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A basic data requirement of a river flood inundation model is a Digital Terrain Model

(DTM) of the reach being studied. The scale at which modeling is required determines

the accuracy required of the DTM. For modeling floods in urban areas, a high resolution

DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most

useful, and large parts of many developed countries have now been mapped using

LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower

resolution DTM, and in the near future the DTM of choice is likely to be that derived

from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM

obtained by combining existing high and low resolution data sets would be useful for

modeling flood water dynamics globally, at high resolution wherever possible and at lower

resolution over larger rivers in remote areas. A further important data resource used in

flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar

(SAR) images. Flood extents become more useful if they are intersected with the DTM,

when water level observations (WLOs) at the flood boundary can be estimated at various

points along the river reach. To illustrate the utility of such a global DTM, two examples

of recent research involving WLOs at opposite ends of the spatial scale are discussed.

The first requires high resolution spatial data, and involves the assimilation of WLOs from

a real sequence of high resolution SAR images into a flood model to update the model

state with observations over time, and to estimate river discharge andmodel parameters,

including river bathymetry and friction. The results indicate the feasibility of such an Earth

Observation-based flood forecasting system. The second example is at a larger scale,

and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area

covered by the flood extents. The resulting reduction in random height error is significant.
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Introduction

Globally, flooding accounts for a substantial proportion of the
fatalities and economic losses caused by natural hazards. In
Europe alone, there were 100 major floods between 1998 and
2011, causing more than 700 deaths, the displacement of over
500,000 people and 25 billion euro of insured losses. In the UK,
the devastating floods of summer 2007 cost a total of £3.2 billion,
and caused the country’s worst peacetime emergency sinceWW2.
The impact of climate changemeans that the probability of events
of a similar scale happening in the future is increasing (Allan and
Soden, 2008).

Flood inundation models are commonly used to model river
flooding. A basic data requirement of these models is a Digital
Terrain Model (DTM) of the river reach being studied. The
scale at which modeling is required determines the accuracy
required of the DTM. For modeling floods in urban areas, a high
resolution DTM such as that produced by airborne LiDAR (Light
Detection And Ranging, ∼1m spatial resolution, 0.2m height
accuracy) or airborne InSAR (Interferometric Synthetic Aperture
Radar, ∼5m spatial resolution, ∼1m height accuracy) is most
useful. Many developed countries in the world, including those
in Europe, the USA and Australia have now mapped substantial
parts of their terrain, including the main river catchments, using
LiDAR. A global low-cost DTM containing all the high resolution
DTM data currently acquired (and to which more were added
as they became available) would be a useful tool for hydrologic
and hydraulic modelers, as suggested by Schumann et al. (2014).
For example, a modeler in the UK wanting to model urban
flooding in Australia would be able to access the necessary DTM
data directly, while at present accessing such data might be a
severe impediment to modeling. There are obviously substantial
logistical and implementational difficulties in creating such a
global high resolution DTM, for example concerning ownership
of data, intellectual property rights and the creation of a common
data format, but, if these could be overcome, the impact of such a
DTM would be significant.

In more remote parts of the world a high resolution DTM
would contain no data. However, in these areas it is still possible
to model flooding on a larger scale using lower resolution DTMs.
Since 2000, the Shuttle Radar Topography Mission (SRTM)
Digital Elevation Model (DEM) has been used in a number
of studies of large-scale river modeling (see Yan et al., 2015).
However, in the near future the global DTM of choice is
likely to be that derived from the TanDEM-X DEM produced
(like the SRTM DEM) using satellite interferometry. This will
have a spatial resolution of 10–12 m, and a relative height
accuracy of less than 2m on slopes less than 20% and 4m
on slopes greater than 40% (Eineder et al., 2012). A variable-
resolution global DEM obtained by combining existing high and
low resolution data sets would be useful for modeling flood
water dynamics globally, at high resolution wherever possible
(e.g., in urban areas in developed countries) and at lower
resolution over larger rivers in remote areas. For example, with
the advent of very high resolution global flood modeling for
risk management and forecasting, such a DTM would be of
great use to help improve predictions and decision making (e.g.,

Pappenberger et al., 2012; Beven et al., 2015; Bierkens et al.,
2015).

A further important data resource used in flood modeling is
the extent of the flood over time. High resolution satellite SAR
sensors are commonly used to acquire flood extents because they
allow images to be taken from space over a wide area, can see
through clouds, and can acquire images at night-time as well as
during the day. Flood extents derived from SAR imagery may
be used for damage assessment and flood defense design studies,
and, if obtained in near real-time, for flood relief management
and improved flood forecasting (Mason et al., 2014).

Flood extents become more useful if they are intersected with
the DTM of the floodplain (e.g., Raclot, 2006; Matgen et al.,
2010; Schumann et al., 2011; Garcia-Pintado et al., 2013). Water
level observations (WLOs) at the flood boundary can then be
estimated at various points along a river reach, and these can be
assimilated into a flood inundation model to keep the model “on
track” and improve the flood forecast. When used in hindcast
mode, they can be used to obtain better estimates of dynamic
footprints of past flood events. Fundamental to this approach
are the spatial resolution and height accuracy of the underlying
DTM.A global DTMused in conjunction with SAR-derived flood
extents would allowWLOs to be estimated remotely for any flood
in the world, at a level of accuracy determined by the resolution
and accuracy of the DTM at that location.

To illustrate the utility of such a DTM, two examples of recent
research involving WLOs at opposite ends of the spatial scale
are discussed. The first requires high resolution spatial data, and
uses a real sequence of high spatial and temporal resolution SAR
images (possibly the best example of the sequential monitoring
of flood extent by high resolution SAR currently available).
WLOs from this are assimilated into a flood inundation model
of a river network, in order to update the model state with
observations over time, and to simultaneously estimate river
discharge and model parameters, including river bathymetry and
friction. For many of the world’s rivers, their discharges, river
depths (bathymetry) and resistance to water flow (friction) are
either unknown or poorly known. The sequence of WLOs is used
to constrain the uncertainties in this joint estimation problem.

The second example is at a larger scale, and uses the SAR-
derived water level observations to improve a lower-resolution
DTM such as that derived from the TanDEM-X DEM in the area
covered by the flood extents. This improvement to the DTM can
be significant and would be permanent, and could be carried
out in addition to using WLOs for assimilation to improve a
large-scale flood model.

