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Our aim is to provide an observational reference for the evaluation of the surface and

boundary layer parameterizations used in large-scale models using the remarkable

long-term Canadian Prairie hourly dataset. First we use shortwave and longwave

data from the Baseline Surface Radiation Network (BSRN) station at Bratt’s Lake,

Saskatchewan, and clear sky radiative fluxes from ERA-Interim, to show the coupling

between the diurnal cycle of temperature and relative humidity and effective cloud

albedo and net longwave flux. Then we calibrate the nearby opaque cloud observations

at Regina, Saskatchewan in terms of the BSRN radiation fluxes. We find that in

the warm season, we can determine effective cloud albedo to ±0.08 from daytime

opaque cloud, and net long-wave radiation to ±8W/m2 from daily mean opaque

cloud and relative humidity. This enables us to extend our analysis to the 55 years of

hourly observations of opaque cloud cover, temperature, relative humidity, and daily

precipitation from 11 climate stations across the Canadian Prairies. We show the

land-surface-atmosphere coupling on daily timescales in summer by stratifying the Prairie

data by opaque cloud, relative humidity, surface wind, day-night cloud asymmetry and

monthly weighted precipitation anomalies. The multiple linear regression fits relating key

diurnal climate variables, the diurnal temperature range, afternoon relative humidity and

lifting condensation level, to daily mean net longwave flux, windspeed and precipitation

anomalies have R2-values between 0.61 and 0.69. These fits will be a useful guide for

evaluating the fully coupled system in models.

Keywords: land-atmosphere coupling, diurnal climate, Canadian Prairies, cloud radiative forcing,

hydrometeorology

Introduction

Analysis of the long-term Canadian Prairie data set is transforming our understanding of land-
atmosphere coupling and more broadly hydrometeorology (Betts et al., 2014a). From the early
1950s to the present, these data contain a remarkable set of hourly observations of opaque or reflec-
tive cloud cover in tenths, made by trained observers who have followed the same protocol for
60 years (MANOBS, 2013). Betts et al. (2013) calibrated these opaque cloud observations against
multiyear shortwave and longwave radiation data to quantify the impact of clouds. This gives the
so-called shortwave and longwave cloud forcing (SWCF, LWCF), as well as net radiation, Rn. Many
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climate studies have been limited to temperature and precipita-
tion for which long-term records are generally available. Simi-
larly, model climate change analyses typically focus on temper-
ature and precipitation, and it is thought that uncertainties in
cloud processes explain much of the spread in modeled climate
sensitivity (Flato et al., 2013). In contrast, the Canadian Prairie
data have 60 years of hourly records for the fully coupled sys-
tem of temperature, relative humidity (RH), precipitation, and
radiation derived from cloud observations. The diurnal cycle is
tightly coupled to clouds and radiation (Betts et al., 2013), but on
monthly timescales, temperature and RH are jointly coupled to
precipitation, cloud cover and radiation (Betts et al., 2014a). They
found that up to 60–80% of the monthly variance in the diur-
nal temperature range, afternoon RH and lifting condensation
level could be explained in terms of monthly anomalies of opaque
cloud and precipitation. From this it is clear that four variables,
temperature, RH, radiation and precipitation are all essential for
understanding hydrometeorology and hydroclimatology.

The role of clouds and radiative forcing has been missing in
much of the literature on land-atmosphere coupling, where the
focus has been largely on surface variables, such as soil mois-
ture and albedo (Koster and Suarez, 2001; Koster et al., 2004;
Dirmeyer, 2006; Ferguson andWood, 2011; Ferguson et al., 2012;
Koster and Manahama, 2012; Santanello et al., 2013) following
earlier work by Betts and Ball (1995, 1998), Beljaars et al. (1996)
and Eltahir (1998). The framework for describing atmospheric
controls on soil moisture–boundary layer interactions (Findell
and Eltahir, 2003) used two lower-atmosphere metrics: the con-
vective triggering potential and low-level humidity, but not the
clouds that are part of the tightly coupled boundary layer sys-
tem. Modeling studies of course highlight the critical role of the
cloud and radiation fields on land-surface processes (e.g., Betts,
2004; Betts and Viterbo, 2005; Betts, 2007), but the wide variation
between models (Dirmeyer et al., 2006; Guo et al., 2006; Koster
et al., 2006; Taylor et al., 2013) may reflect in part model errors in
the cloud fields. However, while there has been ongoing work to
benchmark uncoupled land surface models (Abramowitz, 2012),
there are still a lack of appropriatemetrics for benchmarking cou-
pled land-atmosphere models. Using the 600 station-years of data
from the Canadian Prairies, we can finally begin to develop cou-
pled benchmarking metrics and relationships necessary to test
model behavior against observations.

Betts et al. (2013) showed that there is marked difference
between a warm season state with an unstable daytime convective
boundary layer (BL), controlled by the SWCF, and a cold season
state with surface snow with a stable BL, controlled by the LWCF.
Betts et al. (2014b) looked at the rapid transitions that occur with
snow cover between the warm season convective BL and the cold
season stable BL. This paper will revisit with much greater preci-
sion the calibration of the opaque cloud data, for the warm and
cold seasons, using 17 years of data from the baseline surface radi-
ation network (BSRN) site at Bratt’s Lake in Saskatchewan, and
co-located grid-point data from the European Center reanalysis
known as ERA-Interim. Then we shall examine in more detail
the physical processes influencing land-atmosphere coupling and
the daily climate in the warm season. The daily timescale analysis
framework that we use here was proposed by Betts (2004), and

applied in several studies using model data from reanalysis (Betts
and Viterbo, 2005; Betts, 2006, 2009) and to compare reanaly-
sis and observations over the boreal forest (Betts et al., 2006).
It has proved useful for other recent studies of land-atmosphere
coupling (Ferguson et al., 2012; Dirmeyer et al., 2014).

Our intent is to provide an observational reference for the
evaluation of both simplified models, and the large-scale mod-
els we depend upon for weather forecasting and climate simu-
lation, where most land-surface-BL and cloud processes have to
be parameterized. From an analysis perspective, the key addition
is having a quantitative estimate of the surface radiation as well
as the traditional surface climate variables. In Section Data and
Analysis Methods we outline our analysis framework. In Sec-
tion Analysis of the BSRN Data, we first analyze the BSRN and
ERA-Interim data to look at the annual cycle of the SWCF and
LWCF. We show the warm season coupling between SW and
LW radiation and the diurnal ranges of temperature and RH at
the BSRN site. Then we calibrate the opaque cloud data at Regina
in Saskatchewan against the nearby BSRN data for the cold and
warm seasons. In Section Dependence of Daily Climate in Sum-
mer on Opaque Cloud and other Variables, we merge the 11
Prairie stations to give us about 600 station-years of data, and
map how different physical processes affect daily land-surface cli-
mate in summer, June, July and August (JJA). Specifically, after
stratifying by opaque cloud, we will identify the daily climate sig-
nature of wind, relative humidity, the day-night asymmetry of
the cloud field, and monthly weighted precipitation anomalies.
In Section Dependence of Summer Climate on ECA and LWn

we remap the diurnal climate signatures in terms of surface net
longwave and effective cloud albedo, and Section Summary and
Conclusions summarizes our conclusions.

Data and Analysis Methods

Climate Variables and Data Processing
We analyzed data from the 11 climate stations listed in Table 1:
the stations are all at airports across the Canadian Prairies. They
have hourly data, starting in 1953 for all stations, except Regina
and Moose Jaw which start in 1954. The last year with complete
precipitation data (that was available in 2012 when these data
were processed) is listed after the station name.

