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“From disease I had little to fear. Antarctica is a paradise in that respect. It is the germless continent.”
Richard E. Byrd (1938)

The terrestrial cryosphere includes >198,000 glaciers and three ice sheets (Pfeffer et al., 2014).
The paradigm of cryospheric environments as “germless continents” (Byrd, 1938) has shifted to
ecosystems (Kohshima, 1984; Hodson et al., 2008). Indeed, the terrestrial cryosphere constitutes
a “forgotten biome” (Anesio and Laybourn-Parry, 2012) with microbial processes influencing the
fundamental dynamics of glacial systems (Edwards et al., 2014).

Nevertheless, in terms of genomic diversity, glacial environments are virtual terra incognita.
Recent calculations indicate glacial ice harbors ca. 1×1029 cells worldwide, and ca. 4×1021 cells are
eluted by ice melt from non-Antarctic glacial systems annually (Irvine-Fynn and Edwards, 2013).
Therefore, it is clear that glacial systems are major reservoirs of microbial genomic diversity.

If I adopt a “colicentric” view of microbial genomes by crudely assuming that each bacterial or
archaeal cell’s genome is in the order of 4.6 × 106 base pairs in size, a microbial cell budget of a
High Arctic glacier surface (Irvine-Fynn et al., 2012) reveals an aeolian import of 1.9 × 1014 bp
m2 h−1 coupled with a glaciofluvial export of 4.4 × 1013 bp m2 h−1 which leads to a net stor-
age of 3.5 × 1014 bp m2 h−1 under typical summer conditions. Yet I am only aware of published
high-throughput DNA sequencing datasets from less than 30 of the 198,000 glaciers (Pfeffer et al.,
2014). Temporal changes in glacial diversity are even less well studied (excepting Hell et al., 2013;
Maccario et al., 2014; Stibal et al., 2014). Since most studies sequence marker genes, metagenomic,
and phylogenomic coverage is sparse (excepting Simon et al., 2009; Edwards et al., 2013b), and
the potential for lateral gene transfer unexplored. Therefore, while glacial systems are potentially
massive repositories of genomic diversity they represent virtually unexplored sequence space.

Here I will focus upon the role of glacial systems as reservoirs of genomic diversity in one par-
ticular form: the accumulation, storage and release of pathogens. While the notion that mysterious
entities inimical to humanity survive in ice is almost cliché in science fiction, the hypothesis that
glacial systems act as “genome recyclers” was stated a decade ago (Rogers et al., 2004; Castello
and Rogers, 2005; Priscu et al., 2007) and has garnered tacit empirical support. Nonetheless, the
role of glacial systems as reservoirs of pathogens of humans, other animals and plants is the most
“frequently asked question” in the author’s experience of engaging with stakeholders, the general
public and scientists in other fields, not to mention deskbound reviewers of risk assessments. With
the caveat that cryospheric microbial associated morbidity and mortality is hitherto confined to
anecdotal reports of snow algae-associated diarrhea (Fiore et al., 1997) and that there are many
pressing priorities in the realm of emerging infectious diseases, it appears that changes in the

Abbreviations: AIV, Avian Influenza Virus; T-RFLP, Terminal Restriction Fragment Length Polymorphism; VLP, Virus Like
Particle.
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terrestrial cryosphere potentiate a range of fungal, bacterial and
viral threats to human, plant and animal health.

Fungal Threats

The ecology of fungi in glacial systems is poorly explored,
although yeast are readily isolated from a variety of habitats
(Turchetti et al., 2008). Beyond this, most phylotypes revealed
by T-RFLP of cryoconite on Svalbard glaciers were not cultured
from the same samples, implying that glacier surfaces harbor
a poorly-documented and as yet uncultured fungal community
(Edwards et al., 2013a).