High Resolution SAR-supported Flood
Forecast in River Networks

Introduction
The first example considers the sequential assimilation of SAR-
derived WLOs of the floodplain into a hydraulic model to
decrease forecast uncertainty, using a sequence of real SAR
images in a case study. Full details are given in Garcia-Pintado
et al. (2015), and what follows in this section is a summary.
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The computer models used for flood forecasting solve the
mathematical equations governing the flow of water over the
local terrain and predict the water levels as a function of time
during the flood. Flood inundation is difficult to model due
to the complexity of the mathematical equations describing the
flow, and to uncertainties in the input flow rates, the bottom
friction parameters and the river bathymetry. These uncertainties
can be partly compensated for by updating the model state
with observed information as this becomes available, to help
keep the model on track. The process of updating the model
state with observations is known as data assimilation. This
takes into account the uncertainties in the observations and
model prediction and provides a more accurate estimate of the
current state of the system. As well as correcting the model state,
assimilation can also improve the estimates of the input flow
rates, bottom friction parameters and river bathymetry.

Previous studies using SAR-derived WLOs for river flood
monitoring and forecasting have tended to focus on specific
single river transects, albeit sometimes ones that are very large or
subject to secondary lateral inflows (e.g., Roux and Dartus, 2008;
Matgen et al., 2010; Durand et al., 2014). This study used real
SAR data for the sequential monitoring and forecasting of a flood
developing on a river network which included tributaries. It had
two main objectives:

(a) To investigate whether assimilation was best performed
using a local or a global filter. The filter used was an
Ensemble Kalman Filter (EnKF) (Evensen, 1994), which is
a limited-size ensemble representation of the forecast error
covariance matrix that is updated as each set of observations
is assimilated. The global ensemble error covariances tend
to underestimate the forecast error variance and develop
physically unrealistic or spurious correlations. This may lead
to ensemble collapse and filter divergence. Filter localization
is often used to reduce the problem of spurious correlations.
This increases the degrees of freedom available to fit nearby
observations in the analysis by decreasing the weight given to
observations far from the physical location of the estimated
state variable (Hamill et al., 2001; Petrie and Dance, 2010).

(b) To investigate whether it was better to focus simply onmodel
state estimation of the water levels, or to simultaneously
attempt model state and model parameter estimation.

Methods
Study Area and Models Employed
The study was based on a real event that occurred on the Lower
Severn and Avon rivers in the south-west UK in November 2012.
Figure 1 depicts the study area for the flood inundation model,
covering a 30.6× 49.8 km2 domain.

In the experimental setup, a real forecast scenario was
simulated in which precipitation data was observed rather than
forecast, using a network of tipping-bucket gauges sparsely
distributed over a 190 W-E × 120 km S-N rectangular area
covering seven catchments discharging into the flood domain.
With precipitation and potential evapotranspiration as input
data, and flow at the outlet of each catchment (yellow names in
Figure 1) as calibration data, a single lumped catchment-scale

FIGURE 1 | Study domain. OSGB 1936 British National Grid projection,

coordinates in meters. Gray labels indicate the three larger rivers (thick black

lines). The red polygon surrounds the Tewkesbury urban area. Orange

labels/dots refer to the 7 inflow boundary conditions, some of them on smaller

tributaries (thin black lines). The yellow line to the South indicates a

free-surface boundary condition, with the label indicating the mean bed slope.

Red labels/green dots show locations with available stage observations, just

used for validation in the forecast model. The background is the ∼75m

resolution DEM used for the model, obtained by upscaling the ∼5m

NEXTMAP British digital terrain model (after Garcia-Pintado et al., 2015).

rainfall-runoff hydrologic model (HSPF, Donigian et al., 1995)
was calibrated for each catchment using a previous flood event
from July 2007. The calibrated discharge of the hydrologic
models was used as input to the flood inundation model, to
calibrate the latter using time series of water levels at a number
of gauges (green points in Figure 1) as calibration data.

The flood inundation model used was LISFLOOD-FP, a
coupled 1D/2D model based on a raster grid (Bates and De
Roo, 2000). This was applied in the sub-grid formulation of
Neal et al. (2012), which utilizes gridded river network data
and assumes a rectangular channel geometry. A 75m resolution
grid was employed. After each assimilation step, the model was
re-initialized with the updated state vector (i.e., water level).
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Using the calibrated hydrologic/flood inundation models,
assimilation was conducted with a number of filter configurations
for the November 2012 event in a hindcasting scenario.

SAR Image Processing
Satellite SAR observations of the event were acquired by the
COSMO-SKyMed (CSK) constellation. A sequence of 7 CSK
Stripmap images giving good synoptic views of the flooding
was acquired on roughly a daily basis covering the period 27
November—4 December 2012 (Figure 2). The first image in the
sequence was acquired just before the flood peak in the Severn
(see Figure 3).

In the absence of significant surface water turbulence due
to wind, rain or currents, flood water generally appears dark
in a SAR image because the water acts as a specular reflector,
reflecting backscatter away from the satellite. Detection of the
flood extent in each image was performed using the segmentation
technique described in Mason et al. (2012a), which groups the
very large numbers of pixels in the scene into homogeneous
regions. A critical step is the automatic determination of a
threshold on the region mean SAR backscatter, such that regions
having mean backscatter below the threshold are classified as

flooded, and others as un-flooded. The accuracy of the flood
inundation maps in rural areas using the algorithm has been
determined to be about 90% (Mason et al., 2012a). Figure 2 shows
the flood extents detected in the images overlain on the SAR data
in the flood inundation model domain. The sequence shows the
flood wave moving down the river, and the flood at Tewkesbury
gradually dying away, starting on the Avon.

Water level observations (WLOs) were extracted from the
flood extent waterlines by intersecting the extents with high
resolution floodplain topography from airborne LiDAR using the
method described in Mason et al. (2012b). The method selects
candidate waterline points in flooded rural areas having low slope
and vegetation, so that small errors in waterline position have
little effect on waterline level. The standard deviation of the
selected WLOs was estimated to be 0.25m.

Bathymetry Estimation
Field surveyed river cross-sections were available along the
Avon and part of the Severn from its junction with the Avon
to ∼10 km upstream. These were transformed into rectangular
equivalents as required by the flood model. Then, for both the
Severn and Avon, river widths and depths were interpolated

FIGURE 2 | Flood extents (blue) for the event of November 2012, overlain on SAR imagery of the flooded domain of Figure 1 (©CSK) (after

Garcia-Pintado et al., 2015).
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FIGURE 3 | Inflows into the flood domain for the event of November

2012. Blue lines (gauge) are inflows as measured by standard gauges (not

used as data input here). Gray lines are the 150-member forecast ensemble

(9) from the hydrologic models, used as input by the flood model. Dashed

red lines are the ensemble means (9). Vertical dashed lines show

COSMO-SkyMed overpass times (ty) (after Garcia-Pintado et al., 2015).

along the river chainage. For the other rivers in the network,
as their widths were known, depths were calculated from the
widths using a power law relationship (see Garcia-Pintado et al.,
2013). The resulting bathymetry was treated as an uncertain
parameter in the assimilation procedure. This reflected the fact
that detailed river bathymetry is unknown formany of the world’s
rivers.