The hourly climate variables include surface pressure (p), dry
bulb temperature (T), relative humidity (RH), windspeed and
direction, total opaque cloud amount and total cloud amount.
The time-base is Local Standard Time (LST). Trained observers
have followed the same cloud observation protocol for 60 years
(MANOBS, 2013). Opaque (or reflective) cloud is defined (in
tenths) as cloud that obscures the sun, or the moon and stars at
night. The long-term consistency of these hourly opaque cloud
fraction observations makes them useful for climate studies. Betts
et al. (2013) used four stations, Lethbridge, Swift Current, Win-
nipeg and The Pas (in the boreal forest), with downward short-
wave radiation SWdn to calibrate the daily mean total opaque
cloud fraction, OPAQm, in terms of daily SWCF. They also used
downward longwave radiation LWdn from Saskatoon and Prince
Albert National Park for the calibration of OPAQm to net long-
wave (LWn) on daily timescales. Here we extend these analyses
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TABLE 1 | Climate stations: location and elevation.

Station name Station # Station ID Province Latitude Longitude Elevation (m)

Calgary (2010) 1 3031093 Alberta 51.11 −114.02 1084

Estevan (2010) 2 4012400 Saskatchewan 49.22 −102.97 581

Lethbridge (2005) 4 3033880 Alberta 49.63 −112.80 929

Medicine Hat (2005) 5 3034480 Alberta 50.02 −110.72 717

Moose Jaw (2010) 6 4015320 Saskatchewan 50.33 −105.55 577

Prince Albert (2010) 7 4056240 Saskatchewan 53.22 −105.67 428

Red Deer (2010) 9 3025480 Alberta 52.18 −113.62 905

Regina (2008) 10 4016560 Saskatchewan 50.43 −104.67 578

Saskatoon (2009) 11 4057120 Saskatchewan 52.17 −106.72 504

Swift Current (1994) 12 4028040 Saskatchewan 50.3 −107.68 817

Winnipeg (2007) 14 5023222 Manitoba 49.82 −97.23 239

using the BSRN data, which is 25 km from the Regina climate
station.

We generated a file of daily means for all variables, such as
mean temperature and humidity, Tm and RHm, and extracted
and appended to each daily record the corresponding hourly data
at the times of maximum and minimum temperature (Tx and
Tn). We merged a file of daily total precipitation (and daily snow
depth, not used here). Since occasional hourly data were missing,
we kept a count of the number of measurement hours, MeasHr,
of valid data in the daily mean. In our results here we have fil-
tered out all days for which MeasHr <20. However, with almost
no missing hours of data in the first four decades, there are very
few missing analysis days, except for Swift Current, where night-
time data is missing from June 1980 toMay 1986, andMoose Jaw,
where night-time measurements ceased after 1997.

From the hourly data we compute the diurnal temperature
range between maximum temperature, Tx, and minimum tem-
perature, Tn, as:

DTR = Tx − Tn (1)

We also define the difference of relative humidity, RH, between
Tn and Tx, as:

1RH = RHx − RHn ≈ RHtn − RHtx (2)

Where RHx, RHn are the maximum and minimum RH. This
approximation is excellent in the warm season, when surface
heating couples with a convective BL. Then typically RH reaches
a maximum near sunrise at Tn and a minimum at the time of the
afternoon Tx (Betts et al., 2013). We also derived from p, Tx and
RHtx, the lifting condensation level (LCL), the pressure height to
the LCL, PLCLtx, mixing ratio (Qtx) and equivalent potential tem-
perature, θEtx, all at the time of the maximum temperature. Simi-
larly we derived Qtn, θEtn, and PLCLtn at the time of the minimum
temperature, Tn.

This Prairie data set is large and includes the synoptic variabil-
ity for nearly 600 station-years. For summer (JJA) there are about
54,000 days with good data. We will bin the data and generate
means for many sub-stratifications, to isolate the climatological
coupling between different variables in this fully coupled system.

As an estimate of the uncertainty in a mean value, derived from
N daily values, we will show the standard error (SE) of the mean,
calculated from the standard deviation (SD) as SE = SD/

√
N. As

a result, larger SE values generally indicate a smaller data sample
N. For the larger dataset we will not show a mean value unless
N > 200, and for the much smaller BSRN dataset, we reduced
this threshold to N = 40. Many plots with a 2-way stratifica-
tion (e.g., showing the dependence of DTR on opaque cloud and
windspeed) may have >500 days in each bin, so the SE of each
point is small. We will also use multiple linear regression of the
daily data to assess the scatter in quasi-linear relationships.

BSRN data
Canada’s BSRN station was a Prairie site at Bratt’s Lake,
Saskatchewan at 50.204◦N, 104.713◦W at an elevation of 588 m.
We will use it to calibrate the opaque clouds observed at Regina,
about 25 km to the north in terms of SWCF and net longwave flux
(LWn). We processed the raw 1-min mean BSRN data to hourly
means (with standard deviation, max and min) for the 17-year
period of 1995–2011. We filtered the long-wave down (LWdn)
data, removing from the hourly average extreme values greater
than 3 standard deviations of the 1-min data for each month.
The data quality is high for the first 14 years, and this LW fil-
tering removed less than 0.5% of the 1-min data values. During
July–October, 2009 and June–August, 2010, the long-wave data
appears to have a bias of unknown origin and these data were
not used. For shortwave down (SWdn), we removed hourly val-
ues at night < ±1W/m2. The dataset includes temperature and
pressure for all years, and relative humidity for 2000–2011.

We have no measurements of the upward components (SWup

and LWup). Defining a surface albedo, αs, gives the net shortwave:

SWn = SWdn − SWup = (1− αs) SWdn (3)

The mean surface albedo for Saskatchewan ranges from about
0.16 in summer to 0.73 in winter (Betts et al., 2014a,b). We calcu-
lated an estimate of LWup from the daily mean air temperature,
Tm (◦C), using Tk (K)= Tm + 273.15, from:

LWup = ε σT4
k (4)
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with σ = 5.67 × 10−8 (W m−2 K−4) and the emissivity ε set to
1. Based on previous analyses of radiation data over the far more
heterogeneous boreal forest (Betts et al., 2006), we estimate the
uncertainty of LWup is < ±5W/m2. This gives net long-wave as:

LWn = LWdn − LWup (5)

One objective of this paper is to assess the impact of clouds on
the surface radiative balance using long-term observations. In the
shortwave budget, we can define an effective cloud transmission
(ECT), an effective cloud albedo (ECA) and the shortwave cloud
forcing (SWCF) in terms of a downwelling clear-sky flux, SWCdn:

ECT = SWdn/SWCdn (6)

ECA = 1− SWdn/SWCdn (7)

SWCF = SWdn − SWCdn (8)

The dimensionless ECA and ECT, scaled by SWCdn to give a
range from 0 to 1, are very useful measures of the impact of the
cloud field on the surface shortwave radiation budget (Betts and
Viterbo, 2005; Betts, 2009). Using the clear-sky fluxes from near-
est grid-point of ERA-Interim as a guide, we will fit an annual
curve to SWCdn. Rearranging (7) and combining with (3) gives
SWn in terms of two albedos:

SWn = (1− αs)(1− ECA)SWCdn (9)

Similarly we can define a longwave cloud forcing (LWCF) in
terms of a down-welling clear-sky flux LWCdn as:

LWCF = LWdn − LWCdn (10)

We will take LWCdn from the nearest ERA-Interim grid-point.
The total cloud forcing (CF) of the downwelling radiative fluxes
is the sum:

CF = SWCF+ LWCF (11a)

When there is reflective snow, the surface albedo greatly reduces
SWn, which reduces the impact of clouds on the surface radia-
tion budget (SRB). So it is convenient to also define the net cloud
forcing as:

CFn = (1− αs) SWCF+ LWCF (11b)

We will return to these radiative budget components in
our analysis of the BSRN data in Section Analysis of the
BSRN Data.

ERA-Interim Data
We used the data for the closest 80 km grid-box to Bratt’s Lake,
with center at 50.1753◦N, 105◦W, from ERA-Interim (abbrevi-
ated to ERI in Figures). We used 12 h forecasts from analyses at
00 and 12 UTC for each day. These data have a 3-hrly time step,
and we integrated to a daily mean in terms of local time, which is
UTC-6. The available fields include the clear-sky and all-sky radi-
ation fluxes, surface sensible and latent heat fluxes and surface

stresses, 2-m Tm, Tx, Tn and specific humidity, surface pressure,
soil temperature and soil water, as well as the model estimates of
low, medium, high and total cloud cover. In this paper we will use
only the clear-sky surface radiation.