Three potential threats are evaluated from glacier fungi. The
first of these is the predominance of Cryptococcus basidiomycete
yeasts in culture surveys of glacial ice (Turchetti et al., 2015). As
a genus, Cryptococcus is split between opportunistic pathogens of
immunocompromised humans and environmental yeasts (Chen
et al., 2014; Turchetti et al., 2015). However, while the niche rep-
resented by immunocompromised humans is expanding (Groll
and Walsh, 2001), adaptation from cold to warm environments
may present a significant barrier for basidiomycete yeast (Van
Uden, 1984), precluding threats from cryospheric Cryptococcus.
A second category of threat is represented by polyextremotoler-
ant fungi, principally black yeast. Gostincar et al. (2011) argue
that the extraordinary phenotypic plasticity of these organisms,
which permits their survival in natural extreme environments
including glaciers (Zalar et al., 2008) also permit them to sur-
vive in human-associated extreme environments such as the built
environment and the human host itself. Both environments are
“extreme” in terms of their nutrient limitation, pH, osmotic and
oxidative stresses, so adaptation to natural extremes could facili-
tate spill-over to human-associated habitats. Hitherto, there have
been case reports of opportunistic infections from Aureobasid-
ium pullulans (Salkin et al., 1986; Bolignano and Criseo, 2003)
which lend credence to this theory.

“Green and red” fungal pathogens represent a final cate-
gory affecting plant and animal health respectively and hence
food security and biodiversity (Fisher et al., 2012). Plant asso-
ciated fungi have been recovered from glaciers. In particular,
an aeroaquatic-endophytic life cycle for Helotiales and Pleospo-
rales sp. where ascomycete fungi inoculated onto glacier sur-
faces in aeolian plant debris colonize cryoconite and produce
aeroaquatic spores well-suited to fluvial dispersal to pursue an
endophytic lifestyle in forefield vegetation (Edwards et al., 2013a)
illustrate the concept of glaciers as “genome recyclers.” Recov-
ery of endophytes from Svalbard cryoconite most closely related
to fungal clones from the grass clothing of the Neolithic iceman
“Ötzi” (Genbank X88771) further evidence the storage of plant-
associated fungi in glacial environments. Furthermore, the same
study revealed isolates of Ascochyta rabiei (EU167600), which
causes foliar leaf diseases of agricultural crops and Theleobolus
sp. (JQ692167), previously associated with Antarctic skua mor-
tality (Leotta et al., 2002). Clearly, while adaptations to cold
environments may preclude many glacier fungi from affecting
mammalian hosts, impacts on plant and animal health must be
considered, especially as these would affect ecosystem and food
security.

Bacterial Threats

Even in extremis, glacial ice is a bacterial habitat (e.g., Abyzov
et al., 1998). The potential for pathogenic bacteria to be trans-
mitted via the fecal-oral route in glacial environments exists.
An early report (Dancer et al., 1997) revealed a range of cultur-
able coliforms in a variety of samples from the Canadian Arc-
tic archipelago which included glacial ice up to 2000 years old.
Approximately a third of the coliform isolates from glacial ice
resisted ampicillin. More recently, the potential for pathogens
from feces deposited by recreational climbers in the Denali
National park to survive englacial transit has been examined
(Goodwin et al., 2012). Culture revealed a range of thermotol-
erant coliforms, Escherichia coli and fecal streptococci in meltwa-
ters collected over several seasons. Furthermore, numerical flow
modeling of the transfer of the two metric tons of feces from
camps high on Kahiltna glacier suggested that feces could be
advected to the surface of the glacier at lower elevations within a
century. While the risk demographic for fecal-oral transmission
is curtailed to visitors drinking untreated water, this population
is expanding rapidly as the popularity of guided ascents and “last
chance” polar tourism increases (Lemelin et al., 2010; Goodwin
et al., 2012).

A further dimension of threat to human health from bac-
teria in glacial systems is presented by the abundance of
antibiotic resistance determinants in samples of glacial ice and
snow from a global range of glacial systems. Resistance genes
for clinically—and agriculturally—important antibiotics such as
chloramphenicol, beta-lactams, streptomycin and tetracycline
have been quantified by workers using real-time PCR (Ushida
et al., 2010; Segawa et al., 2013). Furthermore, evolutionarily
divergent but functional beta-lactamases have been cloned from
geographically remote Alaskan soils by functional metagenomics
(Allen et al., 2009). It has been presumed that migratory birds and
airborne bacteria are responsible for distributing these genes into
these presumably “pristine” environments (Segawa et al., 2013).
The limited distribution of antibiotic resistance genes in Antarc-
tic ice (Segawa et al., 2013) indicates that the removal of human
waste, as mandated within Annex III of the Antarctic Treaty envi-
ronmental protocol may be an important biosecurity measure in
this regard (Hughes and Nobbs, 2004).