The Ensemble Filter
Assimilationwas conducted at the time of the corresponding CSK
overpasses, so that the flood model simulations were sequentially
interrupted. Uncertain friction, bathymetry and errors in inflow
boundary conditions were simultaneously estimated at the time
of the assimilation by using state space augmentation, in which
the model state vector is augmented with these model parameters
(Friedland, 1969). An advantage of this approach is that the
assimilation scheme is able to take into account correlations
between the errors in the parameters and the errors in the model
variables (Smith et al., 2013).

The Ensemble Kalman Filter (EnKF) is characterized by
a two-step feedback loop i.e., a prediction followed by an
observation-based state update. In the prediction phase, each
individual ensemble member is evolved forward in time by
the forecast model until the time of the next observation.
This means that the model states (water-levels) are forecast by
the hydrodynamic model with appropriate forecast boundary
conditions. At the time of an observation, an ensemble
approximation of the Kalman filter equations is used to update
the ensemble. This update may be thought of as a linear
combination of the forecast and the observations, weighted by
the relative uncertainties in the model and observation data.
The weights involved are contained within the Kalman gain
matrix K (see Garcia-Pintado et al., 2015). An ensemble size
of 150 samples was used. An outlier analysis was employed to
remove any unlikely observations not accounted for in the model
dynamics.

Filter Localization
Typically the number of ensemble members is much smaller than
the dimension of the state vector, leading to under-sampling.
This often manifests itself as spurious (unphysical) forecast error
correlations, which contribute to significant increments updating
the state at locations further from the location of the observation
than is plausible. Localization techniques are often used to
ameliorate the problem. In this study, localization was performed
using a domain localization method (Hunt et al., 2007), whereby
assimilation is applied independently to a series of disjoint local
domains in physical space. For each local assimilation, only
observations within some defined cut-off radius are considered.
Furthermore, the weight of observations is reduced as a function
of their distance from the local analysis domain by increasing
their assumed error variance.

The study of localization techniques and parameters is an
active area of research (e.g., Kirchgessner et al., 2014). A highlight
of the research presented here was the development of a novel
distance metric based on an along-network distance, which made
it possible to distinguish between flows in adjacent channels that
may be close together in a Euclidean sense. For floods developing
in a channel network, one may expect the physical connectivity
of flows to influence the development of the forecast error
covariance. Thus a localization taking into account the along-
network distance would not only be more physically meaningful
than an “as-the-crow-flies”-based localization, but should also
lead to an improved forecast skill. To this end, assuming that
the flood is developed around a pre-existing (river) network,
the channel network can be vectorised and the chainage of the
network used for calculating along-network distances.

Results
The results section is structured around three major topics:
(i) influence of localization on the system updating and flood
forecast, (ii) capability of inflow estimation and its influence
on the flood forecast, and (iii) capability of model parameter
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estimation (friction and bathymetry) and its influence of the
flood forecast. This structure is to ease discussion. However, the
three topics are strongly inter-related, and cross-references are
included where necessary.

Influence of the Localization Metric
This section compares the use of a global filter with filtering
schemes using localization, using either a standard Euclidean
distance or an along-network distance.

Figure 4 is used as an example for discussion. This depicts
a symbolic representation of elements in the Kalman gain
matrix for these filter configurations. The size of the individual
elements of the Kalman gain provides information about

the relative importance of each local observation on the
analysis. The updated forecast error covariance between the
level at Bredon and levels elsewhere is also shown. The figure
focuses on the situation pertaining to the assimilation of
WLOs from the last CSK overpass, as this summarizes the

FIGURE 4 | Updated error covariance between the state variable

(water level) at Bredon and the state vector (water level

elsewhere) at the last assimilation step (7th CSK overpass), for

(A) global filter, (B) local filter with Euclidean distance

localization, (C) local filter with along-network distance

localization, and (D) as (C) but with parameter estimation. Color

scales are independent for each plot to ease visualization. The red

circle indicates the location of Bredon. The squares are centered at

the observation locations, the length of their sides being a symbolic

representation of the element of the Kalman gain Ki used to update

Bredon at the corresponding assimilation step and filter. The sum of

the absolute Kalman gain values for all p observations is indicated by

6pi=1|Ki|. Green/red squares are positive/negative gain values (after

Garcia-Pintado et al., 2015).
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cumulative feedback of the different filters over the whole
event.

In Figure 4A, the global filter is shown to produce sparsely
distributed non-negligible Kalman gain values throughout the
domain, withmany distant observations influencing the updating
at Bredon. The situation is far from what one would expect from
a properly constructed assimilation system. Spurious correlations
tend to have a dominant effect, leading to relationships which
appear unlikely. Moreover, the water levels at observation
locations surrounding Bredon have a negative correlation with
the level at Bredon, leading to negative gain values (red squares),
which are likely to be unphysical.

On the other hand, in Figure 4B the filter with Euclidean
distance localization shows a very different situation. The
significant Kalman gain values are now much closer to Bredon,
and more observations share a fair contribution to the updating.
Overall, the spurious correlations seem to have been quite
effectively filtered out.

Figure 4C shows that the filter with along-network distance
localization seems to be an improved version of the Euclidean
distance filter. It does not contain any negative gain values, and
there are also a good number of observations with roughly equal
high gain values, leading to a robust situation regarding outliers
in the WLOs. The distant WLOs in the Severn now have lower
gain values, and the highest gain values are closer to Bredon.
Overall, this seems the best filter of the three.

The influence of simultaneous inflow and parameter
estimation is discussed in the following sections. However,
Figure 4D shows the results of a filter similar to the along-
network localization filter, but which also includes simultaneous
estimation of inflow, global channel friction and distributed
bathymetry. This seems to lead to a situation that seems even
more physically sound than that of Figure 4C from the point
of view of the spatial distribution and share of the Kalman gain
values. The higher gain values are now very well distributed
around Bredon, and this filter seems to give the best results of all.

Figure 5 shows the time series of water levels predicted by
the filter corresponding to Figure 4C (i.e., water levels and joint
inflow estimation using along-network distance localization) at
Worcester on the Severn. At each assimilation time, the WLOs
are used to correct the predicted water levels. While the first
satellite overpass misses the peak of the flood, once the SAR data
are available, the processing chain is able to successfully adjust the
sequential forecast and keep the flood model on track.

