total atoms in the selected
areas. Background-corrected values for Fo100, 90, and 83 were
calculated as 1.77 ± 0.35 wt% H2O, 1.13 ± 0.23 wt% H2O, and
0.91± 0.18 wt% H2O, respectively, assuming all detected H is
incorporated as hydroxyl groups.

From independently determined water concentrations (cH2O),
peak-fitted integrated areas (Ai) from IR spectroscopy, sample

FIGURE 2 | Raman spectra of Mg-ringwoodite (A) and Fe-bearing ringwoodite (B) showing characteristic lattice vibrations in the low-frequency range

and OH bands in the high-frequency range (D). The spectrum of the reference glass KOG with 332 wt ppm is shown in (C). Intensities are given in arbitrary units.
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FIGURE 3 | Sample images, hydrogen maps, and depth profiles of

ringwoodites SZ0820 (Fo100, A), SZ0570 (Fo83, B), and SZ9901 (Fo90,

C) from pp-scattering. The total scan area is marked in the sample
images. From the hydrogen maps we are able to select areas of interest

for quantitative depth profiles (B,C in log scale for better background
visibility). Outside areas may be covered by the supporting mesh grid or
contaminated by glue residue, as clearly observed in the depth profile from

(Continued)

www.frontiersin.org January 2015 | Volume 2 | Article 38 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Earth_and_Planetary_Materials/archive


Thomas et al. Water in ringwoodite

FIGURE 3 | Continued

this area (A). Note that the tail at depth from 0 to 20 μm in the depth
profiles reveals that the crystals do not have the same thickness over the
total area of interest. Hence, scattered protons may have an energy loss

shift so that the events are redistributed toward apparently larger depth
values. The integral content in H-atoms/cm2 is not changed, but
uncertainty in total depth has to be taken into account for concentration
calculation as stated in the text.

thickness (d) and sample density (ρ), mineral-specific IR absorp-
tion coefficients (Table 2) were calculated for Fo60, 83, 87, 90,
and 100 compositions using the Beer-Lambert law, ε = (Ai

× 1.8)/(d × ρ × cH2O), where d is the sample thickness in
cm, ρ is the sample density in g/cm3, and cH2O is the H2O
content in wt%. Note that we use the integrated absorbance
from one crystallographic direction multiplied by three for our
calculations. Based on Raman spectroscopy, absorption coeffi-
cients for ringwoodite of Fo60 to Fo100 composition range from
78,180 ± 23,460 Lmol−1cm−2 to 158,880 ± 47,660 Lmol−1cm−2

(Table 2). The relative error of absorption coefficients is mainly
determined by the error of the water concentration from all
analyses (7–22% relative uncertainty from SIMS, 20% relative
uncertainty from pp-scattering and 30% relative uncertainty from
Raman spectroscopy), the surface quality of the samples, and
spectral fits.

DISCUSSION
IR spectroscopy allows investigation of water incorporation
mechanisms in NAMs (e.g., Libowitzky and Beran, 2006). For
ringwoodite, mechanisms include protonation of oxygen sites
(hydroxyl, OH−) associated with the vacant and partially vacant
16c and 16d octahedral sites, [VMg(OH)2]x, Mg2+ substitution
for Si4+ on the tetrahedral site, [MgSi(OH)2]x, tetrahedral sil-
icon vacancies with a hydrogarnet type defect, [VSi(OH)4]x,
and defects on tetrahedral edges, [Mg/Fe2+/Fe3+

Si (OH)2]x (e.g.,
Kudoh et al., 2000; Smyth et al., 2003; Blanchard et al., 2009;
Mrosko et al., 2013; Panero et al., 2013; Purevjav et al., 2014;
Yang et al., 2014). IR spectra of synthetic ringwoodite reported
are similar to previous studies (e.g., Bolfan-Casanova et al., 2000;
Kudoh et al., 2000; Smyth et al., 2003; Chamorro Pérez et al., 2006;
Mrosko et al., 2013).