Distinction between Warm and Cold Seasons
On the Prairies, the freezing point of water gives two sharply con-
trasting near-surface climate regimes (Betts et al., 2013, 2014b).
Figure 1 shows the diurnal cycle of T and RH for Regina, strati-
fied by Tm < > 0◦C and by daily mean opaque cloud, OPAQm,
on a scale of 0–1. The time axis is local standard time. We get
a very similar figure (not shown) if we stratify instead based on
no snow cover, or snow depth>0, or simply average the months
April to October and November to March. When Tm < 0◦C,
precipitation falls as snow giving the surface a high albedo with
low sublimation of the surface ice. Extensive snow cover acts as
a climate switch (Betts et al., 2014b), which drops temperatures
by more than 10◦C. This regime is dominated by LWCF (see
Figure 3 later). Temperatures drop under clear skies to give a
strong shallow stable BL at sunrise, while the daily variation of
RH is small, not far below saturation over ice (Betts et al., 2014b).
We will find that in this regime LWn depends on near-surface
temperature as well as cloud.

In contrast, in the warm season with Tm > 0◦C, there is no
snow, plants grow and transpire, increasing atmospheric water
vapor. This regime is dominated by SWCF (see Figure 3 later).
Minimum temperature varies little, but Tx increases and RHm

falls under clear skies (Betts et al., 2013), as the daytime solar
heating drives the development of a deep unstable convective BL.
We will find that in this regime LWn depends on RHm as well as
cloud.

This difference between warm and cold seasons is a funda-
mental characteristic of the Prairie climate.

In Section Analysis of the BSRN Data, we will partition the
BSRN data into these cold and warm seasons, and show the warm
season coupling of the diurnal ranges of T and RH to ECA and
LWn. We will calibrate opaque cloud cover Regina with the LW
and SW data at the nearby BSRN site. In Section Dependence of
Daily Climate in Summer on Opaque Cloud and other Variables,
we will expand the analysis to the full Prairie data set, focusing
on summer as representative of the warm season. The cold sea-
son needs a more careful treatment, because on a daily timescale,
advective temperature changes are typically larger than the solar
forcing of the diurnal cycle (Betts et al., 2014b; Wang and Zeng,
2014). We will address the full diurnal cycle over the annual cycle
in a later paper.

Analysis of the BSRN Data

As discussed in Section BSRNData, we have 17 years of SWdn and
LWdn at Bratt’s Lake, Saskatchewan, which we first averaged from
1-min data to hourly means, and then to daily means, which we
use here. Our analysis involves several important steps. In Sec-
tions Comparison of ERA-Interim Clear-Sky Fluxes and BSRN
on Clear Days and Mean Annual Cycle of Cloud Forcing, we
will compare the climatology of the daily BSRN data on nearly
cloud-free days with the clear sky fluxes for the same dates from
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FIGURE 1 | Diurnal cycle of T and RH as a function of opaque cloud, when Tm < 0◦C (left) and (right) Tm > 0◦C.

ERA-Interim (ERI), which are calculated using atmospheric tem-
perature and humidity and climatological aerosols. Then we will
represent SWCdn by a functional fit for the annual cycle, and this
will be used to compute ECA and SWCF from the BSRN data.We
will compute LWCF using the ERI clear sky fluxes and the BSRN
data. In Section Coupling between ECA, LWn, DTR, and 1RH
on Daily Timescales for April to October we will show the cou-
pling between ECA, LWn, DTR, and1RH on daily timescales for
the warm season. Finally we will calibrate the opaque cloud data
at Regina against the near-by BSRN data for the warm and cold
seasons, so we can later convert the opaque cloud data across the
Prairies to both ECA and LWn on daily timescales.

Comparison of ERA-interim Clear-sky Fluxes and
BSRN on Clear Days
The ERI archive contains surface SWdn, SWn and the surface net
clear sky flux SWCn, but not SWCdn so we retrieved SWCdn by
first calculating αs from Equation (3). However, in winter with
surface snow, this method fails if ERI (1-αs) becomes very small.
The surface SWCdn has a large dependence (range 60–370W/m2)
on solar zenith angle and a small dependence (±5W/m2) on the

variable atmospheric absorption by gasses and aerosols, which are
included in the ERI clear-sky computation, but are not available
across the Prairies for our long-term datasets. So we looked for
simplified fits to the annual profile, which neglect the variable
atmospheric absorption by adjusting the empirical functions used
in Betts et al. (2013). Defining DOY for Day of Year, we first fitted
the ERI clear-sky shortwave data with the empirical function:

SWCdn(ERIfit) = 55+ 300 SIN(πDS/365)1.92 (12)

where DS = DOY + 14 for DOY < 351, and DOY - 351
for DOY >350 (adjusted for leap years). This fit has a mean
annual bias of −0.2 ± 5.2W/m2, with mean monthly biases that
are ≤±3W/m2.

Figure 2 (left panel) compares BSRN SWdn for nearly clear
days with ECT > 0.95 (red dots), and the ERI clear-sky SWCdn

flux (blue dots) for the same days. For these nearly clear days, the
BSRNmeasurements are systematically higher than ERI clear sky
fluxes by 9.5 ± 4.8W/m2, despite small amounts of cloud, sug-
gesting that the reanalysis has greater absorption, either from the
radiation calculation, or from less absorption by aerosols than the
climatological aerosols assumed in ERI. So we shifted Equation
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FIGURE 2 | Clear sky (ECT>0.95) BSRN SWdn, ERA-Interim SWCdn and clear-sky fit used with BSRN data (left) and (right) BSRN LWdn, ERA-Interim

LWCdn and the difference, the LWCF.

(12) upward to define an approximate upper bound to the BSRN
data:

SWCdn (BSRNfit) = 65+ 310 (SIN(πDS/365))1.92 (13)

This fit, indicated by the black dots in Figure 2, is used with the
BSRN SWdn flux to calculate ECT, ECA and SWCF. The uncer-
tainty in this fit is of the order of±5W/m2, because it neglects the
variability of atmospheric clear-sky absorption, and by aerosols.
This is, however, smaller than the estimated bias of the ERI
clear-sky fluxes. The data gaps in winter in Figure 2 result from
the failure of our method of calculating SWCdn on days when
SWdn is small with ERI αs ≈ 1. As a result, the relative uncer-
tainty in SWCdn is larger in winter with snow than in the warm
season.

For the same subset of the data, representing nearly clear skies
in the daytime (ECT > 0.95), the right panel shows the mea-
sured LWdn, the ERI clear sky flux, LWCdn, and the LWCF from
Equation (10). The annual mean LWCF for these nearly clear-sky
conditions is 2.8± 10.5W/m2: much smaller than the±25W/m2

variability of LWCdn on monthly timescales, so we will use ERI
as an estimate of the clear-sky flux, LWCdn.

Mean Annual Cycle of Cloud Forcing
Figure 3 shows the mean annual cycle of SWCF, LWCF, CF, and
CFn, binned in 0.1 ranges of ECA. There is a single bin for all
the data for which ECA > 0.7, and the standard error of the bin
means is shown. The top left panel just shows the variation of
SWCF with ECA, which follows directly from the definitions (7)
and (8). This shows that that the reduction of the surface SW flux
by clouds is naturally largest in summer, when SWCdn is largest.
The sharp drop in reflective cloud cover between June and July
(Betts et al., 2014a) gives the jump in the monthly mean for all
data (heavy black curve).

The top right panel shows that the LWCF increases with ECA.
The impact of clouds on the LWCF is larger in winter than in
summer, when the moister atmosphere is itself more opaque to

LW radiation. The very small negative values in summer for
ECA = 0.05 may reflect a small positive bias in LWCdn from
ERA-Interim.