Inflow Estimation
A number of filter configurations were compared that performed
simultaneous estimation of inflow errors at the times of
assimilation, and used these error estimates to correct the
inflows from the hydrologic models, assuming a constant bias
error forecast model. In this study, the 7 inflow boundary
conditions were set from the output of the hydrological models,
and no provision was made for lateral inflows along the
river network, inflows from smaller tributaries, or groundwater
infiltration/exfiltration. These unaccounted inflows/outflows in
the flood model may lead to increased/decreased local water
levels. Indeed, the satellite-based WLOs may well provide

information to improve the estimation of total inflows into
the system that are not contained in the prior inflows (i.e.,
the forecast from the catchment-scale hydrologic models). This
fact tended to complicate the analysis somewhat. However,
in summary, it was clear that, (a) for the global filter,
simultaneous inflow updating promoted ensemble collapse and
divergence, and (b) overall the best filter for simultaneous inflow
estimation, but without parameter estimation (i.e., friction and
bathymetry estimation) was the one with along-network distance
localization. This was preferable as a forecast error covariance
moderation process, and helped to prevent the development

FIGURE 5 | Water level forecast at Worcester, whose major inflows

come from Bewdley (river Severn), Kidder Callows (river Stour), and

Harford Hill (river Salwarpe). The plot is for a filter configuration involving

along-network localization and inflow and parameter estimation. Gray lines are

the forecast ensemble, the red line is the mean forecast and the blue line is the

gauged water level, used here as a reference and not for modeling or

assimilation. Vertical dashed lines indicate the times of the CSK

overpasses/assimilation. Horizontal lines indicate the bank level (labeled as

“dtmd”), and the mean channel bottom level (labeled as “SGCz”) (after

Garcia-Pintado et al., 2015).

FIGURE 6 | Evolution of the estimate of the global Manning’s friction

coefficient during the sequential assimilation steps for the three major

rivers (Severn, Avon, and Teme) for a filter estimating friction but not

bathymetry. Gray lines show the ensemble, and blue line is the mean (after

Garcia-Pintado et al., 2015).
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of spurious correlations, which should be adequate for local
parameter estimation.

Parameter Estimation
This section focuses on filter configurations with simultaneous
friction and/or bathymetry estimation as well as estimation of
channel stage and inflows. It was investigated whether these
parameters could be simultaneously estimated, and also if this
simultaneous estimation lead to an improvement in the flood
forecast.

A global Manning’s friction coefficient was estimated for
the three major channels Severn, Avon, and Teme (the ones
with the highest influence on general water levels). The friction
coefficient appeared to converge systematically across all the
filter configurations. Figure 6 shows this convergence for a filter
estimating friction but not bathymetry, but all filters showed
similar behavior. However, an important finding was that, despite
the likely adequate estimation of channel friction in the major
channels, the feedback of friction estimation on the flood forecast
within this event seemed negligible.

Figure 7 shows the evolution of bathymetry during the event
for the rivers Severn and Avon and filter configuration in which
bathymetry is estimated but not friction (though all filters showed
similar behavior). The chainage 0 for the Avon refers to its
junction with the Severn, very close to Mythe Bridge. The
sequential updating converges systematically toward a profile in
which, after the event, the lower part of the Severn is nearly 2m
higher than the prior bathymetry, and the transect between the
Saxons Lode and Kempsey gauges is lower than the prior (at
some points by 1.5m). The updating summarizes the influence
of the channel conveyance on the flood development. Globally,
the SAR WLOs seem to indicate that the prior bathymetry
was leading to a model which overestimated the release of
water from the flooded domain during the early stages of
the event. The sequential increments in the bathymetry along
the Avon are also systematic, leading to a raised channel bed
profile with respect to the prior. In both rivers, the effect
of the localization is clearly visible, as, moving upstream,
the increments gradually become smaller as the bed locations
move away from the observations. However, as with friction
estimation, despite the consistency in bathymetry estimation,

FIGURE 7 | Evolution of the estimate of bathymetry during the

seven sequential assimilation steps for the river Severn (top),

and the Avon (bottom), for a filter configuration in which

bathymetry but not friction was estimated. The ticks at the

bottom indicate the location of the available cross sections. The

vertical dashed lines and corresponding labels indicate the location of

level gauges used for water level validation (after Garcia-Pintado

et al., 2015).
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the flood forecast did not improve as a result of the updated
bathymetry.

Discussion
The study showed that, in a relatively complex scenario with
simultaneous uncertain inflows into a flooded domain, a satellite-
based forecast of the flood was possible with high accuracy
through the assimilation of satellite-derived WLOs into a flood
forecast model. However, several aspects needed to be taken
into account for a successful operational application of EnKF-
based assimilation of WLOs. First, a moderation of the forecast
error covariance based on spatial localization was necessary
to avoid filter divergence. Second, provided localization was
applied, inflow estimation also improved the forecast. Third, the
implementation needed to consider the possible uncertainty in
model parameters and their simultaneous online estimation.

The study was a hindcasting rather than a forecasting
process, as the COSMO-SkyMed constellation (in common with
TerraSAR-X) does not provide near real-time geo-registered
imagery from which WLOs can be extracted and assimilated to
provide a flood forecast. However, other high resolution satellite
SARs, specifically RADARSAT-2 and Sentinel-1, do provide near
real-time data.The European Space Agency is in the process of
launching the Sentinel-1 two-satellite SAR constellation which
will give almost daily coverage of floods at European latitudes.
The first satellite of the pair was launched in April 2014, and
the second is scheduled to follow in 2016. The system allows
processedmulti-look geo-registered SAR images to be available to
the user only an hour or so after download to the ground station.
It should therefore be possible to use the techniques developed
here to help to provide flood forecasts in near real-time.

Use of Sar-derived Water Level
Observations to Improve a Global DTM

Introduction
Many floodplains in the developed world have now been imaged
with high resolution airborne LiDAR or InSAR, giving accurate
DTMs that facilitate accurate flood inundation modeling. This
is not always the case for remote rivers in developing countries.
However, the accuracy of DTMs produced for modeling studies
on such rivers should be enhanced in the near future by the high
resolution TanDEM-XWorld DEM.

