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To provide insights on the paleosecular variation of the geomagnetic field and

the mechanism of reversals, long time series of the dipolar magnetic moment are

generated by two different stochastic models, known as the “domino” model and

the inhomogeneous Lebovitz disk dynamo model, with initial values taken from the

paleomagnetic data. The former model considers mutual interactions of N macrospins

embedded in a uniformly rotating medium, where random forcing and dissipation act

on each macrospin. With an appropriate set of the model’s parameter values, the

series generated by this model have similar statistical behavior to the time series of the

SHA.DIF.14K model. The latter model is an extension of the classical two-disk Rikitake

model, considering N dynamo elements with appropriate interactions between them.

We varied the parameters set of both models aiming at generating suitable time series

with behavior similar to the long time series of recent secular variation (SV). Such series

are then extended to the near future, obtaining reversals in both cases of models. The

analysis of the time series generated by simulating both the models show that the

reversals appear after a persistent period of low intensity geomagnetic field.

Keywords: dipolar magnetic field, paleomagnetic data, domino model, disk dynamo, stochastic model,

geomagnetic reversal

Introduction

The Earth’s magnetic field is one of the most representative characteristics of our planet. There
is a widespread consent that the main geomagnetic field is of internal origin and is created and
maintained by a dynamo mechanism in the molten outer core of the Earth (Moffatt, 1978).
The external sources (ionosphere, magnetosphere, ring currents) have noticeable contributions
although smaller than the contributions from internal sources. However these outer sources remain
important to explain some features of the temporal changes of the geomagnetic field.

The field observed at the Earth’s surface is mainly dipolar, at least for the last five Myr (Heimpel
and Evans, 2013) and is subject to temporal changes in a wide range of time scales, from 10−3 s to
108 years. The time variations with time scales shorter than several months are considered to have
an external origin, while the time variation with a longer time scale are mainly of internal origin.
The time variation with time scale from months to thousands of years is termed secular variation
(SV) contains a small contribution from external origin, especially those variations of time scales
of months to 10 years. Variations with longer time scale, namely geomagnetic field reversals or
excursions, are properly due to internal sources (Merrill and Mcfadden, 1999).
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A reversal is a complete flip of the polarity of the magnetic
dipolar moment of the geomagnetic field (Krijgsman and Kent,
2004). The paleomagnetic data show that the Earth’s magnetic
field has experienced hundreds of polarity reversals during the
planet’s history. These reversals occurred at irregular intervals
(Jacobs, 1994; Merrill et al., 1996) with durations of constant
polarity lasting from 40 kyr to 40 Myr. The geomagnetic field
reversals sequence of the last 160 Myr shows that the distribution
of the length of the intervals between two consecutive
reversals fits a lognormal distribution (Ryan and Sarson, 2007).
Other authors derive different conclusions showing that the
distribution of the chrons between reversals fits other statistical
distributions like gamma distribution (Naidu, 1971) and Poisson
distribution (Constable and Parker, 1988). Actually the picture
is more complex because there are registered excursions as well
that are considered to be two consecutive reversals bracketing an
aborted polarity interval (Valet et al., 2008).

Despite of the increasing data which enhance our
understanding on SV, especially abrupt changes such as
jerks (Duka et al., 2012), there is yet unknown a physical
mechanism that can fully and satisfactorily describe these
features of the geomagnetic field. Apparently the short term
changes (SV) and the reversals have different statistical behavior
this being evidence that these features of the geomagnetic field
are controlled by different physical mechanisms. However, now
it is almost accepted that reversals are natural outgrowths of
the SV (Gubbins, 1999; Biggin et al., 2008; Lhuillier and Gilder,
2013), and that these events occur during a persistent period of
low intensity of dipolar magnetic field (Guyodo and Valet, 1999).

Measurements of the Earth magnetic field show that in the last
centuries the dipolar moment has decreased and such decreasing
is lasting for longer periods as given by different SV models like
CALS7K.2, CALSK.10b, or SHA.DIF.14K (Korte and Constable,
2005; Genevey et al., 2008; Knudsen et al., 2008; Pavon-Carasco
et al., 2014). There are authors that argue although the field
intensity is rapidly decreasing, a reversal in the near futuremay be
improbable (Cox, 1969). Others speculate the opposite (De Santis
and Qamili, 2015).