The bottom left panel is the sum of the upper two, which
shows that the total cloud forcing of the down-welling flux is
near zero from November to January, when SWCdn is smallest.
The bottom right panel is CFn, the cloud forcing of the net sur-
face radiative flux, defined by (11b). For consistency with our
1995–2011 analysis period, we used monthly mean values of sur-
face albedo from ERA-Interim, although the annual range from
0.19 in summer to 0.61 in winter is slightly less than the range of
0.16–0.73, shown in Betts et al. (2014b) for Saskatchewan for the
2000–2001 winter. The impact of reflective snow cover in reduc-
ing the net SW fluxes means that CFn becomes positive from
November to February (Betts et al., 2013). This reversal of the
sign of CFn leads to the two distinct climate states on the Cana-
dian Prairies for the warm and cold seasons (see Figure 1 and
Betts et al., 2014b).

Coupling between ECA, LWn, DTR, and 1RH on
daily Timescales for April to October
Following Betts et al. (2013), we will merge the warm season
months, April to October with Tm > 0 and no snow cover, and
show the climatology of the coupling between the SW and LW
radiation field and the diurnal cycle of temperature and humid-
ity. The Bratt’s Lake site has temperature data for the full 17-year
period, but RH data only for the last 12 years, 2000–2011. For
this data set, we extracted Tn, Tx, RHx, and RHn. From SWdn

and LWdn, we calculated ECA using Equations (7) and (13), and
LWn using (5).

The diurnal climatology is coupled to both daytime and night-
time processes. The daytime rise of temperature from Tn to Tx,
and the corresponding fall of humidity from RHx to RHn, is
driven by SW heating, as well as the surface energy partition and
the growth of the unstable BL. The night-time return back to
Tn and RHx is driven by LW cooling and the structure of the
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FIGURE 3 | Mean annual cycle of SWCF, LWCF, CF, and CFn, stratified by ECA.

stable BL (Betts, 2006). So in the daily climatology, DTR is cou-
pled to both SW and LWprocesses, which are themselves coupled
through the cloud field, as well as details of the BL depth and
structure. The data shows the observed diurnal climatology of
the coupled land-BL-cloud system. In contrast, models construct
their own differing diurnal climatologies from a suite of process
models and parameterizations for the surface, BL and cloud com-
ponents, so this observed diurnal coupling is of value for model
evaluation.

Figure 4 shows a fundamental set of relationships for the cou-
pling between ECA, LWn, DTR and 1RH on daily timescales.
The data has been averaged (with standard error bars) in bins of
the x-axis. The upper left pair of panels shows the mean depen-
dence of LWn and DTR on ECA, as well as the subdivision
into three RHm ranges with roughly the same number of days:
RHm <60, 60–75, >75%.

The lower left pair of panels are the corresponding plots with
the subdivision into three Tm ranges: 0–8, 8–16, and 16–24◦C.
The plots, averaging all the data, show a quasi-linear dependence
of LWn and DTR on ECA. The RH partition shows that a more
humid atmosphere reduces both DTR and outgoing LWn, consis-
tent with reanalysis data (Betts et al., 2006). The temperature par-
tition shows a fall of LWn and DTR at cold mean temperatures,

characteristic of April and October, with much less variability at
warmer temperatures.

Multiple linear regression of daily LWn on ECA, RHm, and
Tm gives (R2 = 0.88).

LWn =−127.7(±9.3)+ 75.0(±1.1) ECA+ 0.60(±0.02) RHm

− 0.26(±0.03) Tm (14)

The right panels show the mean dependence of DTR and 1RH,
with the corresponding maximum andminimum values, on ECA
(top-right) and LWn (bottom-right). They appear very similar,
because LWn and ECA are themselves linearly related (left pan-
els). There is a wide seasonal range of Tx and Tn for the 7 months,
but the seasonal ranges of DTR, RHx, RHn, and 1RH are small
(Betts et al., 2013). The standard error of the bin means for DTR
and 1RH plotted against LWn are slightly smaller than plotted
against ECA. There are 3400 days with temperature data and 2400
days with RH data, so there are generally more than a 100 days in
each “All Data” bin. Values are omitted from the graphs if there
are <40 days in a temperature or RH subdivision.

We conclude that the DTR increases quasi-linearly with the
SW transmission represented by ECT = 1 − ECA, and with
increasing outgoing LWn, while 1RH has a similar non-linear
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FIGURE 4 | Coupling between ECA, LWn, DTR, and 1RH on daily timescales for April to October, for the BSRN station at Bratt’s Lake, Saskatchewan.

increase. The simple linear regression of DTR on ECA and LWn

gives:

DTR = 17.7(±3.6)− 14.8(±0.3)ECA(R2 = 0.48) (15a)

DTR = 3.2(±3.1)− 0.146(±0.003)LWn(R
2 = 0.60) (15b)

We will revisit these DTR regressions later in Section Depen-
dence of Summer Climate on ECA and LWn with themuch larger
dataset for the Prairies.

The multiple regression fit including the RHm dependence
(Figure 4, top center panel), increases the explained variance
substantially:

DTR = 16.1(±3.2)− 9.0(±0.4) ECA

−0.144(±0.06)δRHm(R
2 = 0.60) (15c)

where δRHm is the RH anomaly from the mean of 64.6%.

Calibrating Opaque Cloud Data at Regina to
SWCF, ECA, and LWn

The Canadian Prairie data is invaluable because of the man-
ual observations of opaque or reflective cloud cover by trained
observers over many decades. Here we map the opaque cloud
impact on the surface LW and SW radiation using the BSRN
data. Since these observations are hourly (with very little miss-
ing data), the daily mean, OPAQm, is well sampled. Betts et al.
(2013) showed a one-to-one correlation between the independent

daily mean opaque cloud observations at Regina and Moose Jaw,
64 km apart, which suggests that they are spatially representative
for this scale. They also used measured SWdn and LWdn to cal-
ibrate OPAQm in terms of ECA and LWn. Here we extend their
analysis using the well-calibrated BSRN SWdn and LWdn obser-
vations. We will calibrate daily mean OPAQm against daily mean
LWn, as in Betts et al. (2013). However, the daily mean SWCF
and ECA from (8) and (7) depend only on daytime SW reflection
and absorption, so we defined a daily SW weighted OPAQSW
as a weighted sum of hourly OPAQ values during daylight
hours.

OPAQSW = SUM(SWCwt∗OPAQ) (16)

Using a simple weighting function SWCwt = A ∗ COS(π
HNoon/W)4 fitted to the ERI clear-sky flux data (not shown).
HNoon is hours from local solar noon, and A, W are the ampli-
tude and width (in hours) for the weighting function, which are
calculated only for HNoon<±H.We divided the year into three
groups of 4months to approximate the change of solar-day length
with solar zenith angle over the annual cycle. For these groupings,
NDJF, AMSO, andMJJA, the parameters (A,W,±H) are (0.1777,
15, ±7), (0.1333, 20, ±9) and (0.1111, 24, ±11). Each weight-
ing function sums to unity with hourly data. Across the Prairies,
the difference between LST, the time-base of the climate observa-
tions, and nominal solar time ranges from 0.3 to 1.2 h for different
stations in different provinces. We kept the analysis simple by
choosing solar time= LST-1 for all stations.
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The climate station at Regina airport is about 25 km north of
the BSRN station at Bratt’s Lake, so we merged the daily mean
datasets for the period 1995–2011. We found significant differ-
ences between warm and cold seasons, which were well separated
by sub-setting the data by daily mean temperature Tm < > 0◦C,
as in Figure 1.

Figure 5 (left) shows the relation between ECA derived from
the BSRN data and OPAQSW, for the warm season above freez-
ing and the cold season below freezing. ECA increases more
steeply with increasing opaque cloud in the warm season than the
cold season. This division is very similar if we split by the months
AMJJASO and NDJFM (not shown). We show the mean and
standard error of the binned data, and the quadratic regression
fits to the daily data. For the warm season, these are (R2 = 0.87).

ECA = 0.06(±0.08)+ 0.02(±0.02)OPAQSW

+ 0.65(±0.02) OPAQSW2 (17a)

For the cold season, these are (R2 = 0.71).