Yan et al. (2015) point out that there was a lack of globally-
available DEM data for use as input data for hydraulic modeling
before the launch of the Shuttle Radar Topography Mission
(SRTM) in 2000. The SRTM DEM covers all land between 60N
and 56S, about 80% of the Earth’s land surface. Until recently
the DEM pixel size has been 3 arc seconds at the equator (about
90m globally) and 1 arc seconds (about 30 m) in the USA and
Australia, thought the latest release data are now 30m globally.
The relative height error ranges from 4.7 to 9.8m at the continent
scale The SRTM heights include vegetation canopy heights so
the DEM is not a bare earth DTM. A number of studies have
used the SRTM DEM for large-scale hydraulic modeling in river
and delta areas (for details see Yan et al., 2015). These have
covered many aspects of hydraulic modeling, including water

level and water surface slope retrieval, flood extent simulation
and water level and discharge prediction. A further near-global
DEM which could be used for flood modeling is that produced
by the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER). This is a 30m DEM produced by stereo-
photogrammetry, whose second version (ASTER GDEM2) was
released in 2011. However the vertical resolution of ASTER
GDEM2 ranges from 7 to 14m and the DEM contains anomalies
and artifacts, leading to high elevation errors on local scales and
so hampering its use for flood modeling purposes.

The new TanDEM-X DEM produced by DLR (German
Aerospace Centre) will produce pole-to-pole coverage with
unprecedented accuracy, and should eventually replace the
SRTM DEM for large-scale hydraulic modeling. It will have a
spatial resolution of 0.4 arc seconds at the equator (10–12m
globally), and a relative height accuracy of less than 2m on
slopes less than 20% and 4m on slopes greater than 40%. The
global DEM is expected to be completed by the end of 2015
(Zink, 2012). Scientific assessment of the DEM is presently at
an experimental stage, though there are already assessments of
the Intermediate DEM (IDEM), the intermediate product of
TanDEM-X based on only one coverage of the globe. Results
show that, for the flat and sparsely vegetated terrain found in
many floodplains, the IDEM accuracy achieved is better than
the design specification (Gruber et al., 2012). As with SRTM,
TanDEM-X measures heights to top of canopy so is a Digital
Surface Model (DSM) rather than a DTM. However, TanDEM-
X combines polarimetric with interferometric measurements
to gain additional information from semi-transparent volume
scatterers, which will allow extraction of vegetation density
and vegetation height (Papathanassiou and Cloude, 2001),
potentially aiding the production of a DTM from the DSM. First
observations seem to indicate that the TanDEM-X DEM might
allow for the first time more detailed local flood studies at the
global scale (Yan et al., 2015).

Figure 8A shows a sub-area of the IDEM using airborne
LiDAR at 2.5m resolution. In contrast, Figure 8B shows the
SRTM tiles covering the same area at 90m resolution, the
best global DEM that has been available for flood modeling to
date. Figure 8C shows the TanDEM-X IDEM tiles for the area,
showing the great increase in resolution and accuracy provided
by the TanDEM-X global DEM at 12.5m resolution.

In a related development, increasing use is now being made
of flood extents derived from high resolution SAR images
for calibrating, validating and assimilating observations into
flood inundation models in order to improve these. The model
generally uses the SAR images in conjunction with a DEM of
the reach, which could be the TanDEM-X DEM. This section
discusses an additional use of SAR flood extents to improve the
accuracy of the TanDEM-X DEM in the floodplain covered by
the flood extents, thereby permanently improving the DEM for
future flood modeling studies in this area.

Amore accurate DEMwould generally result inmore accurate
modeling and more accurate measurement of WLOs. Though
in some cases (e.g., the use of a sub-grid model, e.g., Neal
et al., 2012), the TanDEM-X DEM might be spatially averaged
to produce a DEM of lower resolution and higher accuracy, in
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FIGURE 8 | (A) LiDAR DEM of a sub-area of Figure 9 (2.5m pixels, 1× 1 km),

(B) SRTM DEM (90m pixels), (C) TanDEM-X IDEM (12.5m pixels, © DLR

2007) (after Mason et al., submitted).

others (e.g., modeling of urban flooding) the full resolution of the
TanDEM-X DEM might be required. If it is required to extract

WLOs from the SAR flood extents, these would be most accurate
using the highest resolution of the TanDEM-X DEM.

The method is based on the fact that for larger rivers the water
elevation changes only slowly along a reach, so that the boundary
of the flood extent (the waterline) can be regarded locally as a
quasi-contour. As a result, heights of adjacent pixels along a small
section of waterline can be regarded as a sample of heights with a
common population mean. The height of the central pixel in the
section can be replaced with the average of these heights, leading
to a more accurate height estimate because a substantial portion
of the IDEM height error is a random component.

While this will result in a reduction in the height errors along
a waterline, the waterline is a linear feature in a two-dimensional
space. However, improvements to the DEM heights between
adjacent pairs of waterlines can also be made, because DEM
heights enclosed by the higher waterline of a pair must be at least
no higher than the corrected heights along the higher waterline
(otherwise they would emerge from the flood extent), whereas
DEM heights not enclosed by the lower waterline must be no
lower than the corrected heights along the lower waterline. In
addition, DEM heights between the higher and lower waterlines
can also be assigned smaller errors because of the reduced
errors on the corrected waterline heights. Note that no averaging
of height values is performed in correcting heights between
waterlines (so that no spatial resolution is lost), whereas the
averaging of heights along waterlines is justified because the latter
are locally isolines. Full details of the method are given in Mason
et al. (submitted).

Study Area and Data Set
The method was tested on a section of the TanDEM-X
Intermediate DEM (IDEM) covering an 11 km reach of the
Warwickshire Avon, England (Figure 9A). Figure 9B shows the
height error map associate with this section of IDEM.

Flood extents from four of the COSMO-SKyMed images of
Figure 2 at various stages of the flood in November 2012 were
used (Figure 10).

Method
Preprocessing
The 12.5m resolution IDEM and its height error map were re-
sampled to the 2.5m resolution of the CSK images using nearest
neighbor interpolation, so that blocks of 5 × 5 pixels in each
corrected map contained the same values.

Flood Extent Extraction
Waterlines were detected automatically in the CSK images using
the method described in Mason et al. (2012a). No information
from the IDEM was used at this stage.

Candidate Waterline Pixel Selection in Rural Areas
Candidate waterline pixels were selected from the flood extent in
rural areas. Sections of waterline in the interior of the flood extent
caused by regions of emergent vegetation (e.g., hedges) may have
erroneously low water levels associated with them.While most of
these will have been removed at the segmentation stage, residual
sections must be removed prior to further processing. This was
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FIGURE 9 | (A) TanDEM-X IDEM of the flooded reach (a sub-area of Figure 1)

and, (B) IDEM height error map of the flooded reach (lowest part not supplied)

(© DLR 2014) (after Mason et al., submitted).

facilitated by performing a dilation and erosion operation on the
binary flood extent, as described in Mason et al. (2012b).