Much of the magnetic field variations are thought to have
a stochastic nature and almost all kinds of different models:
phenomenological, experimental, or numerical (Petrelis et al.,
2009) of the temporal changes of the magnetic field are based
on stochastic processes, most of them treating the geomagnetic
field as a dynamical system. On the other hand, some authors
(Barraclough and De Santis, 1997) suggest that the geomagnetic
field has a chaotic behavior becoming unpredictable after a time
period of several years.

Numerical simulations are a very helpful tool to study the
statistical behavior of the geomagnetic field, to provide some
insights in its dynamics and probably to predict near future
changes. The numerical models span from models based on
magneto-hydrodynamics (MHD) partial differential equations
(Rüdiger and Hollerbach, 2004; Christensen and Wicht, 2007) to
“toy” models like the “domino” model (Nakamichi et al., 2011;
Mori et al., 2013; Duka et al., 2015) or Rikitake two-disk dynamo
(Hoshi and Kono, 1988). The time series obtained by numerically
simulating various MHD models show that geomagnetic field

reversals occur by imposing different conditions and different
parameter values on the 3D dynamo equations (Glatzmaier and
Roberts, 1995, 1997; Glatzmaier et al., 1999). Some succeeded
to reproduce some features of the SV (Schmitt et al., 2001;
Christensen and Olson, 2003).

The complexity of the MHD equations requires powerful
computational resources that often are inaccessible, whereas
“toy” models can be simulated easily with a PC. Despite their
simplicity, “toy” models seem to reproduce quite accurately
many features of the geomagnetic field temporal variations.
One of these models, the “domino” model, appears with several
versions, but two of them are of particular interest: the Short-
range Coupled Spins (SCS) model (Mori et al., 2013) and the
Long-range Coupled Spins (LCS) model (Nakamichi et al., 2011;
Duka et al., 2015). Another model is the Rikitake model. Many
extended versions can be found in the literature, but in this
paper we will take in consideration the inhomogeneous Lebovitz
(IL) model (Shimizu and Honkura, 1985). According to these
authors, the IL model is the most appropriate in modeling the
geomagnetic field reversals. In the present work we extend their
study by controlling their result and analysing how efficient
the IL model is in reproducing the SV behavior of the Earth
magnetic field.

In the dynamical equations of the SCS and LCS models, there
is an important random term (see Section Statistical Models
below), which makes the name stochastic model quite accurate.
As a consequence, the magnetisation time series generated by
these models show random polarity flips (Duka et al., 2015). For
the IL model, the random behavior is the result of the specific
interactions among disks.

Similarly to Duka et al. (2015), we study the parameter space
of the models although our study is not conclusive. We aim to
find that set of parameter values (for each model) for which the
statistical behavior of the time series generated by simulating
the models is similar to the behavior of the SHA.DIF.14K time
series. After we found these sets of parameter values, we extended
the time series covering the near future. We do not pretend to
give a prediction of the future behavior of the geomagnetic field
because it has chaotic nature (Barraclough and De Santis, 1997;
De Santis et al., 2011). Instead we aim to find if the period of
low intensity dipolar field, like the one we are experiencing, is
potentially the precursor of a reversal. Essentially, we will explore
possible statistical features that may link SV models and the
reversal process.

The structure of the paper is as follows: in Section Statistical
Models we shortly describe both stochastic models together with
the respective dynamical equations; in Section Some Results and
Statistics we will present some preliminary results, comparing
the statistical behavior of dipolar magnetic field generated by
both models; in Section SV-like Time Series we present the
results of the simulations of the long time series of SV of
the dipolar geomagnetic field. In the last section we give our
conclusions. We complete the article with an Supplementary
Material where we include the MATLAB lists of programs used
to generate the synthetic time series of the different models,
whose main characteristics and results are explained in the
article.
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Statistical Models