ECA = 0.07(±0.11)+ 0.08(±0.03) OPAQSW

+ 0.37(±0.03) OPAQSW2 (17b)

The uncertainty in ECA on a daily basis is of the order of ±0.08
in the warm season and ±0.11 in the cold season. The standard
errors shown for the climatological fits are much smaller because
they are reduced by the large number of days.

Figure 5 (middle) shows the dependence of LWn on opaque
cloud and RHm (taken from Regina because RH was not mea-
sured at Bratt’s Lake for the first 5 years) for days above freezing
(3245 days). Increasing atmospheric humidity reduces the outgo-
ing LWn flux for the same cloud cover. The temperature depen-
dence is very small when Tm > 0◦C (not shown). In contrast for
temperatures below freezing (2198 days), the humidity depen-
dence is small but the temperature dependence is large, shown
in the right panel. The outgoing LWn flux now decreases with
colder temperatures, probably because the surface cools under a
stable BL in the cold season (Betts et al., 2014b).

The quadratic fits in the two right panels are the fits to the
binned data. Multiple regression on the daily values of LWn

on quadratic opaque cloud and RHm in the warm season gives
(R2 = 0.91).

LWn =−128.6(±7.8)+ 28.1(±1.8)OPAQm

+ 44.6(±1.8)OPAQ2
m + 0.49(±0.01)RHm (18a)

Multiple regression on quadratic opaque cloud and Tm and RHm

in the cold season gives (R2 = 0.83), where the contribution from
RHm is small.

LWn =−89.2(±10.1)+ 43.5(±2.8)OPAQm + 26.8(±2.5)

OPAQ2
m + 0.29(±0.02)RHm − 1.02(±0.03)Tm (18b)

If we merge the data for the whole year, the regression fit is
(R2 = 0.89).

LWn =−112.6± (9.2)+ 34.1(±1.6)OPAQm + 35.2(±1.5)

OPAQ2
m + 0.36(±0.01)RHm − 0.66(±0.01)Tm (18c)

The incoming LW flux depends on water vapor at higher lev-
els in the atmosphere. The addition of total column water vapor
(TCWV in mm) from ERI, which is only available from 1979
on, to the multiple regression explains a little more variance,
particularly in the cold season. For T<0 (R2 = 0.86)

LWn =−117.6(±9.0)+ 39.4(±2.6)OPAQm + 30.1(±2.3)

OPAQ2
m + 0.23(±0.02)RHm − 1.24(±0.03)Tm

+ 1.38(±0.07)TCWV (18d)

For the whole year the regression is (R2 = 0.91).

LWn =−118.2(±8.3)+ 31.2(±1.5)OPAQm + 37.7(±1.4)

OPAQ2
m + 0.32(±0.0)RHm − 1.01(±0.01)Tm

+ 0.86(±0.02)TCWV (18e)

FIGURE 5 | Relation between Opaque cloud at Regina and Bratt’s Lake ECA (left), LWn and stratified by RHm in warm season (middle) and (right) LWn

stratified by Tm in cold season.
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FIGURE 6 | Regression fits based on Equation (18a) for warm season and Equation (18d) for cold season.

Figure 6 shows the LWn regression fits from Equation (18a)
for the warm season and (18d) for the cold season. The left
panel shows the dependence of LWn on OPAQm, separated into
three ranges of RHm, with the regression fits from (18a) for
the bin-means of RHm. The right two panels plot the regres-
sion fits to LWn against the BSRN LWn from Equations (18a)
and (18d). They show that OPAQm, a daily mean calculated
from the hourly observations of opaque cloud fraction by trained
observers, together with daily mean temperature, humidity and
TCWV in winter, gives daily mean LWn to about±8–9W/m2.

Figure 7 shows the raw daily data for the warm and cold sea-
son mapping between OPAQSW and BSRN ECA with the clima-
tological regression fits from Equation (17). The uncertainty in
effective cloud albedo ECA of the order of ±0.08 in the warm
season means that on a daily basis, SWn can be estimated to
about±8% fromOPAQSW and SWCdn. The uncertainty in ECA
is larger in the cold season. One reason may be the larger uncer-
tainty in SWCdn (Section Comparison of ERA-Interim Clear-Sky
Fluxes and BSRN on Clear Days), another may be that our hourly
solar-weighted sampling of the cloud field, OPAQSW, involves
fewer hours in the cold season than the warm season, and a third
may be that with more stratiform clouds of varying thickness,
rather than say warm season shallow cumulus, it is harder for
observers to estimate opaque cloud fraction.

Combining Equations (5) and (9) gives net radiation:

Rn = SWn + LWn = (1− αs)(1− ECA)SWCdn + LWn (19)

Given opaque cloud cover, Tm and RHm at climate stations, we
can use the fits (17) for ECA and (18) for LWn to estimate the
climatological dependence of SWn, LWn, and Rn. For the sum-
mer months (JJA), SWCdn = 343W/m2, αs = 0.16, so an error
of ±0.08 in ECA converts to an error of ±23W/m2 in SWn.
However, if the source of error is the uncertainty in the opaque
cloud, which has an opposite impact on the LWCF and SWCF,
the errors partly cancel in Rn. An uncertainty of ±0.1 in opaque
cloud fraction at low cloud cover leads a small uncertainty in Rn

of±1W/m2, but this increases non-linearly to±25W/m2 under
nearly overcast conditions.

Dependence of Daily Climate in Summer
on Opaque Cloud and Other Variables

As noted in Figure 1, warm and cold seasons differ radically
in the land-atmosphere coupling. The diurnal cycle in the win-
ter season needs careful treatment (see Section 8 of Betts et al.,
2014b), which will be addressed in our next paper. Here, we
just show summer (JJA) as representative of the warm season.
Figure 4 shows that ECA and LWn have a tight relationship in
the warm season to the diurnal ranges of temperature and RH,
which was also noted in Betts et al. (2013). We have only 17 years
of the BSRN data, but we have nearly 600 station-years of the
Prairie data with opaque cloud observations, which we have cali-
brated to ECA and LWn with Equations (17a) and (18a). There is
sufficient data in the summer season (nearly 54,000 days) to iden-
tify several local physical processes that give a systematic daily
climate signal in the fully coupled surface-BL-atmosphere sys-
tem. Note that the data includes all the synoptic variability that
is coupled to the diurnal cycle, but our sub-setting of this large
dataset extracts the daily climate signal related to specific vari-
ables.We use OPAQm as the primary stratification, available at all
the Prairie climate stations, because of its tight coupling to LWn

and the diurnal cycle of temperature (Betts, 2006). Then we sub-
stratify by relative humidity, surface wind, day-night asymmetry
of the opaque cloud field and monthly precipitation anomalies.
The transformation from the opaque cloud stratification to ECA
and LWn follows in Section Dependence of Summer Climate on
ECA and LWn.

Dependence of Daily Summer Climate on
Opaque Cloud, Partitioned by Mean RH
Figure 8 shows the partition of the summer data for all 11 Prairie
stations, most of which have record lengths over 50 years, using
OPAQm and 5 ranges of mean RHm (<50%, 50–60%, 60–70%,
70–80%, >80%). Figure 8 (left) shows the mean structure (with
SE uncertainty) for Tx, DTR, and Tn, the middle panel shows
RHtx, RHtn and precipitation, and the right panel shows Qtx and
θEtx. The magenta lines (small SE bars omitted for clarity) show
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FIGURE 7 | BSRN ECA plotted against OPAQSW at Regina for warm and cold seasons with regression fits.

FIGURE 8 | Dependence of Tx, DTR and Tn (left), (middle) RHtx, RHtn, and precipitation, (right) Qtx and θEtx on opaque cloud, partitioned by RHm.

the mean of the daily data without the partition into bins of RHm.
For the mean data we see that Tx, DTR, and θE fall with increas-
ing cloud cover, while Tn is almost flat, while RHtx, RHtn, and Qtx

increase, and precipitation increases most steeply at high opaque
cloud cover.