To cope with the fact that in some regions there were
systematic as well as random errors in the IDEM, false positives
were further suppressed by selecting waterline points in regions
of low or medium DEM slope within a certain height range
centered on the mean water height in the area. A waterline point
may be heighted more accurately if it lies on a low slope rather
than a high slope because any error in its position will cause only
a small error in height. The slope threshold was set quite high
(0.6) because there was substantial noise in the IDEM slope values
due to the large random error in the IDEM heights. In order to
find the allowed waterline level range in the area, a histogramwas
constructed of the waterline levels, and the position of the mean
was found. A normal distribution N(µ, σ2) was fitted around the
mean µ, and candidate waterline points with levels more than
2.5σ away from µ were suppressed.

Allowance was also made for the fact that the IDEM is a DSM
rather than a “bare-earth” DTM. Ideally the IDEM should be
processed to remove the heights of surface objects to leave a DTM
that can be used in the subsequent processing. This step was
approximated in this case by using a land use map to select only
candidate waterline pixels in regions of short vegetation, namely
grassland and arable classes. It was assumed that any height
bias due to failure to remove short vegetation heights would be
small compared to the random height error. The majority of the
floodplain in the study area was comprised of grassland or arable
classes.

Correction of Candidate Waterline Pixel Heights
For each candidate waterline pixel, a window centered on
the pixel was examined to select adjacent heights within the
window. A window size of 11 × 11 pixels in the 12.5m IDEM

FIGURE 10 | Flood extents (blue) for the event of November 2012

overlain on SAR imagery of the flooded 11km reach of Figure 9A (©

CSK) (after Mason et al., submitted).

image space was selected as providing a good trade-off between
spatial resolution and number of adjacent heights. Because the
processing at this stage was in the 2.5m CSK image space, only
one pixel height in each 12.5m IDEM pixel was selected to avoid
introducing spurious height correlations. Provided sufficient
surrounding heights were detected, their mean and standard
deviation were estimated. If the standard deviation was less than
that of the central pixel in the IDEM height error map, the central
pixel’s height was corrected to be the mean of the surrounding
heights, and its IDEM height error map entry was updated.
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Adjustment of the IDEM between Adjacent Higher

and Lower Waterlines
Each pair of adjacent waterlines was examined sequentially
to update the section of IDEM between the current pair of
waterlines if possible. The updating process was based on the
heights and height errors associated with the candidate waterline
pixels on the two waterlines. All IDEM pixels between the
waterlines were first modified below the higher waterline of
the pair wherever possible. If an IDEM pixel had a height that
exceeded that of the nearest candidate waterline pixel on the
higher waterline, the IDEM pixel height (hi) and error (σi) were
set to those of the waterline pixel (hw, σw). Otherwise, the IDEM
pixel height was not modified, but its height error could be
reduced to σi’ if

hi + 2σi > hw + 2σw (1)

using

σ ′
i = |hw + 2σw − hi|/2 (2)

The IDEM pixels between the waterlines were then modified if
possible above the lower waterline, using similar rules to the
above, in conjunction with the candidate waterline pixel heights
and errors of the lower waterline.

An important requirement of the method was that locally the
higher waterline of the pair should never be lower than the lower
waterline, and to this end lower waterline candidate pixels higher
than nearby higher waterline candidate pixels were suppressed
in a pre-processing step. In addition, any IDEM pixels enclosed
within the lowest waterline boundary were assessed for possible
modification to this waterline height. On the other hand, no
attempt was made to modify the IDEM outside the boundary of
the highest waterline.

Results
On average about 45% of the waterline pixels in each flood
extent became candidate pixels able to satisfy the selection criteria
of having a low/medium slope, not being a height outlier, and
coinciding with short vegetation.

Original and corrected IDEM candidate waterline pixel
heights were compared to corresponding airborne LiDAR heights
(Table 1). Averaged over the four waterlines considered, it
was found that the difference between the original IDEM
candidate pixel height and the corresponding LiDAR height
had a standard deviation of 1.25m and a bias of 0.38m,
while for the corrected heights the difference had a standard
deviation of only 0.74m and a similar bias. The corrected heights
therefore had a standard deviation only 59% that of the original
heights.

A floodplain area of 4.3 km2 was covered by the waterlines
along the 11 km reach. Considering the IDEM pixels between
the waterlines, 33% of IDEM heights were above the higher
waterline, and 30% below the lower waterline of an adjacent
pair (Table 2). When compared to LiDAR, the original higher
heights had a mean difference from the LiDAR height of

1.60m with standard deviation 2.10 m, while after correction
the mean difference was 0.19m with standard deviation

0.86m. The corrected heights below the lower waterline
were similarly improved (see Table 2). Considering the 63%
of pixels whose heights were modified in this way, the

original heights had a mean difference from the LiDAR of
0.61m with standard deviation 2.05m, while after correction
the mean difference was 0.26m with standard deviation
0.74m. The height errors of a further 23% of IDEM heights
between the higher and lower waterlines were also reduced,
because of the reduced errors on the corrected waterline
heights. The mean error of the original heights was 1.13m,
whereas the mean error of the corrected heights was 0.79m
(Table 3).

TABLE 1 | Comparison of original and corrected IDEM waterline heights to LiDAR heights.

Image date Mean waterline No. of pixels Mean difference of Standard deviation of Mean difference of Standard deviation of

height (m) validated original height from difference of original height corrected height from difference of corrected

LiDAR height (m) from LiDAR height (m) LiDAR height (m) from LiDAR height (m)

20121127 15.27 3934 0.38 1.17 0.36 0.73

20121128 14.76 3567 0.43 1.32 0.43 0.82

20121129 14.16 3255 0.39 1.20 0.37 0.69

20121130 13.58 1742 0.30 1.29 0.33 0.71

TABLE 2 | Correction of truncated IDEM pixel heights and errors between the waterlines.

Class Percentage Mean difference of Standard deviation of Mean difference of Standard deviation of

original IDEM heights original heights from corrected IDEM heights corrected heights from

(%) from LiDAR heights (m) LiDAR heights (m) from LiDAR heights (m) LiDAR heights (m)

Pixels truncated above an upper waterline 33 1.60 2.10 0.19 0.86

Pixels truncated below a lower waterline 30 −0.58 1.00 0.28 0.61

Total pixels truncated 63 0.61 2.05 0.26 0.74
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TABLE 3 | Errors for IDEM pixels between the waterlines not truncated but

reduced in error.

Class Percentage Mean standard Mean standard

(%) deviation of original deviation of corrected

heights (m) heights (m)

Pixels not truncated

but reduced in error

23 1.13 0.79

Discussion
From the above results it can be concluded that the standard
deviation and bias of the corrected IDEM heights can be
significantly reduced compared to their original counterparts
using SAR-derived flood extents. It should also be possible to
use the method to improve the final TanDEM-X DEM when this
becomes available. This may allow improved large-scale flood
inundation modeling with the TanDEM-X DEM in the future.