“Domino” Model
The fluid flow in the Earth’s outer core is organized in well-
defined columns known as convective columns outside the
Taylor cylinder (Kageyama and Sato, 1997; Davidson, 2013),
the so called Taylor columns. These convective column cells
are considered as dynamo cells (elements) and the dynamo
mechanism would be a collection of the interactions of such
elements (Nakamichi et al., 2011). Inspired by the idea that the
convective Taylor column behaves as dynamo cell, Mori et al.
(2013), proposed a simple model (“domino” model) composed
of N macro-spins which are aligned along a ring and interact
in a prescribed fashion (Figure 1). In detail, the macro-spins
are embedded in a uniformly rotating medium and along the
rotational axis lays the unit angular velocity vector � = (0; 1).
Each macro-spin is designated by a unit vector Si (i = 1, . . . ,
N) that is fully described by the angle θ i that it makes with the
rotational axis, i.e., Si = (sinθ i; cosθ i). The kinetic energy K of
the system of macro-spins is simply:

K (t) =
1

2

N
∑

i= 1

θ̇i(t)
2

(1)

The potential energy P of the system is composed by two terms:
one term models the forcing tendency of each macro-spin to
be aligned parallel to the rotational axes; the other term rises
from the interaction among macro-spins. We considered two
variations of macro-spin interactions: macro-spins interacting
pair-wise with their neighbors and macro-spin interacting with
all other macro-spins. In the first case the coupling is confined in
short distances, hence we have the Short-range Coupling Spins

FIGURE 1 | Sketch of the Standard “Domino” model (adapted from

Mori et al., 2013).

model (SCS), whilst in the second case the coupling is global and
the model is known as Long-range Coupled Spins (LCS) model.
The potential energy for the SCS model is:

P(t) = γ

N
∑

i= 1

(� · Si)2 + λ

N
∑

i= 1

(Si · Si+1) (2)

where Si+1 = Si when i = N. Here the γ parameter characterizes
the tendency of the macro-spins to be aligned with the rotation
axis. The squared scalar product in the first summation on R.H.S.
of Equation (2) ensures that there is no preferred polarity as it is
obvious in the geomagnetic field’s case where two stable states of
opposite polarity are observed. The λ parameter characterizes the
intensity of spin-spin interaction.

The Lagrangian L of the system is:

L =
1

2

N
∑

i= 1

θ̇i(t)
2 − γ

N
∑

i= 1

(� · Si)2 − λ

N
∑

i= 1

(Si · Si+1) (3)

A Langevin-type equation is set up as follows:

∂

∂t

(

∂L

∂θ̇i

)

=
∂L

∂θi
− κθ̇i +

εχi√
τ

(4)

where the term −κθ̇i describes energy dissipation and the term
εχi√

τ
is a random force acting on each spin. The random number

χ i is a Gaussian-distributed random number with zero mean
and unit variance which is updated after each correlation time
τ . The substitution of Equations (3) into (4) yields the dynamical
equations:

θ̈i − 2γ cos θi sin θi + λ
[

cos θi(sin θi−1 + sin θi+1)

− sin θi (cos θi−1 + cos θi+1)
]

+ κθ̇i −
εχi√

τ
= 0 (5)

where i = 1, 2, . . .N; θ0 = θN and θN+1 = θ1. (In both models
(SCS and LCS), periodic boundary conditions are applied).

The LCS model differs from SCS model in the spin-spin
interaction term and all the other terms in Equations (1) and (2)
remain identical. The modified potential energy is:

P (t) = γ

N
∑

i= 1

(�·Si)2 +
λ

2N

N
∑

i= 1

∑

j>1

(

Si · Sj
)

, (6)

and the Langevin equations derived from the modified
Lagrangian become:

θ̈i − 2γ cos θi sin θi +
λ

2N

N
∑

j 6=i

(

cos θisin θj − cos θjsin θi
)

− κθ̇i+
εχi√

τ
= 0, i = 1, · · · ,N. (7)

The Equations (5) and (7) are integrated using a 4th-order
Runge-Kutta subroutine by applying an internal function of

Frontiers in Earth Science | www.frontiersin.org 3 September 2015 | Volume 3 | Article 52

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Peqini et al. Low-intensity behavior of the dipolar magnetic field

MATLAB (ode45). The initial values of θ i and time derivatives
θ̇i for the long time series are taken to be uniformly distributed
between 0 and 2 π. The values of model parameters: N, γ , λ, κ ,
ε, and τ are chosen empirically (see Section Some Results and
Statistics).