Following the band assignments of Mrosko et al. (2013), based
on heating experiments, and Hofmeister and Mao (2001), the
main OH band at ∼3130 cm−1 is most likely composed of various
bands and associated with protonation of octahedral vacancies;
the bands at 3656 to 3675 cm−1 and 3531 to 3568 cm−1 are asso-
ciated with tetrahedral defects of either the hydrogarnet substitu-
tion or Mg replacing Si atoms, and the features at ∼2500 cm−1,
present in anhydrous and hydrous ringwoodite are due to over-
tones of Si-O vibrations. Contingent upon the increasing Fe-
concentration in our samples we observe the expected shift of the
main OH band to higher wavenumbers (e.g., Libowitzky, 1999;
Mrosko et al., 2013), from ∼3130 cm−1 in Fo100 to 3174 cm−1

in Fo83. Mrosko et al. (2013) report that an increasing iron con-
centration also affects the high-frequency band at ∼3675 cm−1,
which in this case causes a shift to lower wavenumbers. Here,
we do not observe a significant negative shift of this band. This
might be due to the relatively low iron content and the low
Fe-contrast between our samples (from Fo100 to Fo83), hence
such a shift might be resolvable only when comparing samples

with more extreme differences in total Fe-concentration. We also
do not observe a direct correlation between sample Fe-content
and water concentrations for our synthetic ringwoodites. The
latter are consistent with prior reported values, which typically
range up to 2.5 wt% H2O and 1.48 wt% in synthetic and nat-
ural samples, respectively (Kohlstedt et al., 1996; Smyth et al.,
2003; Pearson et al., 2014; Yang et al., 2014). In agreement with
Koch-Müller and Rhede (2010), we observe a general increase
in the integrated molar absorption coefficient with decreasing
OH-stretching frequency of the band maximum (Table 2 and
Figure 5).

A comparison of ringwoodite-specific IR absorption coef-
ficients derived from water quantification using a variety of
analytical techniques is shown in Figure 5. The two solid lines
give the general trends of absorption coefficients for water in
hydrous minerals and glasses vs. wavenumber of the correspond-
ing OH bands (Paterson, 1982; Libowitzky and Rossman, 1997).
Since more than one peakfit solution exists for the broad OH
band pattern in ringwoodite, we chose to plot band maxima vs.
absorption coefficient instead of weighted mean wavenumbers,
as suggested in Libowitzky and Rossman (1997). The good corre-
lation between absorption coefficient and band maxima reflects
the dominance of the main OH feature in the IR spectra, i.e., the
prevalence of the associated incorporation mechanism. For ring-
woodite we observe a frequency-dependence of the absorption
coefficient, which shows an increase with decreasing wavenumber
due to interrelations of OH dipole strength, O-H. . . O geometry
and OH band intensity (for details see Koch-Müller and Rhede,
2010), similar to what has been communicated by Paterson (1982)
and Libowitzky and Rossman (1997) (Figure 5).

Our observations support conclusions of Koch-Müller and
Rhede (2010) that the use of a single absorption coefficient
for water quantification in ringwoodite is not recommended.
Instead, a frequency-dependent calibration specific to ringwood-
ite is needed, which reflects a range of OH-O distances connected
to variance in sample composition, i.e., element concentra-
tions, densities, and molar volumes. From Raman spectroscopy,
we determine absorption coefficients ranging from 78,180 ±
23,460 Lmol−1cm−2 to 158,880 ± 447,660 Lmol−1cm−2 for ring-
woodite samples of Fo60 to Fo100 composition (see Table 2
and Figure 4). All values (except the Raman value for Fo87)
for our ringwoodites plot below the calibration curves of
Paterson (1982) and Libowitzky and Rossman (1997), which
is in good agreement with findings by Balan et al. (2008),
Blanchard et al. (2009), and Koch-Müller and Rhede (2010).
Koch-Müller and Rhede (2010) report wavenumber-dependent
absorption coefficients for synthetic Fe-Mg-ringwoodites with
Fa100 to Fo60 compositions. Based on their experimentally
determined wavenumber dependence and density/molar volume
dependence of the calibration constant they estimate absorption
coefficients of 101,613 Lmol−1cm−2 and 105,877 Lmol−1cm−2
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for Mg-ringwoodite, respectively, with an OH band maxi-
mum of 3120 cm−1. These values are in good agreement with
our experimentally determined average absorption coefficient
for Mg-ringwoodite from SIMS, Raman, and pp-scattering of
98,280 Lmol−1cm−2 (Table 2) with a slightly increased band
maximum of 3130 cm−1.