The sub-partition into RHm bins presents a different picture.
With a drier RHm, Tx and DTR increase systematically, but Tn

only increases for very dry conditions when RHm <50%. Per-
haps this is an indicator of drought. Precipitation not surprisingly
decreases with lower RHm, becoming near zero for RHm <50%.
While RHtx, RHtn, and Qtx necessarily increase with RHm, note
that Qtx now decreases with increasing opaque cloud cover in
the higher RHm bins, despite the increase of RHtx because of
the steep fall of Tx with increasing cloud cover, and precipita-
tion. Although θEtx falls with increasing cloud cover, there is an
upward shift to higher θEtx with increasing RHm. Conversely,
while Tx increases under dry conditions, we see this gives a fall
of θEtx for the same cloud forcing.

For the daily mean data (magenta lines), the decrease of Tx

and DTR and increase of RHtx are clearly non-linear and are
well fitted with a quadratic dependence on opaque cloud (not

shown). Binned by RHm many relations become less non-linear.
Figure 8 depicts the summer daily climate coupling to OPAQm,
which together with RHm, is coupled to LWn. We will revisit
this coupling to LWn in Section Dependence of Summer Cli-
mate on ECA and LWn. The variability of RHm in summer comes
from both local processes, such as changes in surface evaporation
related to soil moisture or vegetation phenology, as well as remote
processes, such as synoptic advection.

Dependence of Daily Summer Climate on Cloud,
Partitioned by Mean Windspeed
Figure 9 shows the dependence of daily summer climate on
opaque cloud, sub-stratified into four windspeed ranges (<2,
2–4, 4–6, and >6m/s). We see that the stratification by sur-
face windspeed shows a climate signal in both the daytime
and night-time near-surface layer. At low windspeed, afternoon
Tx and RHtx are slightly higher, corresponding to a substan-
tial increase of Qx and θEtx. At sunrise under low cloud cover,
Tn falls and RHtn increases substantially with decreasing wind-
speed. These changes at Tn are a major contribution to the
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FIGURE 9 | Coupling of daily climate to opaque cloud and windspeed.

fall of the diurnal ranges of DTR and 1RH with increasing
windspeed.

The cooling of Tn with decreasing windspeed at lowOPAQm is
consistent with greater night-time cooling by outgoing LWn and
reduced wind-stirring, increasing the stable stratification of the
night-time BL (Betts, 2006). Note there is a weak reversal at high
cloud cover, when LWn is small and the fall of surface T may be
dominated by the evaporation of precipitation. The fall of RHtn

with increasing windspeed may be related to the mixing down of
drier air.

At higher windspeeds in the afternoon, θEtx decreases with
increasing cloud cover, presumably related to the reduction of the
surface Rn with OPAQm, as well as the likelihood of low θE down-
drafts at higher precipitation rates. However, the small increases
in Tx and RHtx with decreasing windspeed lead to a broad maxi-
mum in θEtx for opaque cloud <0.5 (typical of a shallow cumulus
field). We can only speculate on the possible causes for this sub-
stantial increase of θEtx at low wind speeds. One possible reason
is that the near-surface gradients in the superadiabatic layer are
stronger in weak winds, giving an increase in Tx and RHtx with
respect to the mixed layer. In contrast under strong winds, there
may be a near-neutral surface layer for the same cloud cover
and radiative forcing. Another possible reason could be that low
windspeeds may be associated with high pressure systems and
with reduced advection, and the BL may drift toward a warmer
and moister state on sequential days. It is also unclear whether
this low windspeed increase of near-surface θEtx is important for
convective development, but it is clearly important for convective
parameterization schemes that lift near surface air to saturation
to define an ascending moist adiabatic.

Dependence of Daily Summer Climate on OPAQm

and OPAQSW
The stratifications in the previous sections were mapped in terms
of OPAQm which is closely related to LWn [see Equation (18a)
and Section Dependence of Summer Climate on ECA and LWn].
This section will show how the diurnal cycle changes if the
opaque cloud fraction is non-uniform between day and night, so
it has a different impact on SWn and LWn which in turn changes
Rn given by (19). We define:

1OPAQ = OPAQm −OPAQSW (20)

When 1OPAQ > 0, it is less cloudy in the daytime hours than at
night, which gives a positive change to both SWCF and LWCF,
as well as Rn, with the reverse for 1OPAQ < 0. It is gener-
ally cloudier in the daytime in summer with a mean value of
1OPAQ= −0.04.

Figure 10 shows the diurnal cycle impact for three ranges:
1OPAQ <−0.5, −0.5< 1OPAQ <0.5 and 1OPAQ >0.5. The
mean values of 1OPAQ for these three bins are −0.13, 0.00,
+0.11. As expected, as 1OPAQ increases, both Tx and Tn

increase (left panel), but the response of DTR is an increase when
OPAQm is high, but the change is not well-defined when OPAQm

is low. For 1OPAQ < 0, RH increases, and the decrease of 1RH
with OPAQm becomes steeper. The right panel shows that daily
Rn and afternoon θE both increase with increasing 1OPAQ: sug-
gesting that the increase of afternoon θE can be viewed as a cou-
pled response to less daytime cloud and higher daily Rn. The
small associated increase of precipitation, shown in the middle
panel is consistent with this increase of afternoon θE.

Dependence of Daily Summer Climate on Cloud,
Partitioned by Precipitation Anomalies
The land-atmosphere coupling depends on two key processes: Rn

which mostly depends on cloud forcing, and the partition of Rn

into sensible and latent heat fluxes which depends on the avail-
ability of soil water, as well as vegetation phenology and rooting.
In this climate dataset we have no measurements of soil water
(or phenology), but we explored whether precipitation anomalies
could provide some information on the availability of soil water,
and hence the energy partition and the daily climate. Betts et al.
(2014a) showed that summer afternoon RHtx and PLCLtx anoma-
lies are strongly correlated on monthly timescales with precipita-
tion anomalies for the current month and preceding 2 months
(Mo-1 and Mo-2), as well as the current month opaque cloud
anomalies. For MJJA they found using multiple linear regression
(with R2 = 0.68).

δRHtx = 4.21(±0.12)δPrecipWT

+ 4.46(±0.10)δOpaqueCloud (21)
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FIGURE 10 | Coupling of daily climate to OPAQm and 1OPAQ.

with δOpaqueCloud in tenths, and δPrecipWT in mm/day,
given by:

δPrecipWT = 0.17(±0.02)∗δPrecip(Mo-2)+ 0.35(±0.02) ∗

δPrecip(Mo-1)+ 0.48(±0.02)∗δPrecip (22)

Within the uncertainty of ±0.02, these weighting coefficients are
the same for the PLCLtx regression; both forMJJA and for the sub-
set of the summer months, JJA. So this weighted precipitation
containsmonthly timescale information about thememory of the
current climate to current and past precipitation.We can suppose
that this correlation with RHtx means that these monthly values
of δPrecipWT are related to soil water anomalies. The reason-
ing here is that we know from surface flux measurements (e.g.,
Betts and Ball, 1995, 1998) as well as many model studies that
there is a chain of processes linking soil water to surface vege-
tative resistance and transpiration, to the vapor pressure deficit
and the LCL of near-surface air (Betts, 2000, 2004, 2009; Betts
et al., 2004; Betts and Viterbo, 2005; Seneviratne et al., 2010; van
Heerwaarden et al., 2010; Ferguson et al., 2012).

For this paper, we calculated the monthly precipitation
anomalies for each station from a mean monthly precipita-
tion climatology, found by combining the 11 stations. Then we
used Equation (22) to compute monthly weighted anomalies
δPrecipWT for each station. These were used to sort the daily
data. This is more primitive than using a vegetation model and
daily soil water balance model, but it has the advantage of being
entirely observationally based. But the mismatch between the
monthly and daily timescales introduces a significant approx-
imation, because we use δPrecipWT for sorting all the days
in the current month, regardless of when it rains during this
month. Nonetheless useful climate results will emerge from these
composites because the dataset is so large.