The output of each simulation is the cumulative axial
orientation of all macro-spins or axial synchronization, simply
named magnetization:

M =
1

N

N
∑

i= 1

(� · Si) =
1

N

N
∑

i= 1

cosθi (t) (8)

It corresponds to the normalized axial dipolar moment (ADM)
of the geomagnetic field or the first Gauss coefficient g01 of the
multipolar expansion of the geomagnetic potential.

Inhomogeneous Lebovitz Model
The first example of a rigid rotating system where the dynamo
process effect takes place is the homopolar disk dynamo (Moffatt,
1978; Backus et al., 1996). The system is composed of a rigid
conductive disk rigidly connected to an axle, which coincides
with the disk axis of rotation. A wire in a loop shape is
connected mediating two sliding contacts with the disk and the
axle (Figure 2A). The system rotates uniformly and the current

I flows in the wire and the rigid parts. Depending on the sense
of rotation, the initial magnetic field is amplified or decreased
monotonically, showing no inversions.

Constructing more complicated systems with disk dynamos,
one can get interesting results. The first example is the Rikitake
two-disk dynamo, widely studied especially from the nonlinear
dynamics perspective (Shimizu and Honkura, 1985; Hoshi and
Kono, 1988; Hardy and Steeb, 1999; Donato et al., 2009; Danca
and Codreanu, 2011). The two disks affect each other through
the wires that loop around the respective axes (Figure 2B). The
coupling of the disks varies the intensities of the currents that
flow in each of them, hence the magnetic field produced by these
currents. The corresponding generated time series of magnetic
field are chaotic and show magnetic field inversions occasionally.
However the spiky oscillations that are observedmake the system
unrealistic.

Complex magnetic field time series can be obtained by
constructing more complex systems with disk dynamos. Shimizu
and Honkura (1985) give detailed descriptions for several N-disk
systems providing also magnetic field time series generated from
numerical simulations. In some of the several N-disk dynamos,
the field oscillates chaotically and the spikes are visible. One
system in particular produced more realistic magnetic field time
series and that is the Inhomogeneous Lebovitz (IL) model. This

FIGURE 2 | (A) Homopolar disk dynamo (adapted from Leprovost et al., 2005); (B) a sketch of the Rikitake disk dynamo (adapted from Yajima and Nagahama, 2009);

(C) a sketch of the IL model consisting of N disks arranged in a circle. The main disk is not shown here (adapted from Shimizu and Honkura, 1985).
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model, as pointed out by the authors, produces time series that
are statistically closer to the paleomagnetic time series. More
specifically, they conclude that the statistical distribution of the
length of stable polarity periods of the magnetic field time series
generated by ILmodel is very similar to the statistical distribution
of stable polarity periods of the Earth’s magnetic field.

Basically the IL model is a modification of the Lebovitz model.
In this last model, N identical disks are placed on a ring. The
disks interact pair-wise only with one of the neighbors in a one-
direction interaction. The loop of the ith disk surrounds the
axle of the ith +1 disk (Figure 2) and the last disk (the N-th
disk) interacts with the first disk, i.e., the periodic boundary
conditions are assumed. As in the Rikitake two-disks dynamo,
the variables of the Lebovitz system are the current intensities
Ii and angular velocities �i, where i = 1,..., N. The physical
parameters of the system obviously are the electric resistance
and inductivity of each loop, mutual inductivity and torques
applied on each of the disks. All these physical parameters are the
same for all disks. Having homogeneity throughout the system
regarding the physical parameters of the disk dynamos, the
model is named Homogeneous Lebovitz (HL) model. The non-
dimensional dynamical equations of HL model, derived by Cook
and Roberts (1970) and Hardy and Steeb (1999), are:























ẋ1 + µx1 = y1xN , ẏ1 = 1− x1xN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ẋn + µxn = ynxn−1, ẏ1 = 1− xnxn−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ẋN + µxN = yNxN−1, ẏN = 1− xNxN−1

(9)

where the periodic boundary conditions are applied. In these
equations xi denotes the non-dimensional current intensity of
i-th disk dynamo and yi denotes the non-dimensional angular
velocity of the same disk. The only model parameter µ is a non-
dimensional quantity that results from the non-dimensioning
procedure and characterizes the contribution of the current that
flows in the i-th disk in the rate of change of itself. It can be seen
that the dynamical equations aremathematically identical to each
other that reflects the homogeneity present in the HL system.