From our absorption coefficients based on OH band max-
ima (Figure 5) and data points obtained by Koch-Müller and
Rhede (2010) we calculate a regression line, which can be used
to determine IR absorption coefficients for ringwoodites: y =
–207.35x + 761,228, where y is the absorption coefficient in
Lmol−1cm−2 and x is the band maximum of the strongest OH
band in cm−1. Based on this linear regression the value for
Mg-ringwoodite with a band maximum of 3130 cm−1 calcu-
lates as 112,223 Lmol−1cm−2 (Table 2) and for a band maximum
of 3120 cm−1 as 114,296 Lmol−1cm−2. Koch-Müller and Rhede
(2010) conclude that wavenumber-independent absorption coef-
ficients, such as those for olivine and quartz (Thomas et al., 2009),
are valid for minerals of the same composition with compara-
ble atomic distances. Absorption coefficients, however, strongly
depend on structure changes. This has been shown for SiO2 poly-
morphs, where coefficients increase from quartz to coesite and
stishovite, as the densities of the structures and thus the mean
O-O distances decrease (Thomas et al., 2009; Koch-Müller and
Rhede, 2010). Koch-Müller and Rhede (2010) explain the fre-
quency dependence of the absorption coefficient in ringwoodite
by strongly differing mineral compositions (Fe/Mg substitution),
which may result in a continuous decrease of the O-H—O dis-
tances with increasing Mg. They find that within the polymorphic
series of γ-(Mg,Fe)2SiO4 the absorption coefficient increases with
decreasing density and molar volume, which we do not observe
for the synthetic ringwoodites of Fo100 to Fo83 composition
(Figure 4).

Our work illustrates that using general IR calibration trends
reported by Paterson (1982) and Libowitzky and Rossman (1997)
would underestimate water concentrations in ringwoodite as
previously discussed by Koch-Müller and Rhede (2010). Our
absorption coefficients give up to 34% higher H2O contents
than the general calibration trends would estimate. We have pro-
duced a linear wavenumber-dependent IR calibration for water
quantification in a ringwoodite series representing Fa to Fo com-
positions, which will result in more accurate estimations of the
water content in natural and synthetic ringwoodites.

Finally, using this new calibration for water in ringwoodite we
re-evaluated the OH-absorption spectrum of the natural hydrous
ringwoodite diamond inclusion from Pearson et al. (2014). Note
that Pearson et al. (2014) utilized absorption coefficient and den-
sity estimates for pure Mg-ringwoodite (3.9 g/cm3). This leads to
a large uncertainty, which was estimated to be ±50% by Pearson
et al. (2014). The combination of IR spectra (OH band max-
ima) and density data from a suite of synthetic ringwoodite
samples studied here (Table 1) allows a better density estimate
of ∼3.65 g/cm3 for their ringwoodite inclusion and indicates
a forsterite number of ∼90. Usage of the new density and a
more suitable absorption coefficient (106,002 Lmol−1cm−2) for
the OH band maximum at 3160 cm−1 results in a water con-
tent of 1.36–1.50 wt% H2O in their natural sample. While the
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FIGURE 4 | Mineral-specific IR absorption coefficients in ringwoodite plotted vs. molar volume (A) and density (B); pp-scattering (blue symbols),

SIMS (open black symbols), Raman spectroscopy (filled black symbols), and Koch-Müller and Rhede (2010) (red symbols).

FIGURE 5 | Comparison of mineral-specific IR absorption coefficients

for ringwoodite calculated in this study [pp-scattering (blue), SIMS

(open black symbols), Raman spectroscopy (filled black symbols)] and

data from [1] Paterson (1982), [2] Libowitzky and Rossman (1997), and

Koch-Müller and Rhede (2010, SIMS, red). The x-axis gives the band
maxima of the strongest OH band determined by peak fitting. Note that
this figure contains values derived from one absorbance direction multiplied
by three to allow comparison between published absorption coefficient
values. The linear regression (dashed line), y = –207.35x + 761228, allows
calculation of IR absorption coefficients for water quantification in
ringwoodite.

new wavenumber-dependent calibration confirms originally pro-
jected H2O concentrations (1.35–1.49 wt% H2O), it reduces the
uncertainty by more than half, to ∼20%. Our new estimate for the
uncertainty in the water content of the natural hydrous ringwood-
ite (Pearson et al., 2014) includes a Gaussian error propagation
of relative errors from peak-fitted integrated areas (5%), sample
density (5%), sample thickness (15%), and absorption coefficient
(10%). With an absolute H2O content of 1.43(±0.27) wt%, we
thus confirm that the natural inclusion from the transition zone
contains near-maximum amounts of H2O.
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