Mean Daily Climate Dependence on δPrecipWT
Figure 11 shows how the mean daily climate and cloud cover
changes with increasing δPrecipWT. The rather small standard
errors shown for many variables reflect the very large number of
days in this dataset. The left panel shows that Tx and DTR fall by
3.4 and 2.8◦C respectively with increasing δPrecipWT, while Tn

changes very little (Betts et al., 2013). The center panel shows that

as δPrecipWT increases, opaque cloud cover increases by 10%,
while afternoon RHtx and sunrise RHtn increase by 16 and 11%,
so that the diurnal range 1RH decreases. The right panel shows
the large fall of PLCLtx (71 hPa), and very little systematic change
of mean θEtx. With the increasing cloud cover, SWn decreases
by 18W/m2, but there is also a decrease in outgoing LWn (not
shown), so that Rn decreases by only 2W/m2. These climate sig-
nals are consistent with increasing evaporation as δPrecipWT
and presumably soil water increase.

Stratification of Daily Summer Climate by Opaque

Cloud and δPrecipWT
Figure 12 shows the stratification of the daily climate by opaque
cloud and δPrecipWT. The partition by δPrecipWT at constant
OPAQm changes Rn by < ± 4W/m2, so the change of diurnal
climate can be interpreted as the impact of δPrecipWT on the
partition of Rn.

Figure 12 (top left) shows that as the monthly anomaly of
δPrecipWT increases at constant cloud cover, Tx and DTR both
fall on the daily timescale, with the largest changes at low cloud
cover, while Tn changes little. The top right panel shows that
both RHtx and RHtn increase with increasing δPrecipWT, but
1RH falls slightly. The bottom left panel shows the correspond-
ing steep fall of PLCLtx (representative of afternoon cloud-base)
and increase in daily mean precipitation, which is to be expected
since precipitation for the current month is almost half the con-
tribution to δPrecipWT in Equation (22). The bottom right panel
shows that the drop of Tx, coupled with the substantial rise of
RHtx with δPrecipWT, results in an a relatively large increase of
Qtx and a smaller increase of θEtx.

This shift with increasing δPrecipWT toward a cooler, moister
afternoon daily climate with a lower cloud-base and a slightly
higher θEtx, is consistent with increased evaporation from soils
that are moister, due to higher precipitation on the monthly to
seasonal timescale. Comparing with Figure 8, where the data
were simply stratified by daily RHm, we see some similarities,
but also important differences. For example, Figure 12 shows the
increase of Qtx consistent with larger precipitation anomalies and
increased evaporation, which is different from the simple RH
stratification in Figure 8.
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FIGURE 11 | Dependence of mean diurnal climate, opaque cloud, and radiation on δPrecipWT.

FIGURE 12 | Stratification of daily climate by opaque cloud and δPrecipWT.

Dependence of Summer Climate on ECA
and LWn

This section addresses the remapping of the results shown in Sec-
tion Dependence of Daily Climate in Summer on Opaque Cloud
and other Variables from opaque cloud back to daily mean ECA
and LWn using the regression relations (17a) and (18a). This is
so we can compare the full Prairie dataset with the BSRN data
in Figure 4. Figure 13 has six panels corresponding to the ECA
(top row) and LWn (bottom row) dependence of Tx, Tn, and

DTR for the RHm, windspeed and precipitation anomaly strat-
ifications shown in Figures 8, 9, 12. For Tx and DTR, the left pair
also shows the mean of all the data (magenta).

The top row of panels differ from the corresponding panels
in Figures 8, 9, 12 by a small difference between OPAQm and
OPAQSW and the quadratic transformation from OPAQSW to
ECA given by (17a). However, the transformation (18a) from
OPAQm to LWn also includes a substantial RHm dependence,
which has a big impact on the stratifications that involve RH
differences. The bottom left panel for the RHm partition shows
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FIGURE 13 | ECA (upper row) and LWn (lower row) dependence of Tx, Tn, and DTR for the RHm, windspeed and precipitation anomaly stratifications.

a collapse of DTR into almost a single line against LWn and
the bottom right for the precipitation partition shows a simi-
lar but smaller change. Both show a reduction in the spread of
Tx, when plotted against LWn. One interpretation of these dif-
ferences between these ECA and LWn stratifications is that the
cooling at night is directly coupled to the LWn, but the daytime
partition of the solar flux determines the daytime warming and
this is correlated to either RHm or the precipitation anomalies.
In contrast, the middle pair shows that the spread of DTR and
Tx is slightly increased when plotted against LWn rather than
ECA, which is related to the small increase in RHwith decreasing
windspeed.

We have recovered for this much larger summer dataset, the
nearly linear dependence of DTR on ECA and LWn, which was
seen in Figure 4 for 12 years of data at a single site for the
warm season (AMJJAS). The linear regression fits to the full
set of filtered daily data (53,740 days) are shown in all panels
(cyan):

DTR = 17.10(±0.02)− 16.29(±0.07)∗ECA(R2 = 0.53) (23)

DTR = 1.95(±0.04)− 0.146(±0.001)∗LWn(R
2 = 0.61) (24)

Tx = 28.05(±0.03)− 17.35(±0.09)∗ECA(R2 = 0.41) (25)

Tx = 12.42(±0.06)− 0.149(±0.001)∗LWn(R
2 = 0.44) (26)

The explained variance is much higher for DTR than Tx, because
DTR = Tx − Tn and this difference removes much of the daily
variability related to the seasonal cycle and synoptic scale vari-
ability. Comparing Equations (15a) and (15b) with (23) and (24)

we see that DTR has the same slope with LWn, while this larger
Prairie data set has a larger slope with ECA. Clearly the linear fit
is better for the LWn plots, confirming observationally the strong
coupling between DTR and daily LWn seen in models (Betts,
2004, 2006). The regression of this larger data set on ECA and
the anomaly δRHm (from the mean of 63.5%) is:

DTR = 16.30(±0.06)− 12.60(±0.08)ECA

− 0.083(±0.001) δRHm(R
2 = 0.57) (27)

Comparing with Equation (15c) we see here a larger slope with
ECA and a reduced dependence on δRHm.

The windspeed dependence of DTR in the center panels
increases with decreasing cloud or increasing transmission ECT.
We can represent this by adding a term to the multiple linear
regression for the product of ECT and the anomaly δWS (from
the mean of 3.45m/s). This gives with a small increase in the
explained variance to R2 = 0.63.

DTR = 2.02(±0.04)− 0.145(±0.000)LWn

− 0.43(±0.01)ECT∗
δWS (28)

So DTR falls with increasing windspeed by −0.43K/(ms−1)
under clear skies.

The δPrecipWT dependence of DTR and Tx in the bottom
right panel is small, with regressions:

DTR = 2.12(±0.04)− 0.144(±0.001)∗LWn

+ 0.30(±0.01) δPrecipWT(R2 = 0.61) (24a)
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Tx = 12.702(±0.06)− 0.146(±0.001)∗LWn

+ 0.47(±0.02) δPrecipWT(R2 = 0.44) (26a)

Figure 14 shows the nearly linear dependence of RHtx and PLCLtx
on LWn, partitioned by daily windspeed and weighted monthly
precipitation anomaly.

The left panel also shows the linear regression fits (cyan) for
all the daily data, which are:

RHtx = 84.8(±0.1)+ 0.566(±0.002)LWn(R
2 = 0.67) (29)

PLCLtx = 7.5(±0.6)− 2.27(±0.01)LWn(R
2 = 0.65) (30)

For the right panel, adding δPrecipWT (inmm/day), the multiple
linear regression gives:

RHtx = 82.9(±0.1)+ 0.550(±0.002)LWn

+ 3.32(±0.05) δPrecipWT(R2 = 0.69) (31)

PLCLtx = 16.5(±0.5)− 2.16(±0.01)LWn

− 15.5(±0.2) δPrecipWT(R2 = 0.69) (32)

These linear regression fits for RHx have a higher R
2 than the lin-

ear fits of DTR on LWn. For fixed LWn, a 1mm/day increase in
the monthly precipitation anomaly increases daily RHtx by 3.3%
and decreases PLCLtx by 15.5 hPa.