If we replace one of the disk dynamos with another one with
different physical parameter values, the homogeneity is broken.
Let us choose the N-th disk dynamo to be different from the
others. Practically the magnetic field generated by the N-th disk
is stronger than the field of the other disks and it acts like a
dominant magnetic field. The asymmetry or inhomogeneity now
present in the system is reflected in the dynamical equations of
the IL model (Shimizu and Honkura, 1985):























ẋ1 + µx1 = my1xN , ẏ1 = 1−mx1xN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ẋn + µxn = ynxn−1, ẏ1 = 1− xnxn−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lẋN + rxN = yNxN−1, cẏN = g − xNxN−1

(10)

Here the parameters m, l, r, c, and g characterize the relative
dominance of the main disk compared to the other disk, i.e.,

parameters give the ratios of the physical parameter values of the
main disk to the analogous parameter values of the other minor
disks. If all the parameters are equal to unity, we obtain the HL
model governing equations. These parameters appear only in the
equations of the first and N-th disk because we consider that the
dominant disk is in the N-th position and its loop is around the
axle of the first disk. The interaction among disks is confined to
the interaction with only one the neighbors, hence the IL model
is basically a short-range coupling model.

The output of the system is the total magnetisation or the
normalized sum of the axial magnetic fields generated by all the
disks. The magnetic dipole moment generated by a current I
on a loop with surface S, is m = IS. The total magnetisation is
proportional to the averaged current intensity because the loops
are all with equal surface. The magnetisationM is then:

M =
S

N

N
∑

i= 1

Ii (11)

where the constant S is the normalizing factor. Themagnetisation
will take values from -1 to 1 making the results of the IL
model comparable with that of SCS/LCS model. A magnetic field
reversal occurs when the sign of the averaged current changes
from negative to positive (magnetic field flips to normal polarity
state) or vice-versa (magnetic field flips to the reversed polarity
state).

Some Results and Statistics

Domino Model
The SCS and LCS models have the same six independent
parameters. It would be a great challenge to exploit the whole
parameter space of the model. Duka et al. (2015) have shown
some results of the empirical study of the SCS model dependency
on several parameter values taken from defined intervals.
Qualitatively similar results are obtained for the LCS model, too.
Although we must point out that we have not fully exploited the
parameter space for both models.

In order to compare results of the two models, the same set
of parameter values are used, precisely: γ = −1, λ = −2,
κ = 0.1, ε = 0.4, N = 8, τ = 1t = 0.01 (Duka et al.,
2015). The correlation time τ is chosen equal to the time step
1t of equation numerical integration to ensure that the random
number χi is updated after each time step 1t when the 4th order
Runge-Kutta subroutine is called. In order to obtain the long
time series of magnetization, we adopted the following initial
conditions: random initial θi uniformly distributed in the interval
(0, 2π) and θ̇i = 0.

The full run comprises 30,000,000 time steps and we print the
output every 100 time steps, i.e., the full time series has 300,000
time steps. In Figures 3A,B are shown the first 30,000 time steps
of two typical series of magnetisation for SCS (a) and LCS (b)
model. In order to compare the results of the numerical models
with the paleomagnetic data, we have to determine the time scale
for each numerical model. In the whole time series generated
by SCS model there were observed in average 1339 reversals,
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A

B

FIGURE 3 | Time series of magnetization generated by (A) SCS model and (B) LCS model. Here are shown values for the first 30,000 time units (adapted from

Duka et al., 2015).