Although the method presented here has been aimed at
improving the TanDEM-X DEM in a river floodplain, it could
also be used to improve the DEM in an inter-tidal zone, using
a sequence of high resolution SAR images obtained at varying
states of the tide between the high and low water marks (e.g.,
Mason et al., 1999; Thornhill et al., 2012). It could also be applied
to a variety of DEMs used for flood inundation modeling other
than the TanDEM-X DEM, employing flood extents from higher
resolution images at both microwave and optical wavelengths
from a variety of satellite and aerial platforms (e.g., SRTM DEM
data could be corrected using Sentinel-1 SAR flood extents). The
method should also have relevance for the SWOT (SurfaceWater
and Ocean Topography) satellite to be launched in 2020 (JPL,
2015) (see Mason et al., submitted).

Conclusion

These studies have illustrated the utility of a variable-resolution
global DEM obtained by combining existing high and low
resolution data sets for modeling flood water dynamics globally,
at high resolution where possible and at lower resolution over
larger rivers in remote areas. They have been based on the
symbiosis that exists between DEM data and SAR-derived flood
extents.

The two studies have been chosen because they illustrate
aspects of two of the main types of hydrologic/hydraulic
modeling that are commonly carried out. The variable-resolution
DTM is the common denominator linking them. Flood

inundation modeling of urban areas requires a high resolution
LiDAR DSM and modeling carried out at a local scale, and has
been illustrated here using the first example of high resolution
SAR-supported flood forecast in river networks. The lower-
resolution realization of the DTM could be used for performing
global flood modeling, or hydrologic modeling over local areas
at lower scales. The second example using SAR-derived WLOs
to improve the lower-resolution DTM falls into this category,
though is limited to improving the DTM for future modeling
studies rather than performing any modeling as such.

The problems to be overcome in constructing a variable-
resolution global DTM obviously increase dramatically as the
resolution of the data increases. The lower resolution data (e.g.,
the TanDEM-X WorldDEM) could be sourced from just a few
or even one supplier. However, the high resolution data of
urban areas would generally be LiDAR data that would have
to be licensed from a large number of individual aerial survey
companies from all over the world. There are obviously great
logistical and implementational difficulties involved in ensuring
that low cost high resolution height data can be integrated into
the DTM on a global scale, but it is to be hoped that such a DTM
may become a reality at some point in the future to aid flood
modeling.

Author Contributions

DM wrote the paper, carried out the study on SAR-derived
WLOs to improve the TanDEM-X DEM, and was responsible
for acquiring the SAR data. JG carried out the study on
high resolution SAR-supported flood forecast in river networks,
and assisted with the acquisition of the SAR data. HC had
overall responsibility for managing the work, assisted with the
acquisition of the SAR data, reviewed the manuscript and gave
approval for publication. SD assisted with the data assimilation
theory and provided a critical review of the manuscript.

Acknowledgments

This work was supported by NERC through the DEMON project
(NE/I005242/1) within the NERC SRM (Storm Risk Mitigation)
programme, and the SINATRA project (NE/K00896X/1) within
the NERC FFIR (Flooding From Intense Rainfall) programme.
The authors are grateful to DLR for the provision of the
TanDEM-X IDEM data. We thank the EA for the precipitation
and standard flow/level gauge datasets. Thanks are due to Moira
Mason for assistance with the satellite image acquisition.

References

Allan, R. P., and Soden, B. J. (2008). Atmospheric warming and the amplification of

precipitation extremes. Science 321, 1481–1484. doi: 10.1126/science.1160787

Bates, P. D., and De Roo, A. (2000). A simpled raster-based model for

flood inundation simulation. J. Hydrol. 236, 54–77. doi: 10.1016/S0022-

1694(00)00278-X

Beven, K., Cloke, H., Pappenberger, F., Lamb, R., and Hunter, N. (2015).

Hyperresolution information and hyperresolution ignorance in modelling

the hydrology of the land surface. Sci. China Earth Sci. 58, 25–35. doi:

10.1007/s11430-014-5003-4

Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L., David, C. H., et al.

(2015). Hyper-resolution global hydrological modelling: what is next? Hydrol.

Process. 29, 310–320. doi: 10.1002/hyp.10391

Donigian, A., Bicknell, B. R., and Imhoff, J. C. (1995). “Hydrological

simulation program – fortran (hspf),” in Computer Models of Watershed

Hydrology, ed V. Singh (Littleton, CO: Water Resources Publications),

395–442.

Frontiers in Earth Science | www.frontiersin.org 13 August 2015 | Volume 3 | Article 43

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Mason et al. Flood forecasting using global DTM

Durand, M., Neal, J. C., Rodriguez, E., Andreadis, K. M., Smith, L. C., and

Yoon, Y. (2014). Estimating reach-averaged discharge for the river Severn from

measurements of river water surface elevation and slope. J. Hydrol. 511, 92–104.

doi: 10.1016/j.jhydrol.2013.12.050

Eineder, M., Fritz, T., Jaber, W., Rossi, C., and Breit, H. (2012). “Decadal earth

topography dynamics measured with TanDEM-X and SRTM,” in Proceedings of

IEEE International Geoscience and Remote Sensing Symposium (Munich). doi:

10.1109/igarss.2012.6351130

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-

geostrophic model using Monte Carlo methods to forecast error statistics.

J. Geophys. Res. 99, 10143–10162. doi: 10.1029/94JC00572

Friedland, B. (1969). Treatment of bias in recursive filtering. IEEE Trans. Autom.

Control 14, 359–367. doi: 10.1109/TAC.1969.1099223

Garcia-Pintado, J., Mason, D. C., Dance, S. L., Cloke, H. L., Neal, J. C., Freer, J.,

et al. (2015). Satellite-supported flood forecast in river networks: a real case

study. J. Hydrol. 523, 706–724. doi: 10.1016/j.jhydrol.2015.01.084

Garcia-Pintado, J., Neal, J. C., Mason, D. C., Dance, S., and Bates, P. (2013).

Scheduling satellite-based SAR acquisition for sequential assimilation of

water level observations into flood modelling. J. Hydrol. 495, 252–266. doi:

10.1016/j.jhydrol.2013.03.050

Gruber, A., Wessel, B., Huber, M., Breunig, M., Wagenbreener, S., and Roth, A.

(2012). “Quality assessment of first TanDEM-X DEMs for different terrain

types,” in 9th European Conference on Synthetic Aperture Radar (Nuremberg),

101–104.