While antibiotic resistance genes are currently multifariously
prevalent in habitats proximal to human populations, the poten-
tial for glacial systems to act as a reservoir of antibiotic resistance
genes in a future where antibiotic usage has been curtailed as a
precaution is analogous to the contemporary role of glacial sys-
tems in storing and releasing legacy pollutants such as persistent
organic pollutants and radionuclides (Tieber et al., 2009; Hodson,
2014).

Viral Threats

Viruses in glacial systems are abundant and viral-induced bac-
terial mortality is a potent top-down control on productivity
in glacial systems (Anesio and Bellas, 2011). Viruses and their
genetic material present distinct threats. The potential for viruses
of eukaryotes to persist in the terrestrial cryosphere is the subject
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of high profile investigations. Researchers attempted, with vary-
ing success and extent of biosecurity protocol, to recover mate-
rial from 1918 pandemic influenza victims entombed within
frozen ground. The most successful attempt attempt examined
the remains of inhabitants of Brevig mission in Alaska. Initial
attempts to cultivate virus in the 1950s failed, perhaps fortunately,
given photographs of researchers mouth-pipetting samples to
inoculate eggs (Kolata, 2001). The later recovery of viral RNA
lpermitted the generation of H1N1 influenza chimeras express-
ing neuraminidase derived from Brevig samples (Qi et al., 2009).
The recovery of viable avian influenza virus (AIV) from Siberian
lake ice contaminated by migratory birds (Zhang et al., 2006) and
the presence of divergent AIVs within Antarctic penguin popula-
tions (Hurt et al., 2014) underscore the potential for cryospheric
reservoirs of influenza viruses.

Recent reports of viable giant amoebal-infecting viruses from
Siberian permafrost dated to 30,000 years before present raise
the prospect that viruses may survive for extended periods in
cryospheric environments (Legendre et al., 2014). Nevertheless,
it is therefore highly unlikely that viruses persisting in mineral-
rich matrices such as permafrost soils would represent a viable
source of infection. Moreover, poxviral DNA recovered from
mummified remains in Siberian permafrost is fragmented to
sizes <2 kbp within 300 years (Biagini et al., 2012) and short
amplicons from tobacco mosaic tobomovirus RNA in 35,000
year old Greenland ice (Castello et al., 1999) cast further doubt
on the prospect of intact, infectious viral particles persisting in
cryospheric environments for prolonged periods of time.

Viral genomic material preserved in cryospheric environ-
ments presents a threat by other means. At an estimated >1031

bp which requires advanced metaviromic tools to access, the sum
of viral genomes, or the global virosphere, represents the most
diverse and technically challenging sequence space on Earth (e.g.,
Suttle, 2005). A predictive understanding of viral genome func-
tion and tropism is therefore difficult to attain from sequences.
It is against this background that two viral genomes were recov-
ered from 700 year caribou feces preserved in ice patches in
the Canadian Arctic recently (Ng et al., 2014). While one RNA
virus genome presumed to infect arthropods was partially recov-
ered, reverse genetics approaches permitted the reconstitution of

a small DNA viral genome to infect plants under laboratory con-
ditions, although it is thought the virus may have infected fungi,
not plants, in nature. Plant viruses can affect food security, and
dozens of the 100 of known arboviruses infect humans (Bichaud
et al., 2014).

Given the considerable uncertainties surrounding the tropism
of viruses from divergent lineages such experiments are auda-
cious. Moreover, no specific biosafety protocols or ethical over-
sight were reported than the use of locked growth cabinets
to house infected plants (Ng et al., 2014). At a time when
ethics of “gain of function” experiments conducted in strict
biosafety conditions for well-known agents such as AIV are hotly
debated (Casadevall and Imperiale, 2014) reconstituting enig-
matic viruses from ancient samples must be subject to rigorous
risk assessment and scrutiny. While the survival of virus parti-
cles on centennial timescales in the cryosphere itself is uncertain,
as the toolbox of metavirome and synthetic biology researchers
grows, laboratory resurrection of enigmatic viruses itself presents
a novel microbial threat from the cryosphere.

In summary, the recognition that microbial and viral life
forms are abundant in the cryosphere has transformed our
appreciation of what were thought to be “germless continents.”
However, our understanding of cryospheric genomic diversity
is cursory. This brief survey identifies a range of potential
microbial threats from the cryosphere which require further eval-
uation as ice melt liberates considerable numbers of microbes.
Most urgently I contend that we must ensure that experiments
which resurrect enigmatic viruses from the cryosphere are sub-
ject to proper and transparent biosafety, biosecurity and ethical
governance.
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