while in the LCS time series there were observed in average 660
reversals. The criterion by which the reversals are distinguished
is explained in Duka et al. (2015). Dividing the full length of the
time series by the number of reversals we obtain the mean time
between reversals (mtr). This quantity is simply the statistical
mean length of the chrons. The values of mtr for both models
are respectively 224 and 454.5 time units. These mean values
are derived from the statistical analysis of the reversals. Each of
these intervals is considered equivalent to 270,000 years, which
is approximately themtr according to paleomagnetic data (Duka
et al., 2015). The typical time series of 300,000 time units long
comprises 360 Myr in the case of SCS model and 178 Myr in
the case of LCS model. In other words, the time series generated
by running the SCS model spans a period of time, in terms of
Earth’s geological history, nearly twice longer than the time series
generated by the LCS model.

The typical feature in both series is the apparently random
variance of magnetisation and random change of polarity. It is
Power Spectral Density (PSD) of the time series that supplies very
valuable information about the statistical behavior of the system
in different frequency ranges. The PSDs calculated for long time
series (300,000 values) of both SCS and LCS models are shown in
Figures 4A,B. One can see that the slopes of power spectra for
each series are different for low frequency and high frequency
ranges, showing different statistical behavior in low and high
frequencies. In the case of the geomagnetic field the difference in
statistics between low frequency processes (reversals) and higher
frequency processes (in our case SV) would be an argument in
favor of the idea that these phenomena are results of different
processes in the outer core. This feature of statistic behavior
appears not only with SCS/LCS models but with IL model, too.

In Figures 4A,B one can see that the statistical behavior of SCS
model is qualitatively similar to the behavior of LCS model but
quantitatively different. Despite that fact that the time series of
the SCS model is twice the length of the time series of the LCS
model, the time period they span are of the same order, so they
have the same scale.

In order to determine which of the models is statistically
closer to the paleomagnetic series of reversals (Cande and Kent,
1995), we have to compare the statistics of reversals of the time
series of the models and the paleomagnetic time series which
comprises 158 Myr of the past history of the Earth. The power
spectra are useless in this case because of the basically different
nature between the time series of SCS and LCS models where
the magnetisation varies between -1 and 1, and the binary-
valued paleomagnetic time series from Cande and Kent record.
In Figures 4C–F are shown the distributions of chrons for the
time series of the models and Cande and Kent record. We see
that both SCS and LCSmodel have similar reversal statistics being
quantitatively different from the statistics of the paleomagnetic
time series. So both models are not very accurate in describing
the reversal statistics of the geomagnetic field.

Inhomogeneous Lebovitz Model
It can be seen by Equation (10) that the IL model has seven
independent parameters, where six of them characterize the
physical quantities of the disk dynamos (we use the values µ =
1.0, m = 2.0, l = 2.0, r = 2.0, g = 0.5, c = 1.0; Shimizu
and Honkura, 1985), while N is the number of disk dynamos.
We used the 4th order Runge-Kutta algorithm to numerically
integrate the 2N first order ordinary differential equations of
the IL model (Equation 10) with the same ode45 subroutine. A
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A B

C D

E F

FIGURE 4 | Power spectra density (PSD): of the magnetization series of 300,000 time units generated by (A) SCS model and (B) LCS model with the

same values of model parameters; (C) the distribution of chrons length for the SCS model, (D) the distribution of chrons length for the LCS model, (E)

the distribution of chrons length of the IL model, (F) the distribution of chrons length of the paleomagnetic time series covering the last 157.53 Myr.
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typical time series generated by IL model is given in Figure 5

where N = 15. To generate this long time series we assumed
random initial values of non-dimensional current intensities and
angular velocities, where the former variables have values one
order of magnitude higher than the last variables. When we chose
initial values of the same order for all variables, the simulation of
the IL model produced time series of monotone magnetisation
with no reversals at all. The time series depicted in Figure 5 is
200,000 time units long and it comprises 452 reversals. Then the
mean time between reversals for this series is mtr = 442.5 time
units, where by considering this mean value equivalent to the
geomagnetic fieldmtr = 270,000 kyr, we deduce that the full run
spans nearly 122 Myr.