Derived from nearly 54,000 days of observations, these linear
regression fits characterize the coupled surface-BL-cloud system
over the Prairies on daily timescales, where the afternoon LCL
is closely related to cloud-base (Betts et al., 2013), and LWn is
tightly coupled to opaque cloud fraction (Figure 6). For model
evaluation, this set of relationships, (24) and (28)–(32), describ-
ing the quasi-linear coupling between LWn and the key diurnal
climate variables DTR, RHtx, and PLCLtx, may be the most useful.

Summary and Conclusions

The Prairie data show the observed diurnal climatology of the
coupled land-BL-cloud system. In contrast, models construct

their own differing diurnal climatologies from a suite of pro-
cess models and parameterizations for the surface, BL and cloud
components. Our broad intent is to provide quantitative guid-
ance based on observations for the evaluation of both simpli-
fied models, and the large-scale models that we depend upon
for weather forecasting and climate simulation. The control of
radiation by SWCF and LWCF is dominant on daily timescales
(Betts et al., 2013), although both cloud and precipitation mat-
ter on monthly to seasonal timescales (Betts et al., 2014a).
So understanding hydrometeorology requires both precipitation
and cloud/radiation measurements as well as temperature, RH
and pressure data. Temperature, RH and pressure are all needed,
because from them we can compute Q, LCL, and θE, which feed-
back on clouds and precipitation in the warm season. This paper
has focused primarily on mapping the coupling of clouds and
other observables to the daily climate in the warm season.

We used the Canadian Prairie data from eleven climate sta-
tions, which contain nearly 600 station-years of well-calibrated
relatively homogenous data. Earlier work (Betts et al., 2013)
explored the coupling between daily climate and opaque cloud
cover over the annual cycle, and used SWdn and LWdn mea-
surements to calibrate the opaque cloud observations in terms
of SWCF and LWn. This paper has extended their analysis in
several directions. First we noted that the warm and cold sea-
son regimes are sharply delineated by the freezing point of water.
The diurnal cycle in the winter cold regime with surface snow
is dominated by LWCF, so that near-surface minimum tempera-
tures plunge under clear skies. In contrast, when T>0◦C, SWCF
dominates and maximum temperatures rise in clear skies, while
minimum temperatures change little. With this framework, we
revisited the calibration of the opaque cloud data in both cold
and warm seasons using the high quality BSRN data from Bratt’s
Lake, Saskatchewan. Using just the BSRN data we explored the
dependence of the diurnal range of T and RH on the radiative
drivers. We confirmed the nearly linear dependence of DTR on
both ECA and LWn in the warm season, seen in Betts et al.
(2013), and earlier in model data (Betts, 2006). We then used
multiple regression to relate opaque cloud data at Regina with
ECA and LWn at Bratt’s Lake, only 25 km away. We found that

FIGURE 14 | LWn dependence of RHtx and PLCLtx, for the windspeed and precipitation anomaly stratifications.
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LWn could be determined from the daily means of OPAQm and
RHm to ±8W/m2 (R2 = 0.91) in the warm season (T > 0◦C);
and from the daily means of OPAQm, Tm, RHm, and TCWV
to ±9W/m2 (R2 = 0.86) in the cold season (T < 0◦C). We
derived quadratic relationships betweenOPAQSW, opaque cloud
weighted by the daytime clear-sky SWdn flux, which give effective
cloud albedo, ECA to±0.08 (R2 = 0.87) in the warm season, and
to±0.11 (R2 = 0.71) in the cold season.

We applied these relations between OPAQm and LWn, and
OPAQSW and ECA to all eleven Prairie stations, and created
a summer (JJA) merge of the eleven Prairie stations to explore
sub-stratifications of the Prairie data. As noted by Betts et al.
(2013, 2014a), cloud cover is the primary driver of daily climate,
as it largely determines LWn and Rn. However, the additional
sub-stratification by RHm, windspeed, the day-night asymmetry
of cloud cover and monthly precipitation anomalies show how
other physical processes are coupled to daily land-surface climate
in summer.

The RH stratification shows that Tx and DTR increase sys-
tematically with drier RHm, but Tn only increases for very low
RHm <50%. Precipitation not surprisingly decreases sharply with
lower RHm, becoming near zero for RHm <50%. While θEtx falls
with increasing cloud cover, as Tx falls, there is an upward shift
with constant cloud but increasing RHm to higher θEtx, consistent
with increasing precipitation. The variability of RHm in summer-
comes from both remote processes, such as synoptic advection,
as well as local processes, such as changes in surface evaporation
related to soil moisture or vegetation phenology.

The surface windspeed stratification has an impact on both
the daytime and night-time near-surface layer. At low windspeed,
afternoon Tx and RHtx are slightly higher, giving a substantial
increase of Qx and θEtx. One possible reason is that the near-
surface gradients in the superadiabatic layer are stronger in weak
winds, giving an increase in Tx and RHtx relative to the mixed
layer. In contrast under strong winds, there may be a near-neutral
surface layer for the same cloud cover and radiative forcing. It
is unclear whether this low windspeed increase of near-surface
θEtx is important for convective development. At sunrise, Tn is
lower and RHtn is higher at low windspeed and low cloud cover,
consistent with greater night-time cooling by outgoing LWn and
reduced wind-stirring giving a more stable stratification in the
night-time BL (Betts, 2006). The fall of the diurnal ranges of DTR
and 1RH with increasing windspeed are heavily influenced by
these changes at Tn. The fall of RHtn with increasing windspeed
may be related to the mixing down of drier air into the stable BL.

The difference, 1OPAQ, between the two opaque cloud
means, daily mean OPAQm (closely related to LWn) and
OPAQSW, weighted by the solar clear sky flux (and related to
ECA), is a measure of the asymmetry of the cloud field between
day and night.1OPAQ> 0 means it is less cloudy in the daytime
hours than at night givingmore solar heating and less LW cooling
at night.We used1OPAQ to sub-stratify the data. As expected, as

1OPAQ increases, both Tx and Tn increase, but the response of
DTR is more complex. DTR increases when OPAQm is high, but
the change is not well-defined when OPAQm is low. We see that
daily Rn and afternoon θE both increase with increasing1OPAQ,
and there is a small associated increase of precipitation.

The land-atmosphere coupling depends on two key processes:
Rn that mostly depends on cloud forcing, which we know quite
well from the opaque cloud data, and the partition of Rn into
sensible and latent heat fluxes, which depends on the availabil-
ity of soil water, as well as vegetation phenology. In this dataset
we have no measurements of soil water or phenology, but based
on the work of Betts et al. (2014a) we sub-stratified the data using
monthly weighted precipitation anomalies as a surrogate for soil
moisture anomalies. We found a shift with increasing precipi-
tation anomalies toward cooler, moister afternoon daily climate
with a lower cloud-base and a higher θEtx. This is consistent
with increased evaporation from soils that are moister because
of higher precipitation on the monthly to seasonal timescale.

Finally we remapped the diurnal changes of temperature from
the stratifications based on RHm, wind and precipitation anoma-
lies back onto LWn and ECA. Because LWn is itself dependent
on RHm in the warm season, the relationship between DTR and
LWn becomes almost independent of RHm and precipitation
anomalies. This confirms the fundamental importance of daily
LWn in determining the diurnal temperature range (Betts, 2006),
independent of the evaporative and advective processes that
modify RH. However, the afternoon RHtx retains a substantial
dependence on precipitation anomalies. Wemap the quasi-linear
coupling between LWn and the key diurnal climate variables
DTR, RHtx, and PLCLtx using multiple linear regression in Equa-
tions (24) and (28)–(32), with R2-values ranging from 0.61 to
0.69. These relationships derived from the Prairie daily climate
data for this fully coupled system may be the most useful for
model evaluation. Although we also derived relationships using
multiple linear regression between DTR and ECA and RHm, fur-
ther exploration of the daytime forcing of the diurnal climate
requires the partition of Rn into sensible and latent heat fluxes.
We plan to extend this work using surface flux products for the
Canadian Prairies (Wang et al., 2013).
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