Hamill, T. M., Whitaker, J. S., and Snyder, C. (2001). Distance-

dependent filtering of background error covariance estimates in

an Ensemble Kalman filter. Mon. Wea. Rev. 129, 2776–2790. doi:

10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2

Hunt, B. R., Kostelich, E. J., and Szunyogh, I. (2007). Efficient data assimilation for

spatiotemporal chaos: a local ensemble transform Kalman filter. Phys. D 230,

112–126. doi: 10.1016/j.physd.2006.11.008

JPL. (2015). SWOT: The Surface Water and Ocean Topography Mission, eds, L.-L.

Fu, D. Alsdorf, R. Morrow, and E. Rodriguez. Available online at: https://swot.

jpl.nasa.gov/files/swot/SWOT_MSD_1202012.pdf

Kirchgessner, P., Nerger, L., and Bunse-Gerstner, A. (2014). On the choice of an

optimal localization radius in ensemble Kalman filter methods.Mon.Wea. Rev.

142, 2165–2175. doi: 10.1175/MWR-D-13-00246.1

Mason, D. C., Amin, M., Davenport, I. J., Flather, R. A., Robinson, G. J., and

Smith, J. A. (1999). Measurement of recent intertidal sediment transport in

Morecambe Bay using the waterline method. Estuarine Coast. Shelf Sci. 49,

427–456. doi: 10.1006/ecss.1999.0508

Mason, D. C., Davenport, I. J., Neal, J. C., Schumann, G. J.-P., and Bates, P. D.

(2012a). Near real-time flood detection in urban and rural areas using high

resolution Synthetic Aperture Radar images. IEEE Trans. Geosci. Remote Sens.

50, 3041–3052. doi: 10.1109/TGRS.2011.2178030

Mason, D. C., Garcia-Pintado, J., and Dance, S. L. (2014). Improving flood

inundation monitoring and modelling using remotely sensed data. Civ. Eng.

Surveyor 2014, 34–37.

Mason, D. C., Schumann, G. J.-P., Neal, J. C., Garcia-Pintado, J., and Bates,

P. D. (2012b). Automatic near real-time selection of flood water levels

from high resolution Synthetic Aperture Radar images for assimilation into

hydraulic models: a case study. Remote Sens. Environ. 124, 705–716. doi:

10.1016/j.rse.2012.06.017

Matgen, P., Montanari, M., Hostache, R., Pfister, L., Hoffman, L., Plaza, D., et al.

(2010). Towards the sequential assimilation of SAR-derived water stages into

hydraulic models using the particle filter: proof of concept. Hydrol. Earth Sys.

Sci. 14, 1773–1785. doi: 10.5194/hess-14-1773-2010

Neal, J. C., Schumann, G. J.-P., and Bates, P. D. (2012). A subgrid channel model

for simulating river hydraulics and floodplain inundation over large and data

sparse areas.Water Resour. Res. 48:W11506. doi: 10.1029/2012wr012514

Papathanassiou, K. P., and Cloude, S. R. (2001). Single-baseline polarimetric

SAR interferometry. IEEE Trans. Geosci. Rem. Sens. 39, 2352–2363. doi:

10.1109/36.964971

Pappenberger, F., Dutra, E., Wetterhall, F., and Cloke, H. L. (2012). Deriving global

flood hazard maps of fluvial floods through a physical model cascade. Hydrol.

Earth Syst. Sci. 16, 4143–4156. doi: 10.5194/hess-16-4143-2012

Petrie, R. E., and Dance, S. L. (2010). Ensemble-based data assimilation and the

localisation problem.Weather 65, 65–69. doi: 10.1002/wea.505

Raclot, D. (2006). Remote sensing of water levels on floodplains: a spatial

approach guide by hydraulic functioning. Int. J. Rem. Sens. 27, 2553–2574. doi:

10.1080/01431160600554397

Roux, H., and Dartus, D. (2008). Sensitivity analysis and predictive uncertainty

using inundation observations for parameter estimation in open-channel

inverse problem. J. Hydr. Eng. 134, 541–549. doi: 10.1061/(ASCE)0733-

9429(2008)134:5(541)

Schumann, G. J.-P., Bates, P. D., Neal, J. C., and Andreadis, K. M. (2014). Fight

floods on global scale. Nature 507, 169. doi: 10.1038/507169e

Schumann, G. J.-P., Neal, J. C., Mason, D. C., and Bates, P. D. (2011). The accuracy

of sequential aerial photography and SAR data for observing urban flood

dynamics: a case study of the UK summer 2007 floods. Rem. Sens. Environ.

115, 2536–2546. doi: 10.1016/j.rse.2011.04.039

Smith, P. J., Thornhill, G. D., Dance, S. L., Lawless, A. S., Mason, D. C., and

Nichols, N. K. (2013). Data assimilation for state and parameter estimation:

application to morphodynamic modelling. Q. J. R. Meteorol. Soc. 139, 314–327.

doi: 10.1002/qj.1944

Thornhill, G. D., Mason, D. C., Dance, S. L., Lawless, A. S., and Nichols,

N. K. (2012). Integration of 3D Variational Data Assimilation with

a coastal area morphodynamic model. Coast. Eng. 69, 82–96. doi:

10.1016/j.coastaleng.2012.05.010

Yan, K., Di Baldassarre, G., Solomatine, D. P., and Schumann, G. J.-P. (2015). A

review of low-cost space-borne data for flood modelling: topography, flood

extent and water level. Hydrol. Processes 29, 3368–3387. doi: 10.1002/hyp.

10449

Zink, M. (2012). “TanDEM-X mission status,” in Proceedings IGARSS Symposium

(Munich), 22–27.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Mason, Garcia-Pintado, Cloke and Dance. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org 14 August 2015 | Volume 3 | Article 43

https://swot.jpl.nasa.gov/files/swot/SWOT_MSD_1202012.pdf
https://swot.jpl.nasa.gov/files/swot/SWOT_MSD_1202012.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive

	The potential of flood forecasting using a variable-resolution global Digital Terrain Model and flood extents from Synthetic Aperture Radar images
	Introduction
	High Resolution SAR-supported Flood Forecast in River Networks
	Introduction
	Methods
	Study Area and Models Employed
	SAR Image Processing
	Bathymetry Estimation
	The Ensemble Filter
	Filter Localization

	Results
	Influence of the Localization Metric
	Inflow Estimation
	Parameter Estimation

	Discussion

	Use of Sar-derived Water Level Observations to Improve a Global DTM
	Introduction
	Study Area and Data Set
	Method
	Preprocessing
	Flood Extent Extraction
	Candidate Waterline Pixel Selection in Rural Areas
	Correction of Candidate Waterline Pixel Heights
	Adjustment of the IDEM between Adjacent Higher and Lower Waterlines

	Results
	Discussion

	Conclusion
	Author Contributions
	Acknowledgments
	References