We studied some dependencies of the IL model from the
parameter values, but our study does not completely explore all
options for the parameter space variations. Especially, we studied
the dependency from the number of disks N. When an even
number N is used, we noticed that its behavior is very similar to
the homogeneous Lebovitz model (see Section Inhomogeneous
Lebovitz Model), making the IL model practically identical to
the HL model. This result is in accordance with Shimizu and
Honkura (1985), who point out the same result, concluding that
when there is an even number of disks, the dominance of the
main disk vanishes. The main disk effect appears only when
we adopt an odd number of disks N. Dropping the N = 1
case, the N = 3 was not appropriate because the magnetisation
saturated very early, after the first few thousands of time steps.
Then we followed with the next odd natural numbers observing
the monotone decrease of mtr with increasing of N. For N = 17,
the number of reversals is very high making the model practically
non-realistic.

Simulations with different values of the free parameters of
the IL model show some interesting results. The increase of µ

results in an increase of mtr, i.e., reduced number of reversals.
Apparently when the effect of the current intensity on its proper
rate of change (see Equation 10) increases, the reversal frequency
is diminished. The increase of the values of m, l, c and the
decrease of r and g causes an increase ofmtr. Higher magnitudes
of the first three parameters correspond to enhanced dominance
of the main disk while higher magnitudes of the last two
parameters correspond to diminished dominance of the same
disk. We can conclude that when the dominance of the main

disk increases, the system is stabilized and the reversals rate is
diminished. On the other hand, when the dominance of the
main disk decreases, the system is destabilized and the reversals
become more frequent.

The PSDs of all series of magnetisation are qualitatively
similar: all of them have a three slope pattern. Quantitatively
there are differences especially in the magnitude of the second
slope. This part of the power spectra is important because it
comprises variations that occur in the time scale from thousands
to hundreds of thousands of years, i.e., the time scale of SV.
The system with the statistical behavior closest to SHA.DIF.14K
model (Pavon-Carasco et al., 2014) is the 15-disk IL model
(Figure 6C) and can be seen by comparing the PSDs shown in
Figure 6. This implies that the 15-disk IL model should be used
to generate the time series to be compared with the SV time
series. We also performed simulations with N = 15 disks and
different set of parameter values from the initial set. We noticed
quantitative changes, because the slopes are different, but with no
significant qualitative differences. In Figure 7 is shown the power
spectra of one 15-disk IL model. It is evident, after comparing
the slope values of this power spectrum with the analogous
slope values of the SHA.DIF.14K model (Figure 6A), the time
series generated by the IL model with this set of parameter
values is statistically very similar to the SV time series making
it appropriate to generate long time series of SV.

The reversal statistics (Figure 4E) shows that the IL model
is very close to the SCS and LCS model. The similarity is
evident although there are discrepancies when comparing with
the reversal statistics of paleomagnetic time series. This result
suggests that the IL model is not very accurate in describing the
reversal statistics of the geomagnetic field. Actually Shimizu and
Honkura (1985) concluded that the IL model, among all the disk
dynamo models they studied, is the most appropriate to describe
the reversal statistics. However they do not pretend that this
model is the best. Our results seem to confirm that this model
is not the best for representing the actual reversal statistics.

SV-like Time Series

We generated by the LCS and IL models the time series of
magnetisation that are statistically closest to the long time series
of SV of the observedAxial DipolarMoment (ADM) according to

FIGURE 5 | The full run (200,000 time units) generated by the IL model with 15 disk dynamos.
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FIGURE 6 | Comparison between the PSD of the time series of: (A) the SHA.DIF.14K model, (B) the LCS model, (C) the IL model with 15 disks.

FIGURE 7 | Power spectra (PSD) of the time series generated by the IL model with set of parameter values µ = 0.8, m = 1.8, l = 1.9, r = 2.0, c = 1.0,

g = 0.25, N = 15.

paleomagnetic models like as SHA.DIF.14K, at least in the range
of parameter values of both models that we have investigated.

In order to compare the results of different models regarding
the SV, the time series of axial magnetisation generated by LCS
and IL models with proper parameter values and with initial
values according to the series of SHA.DIF.14K model that starts
at 14,000 BP. The full run comprises 100,000 years, from 14,000

BP to 86,000 terrestrial years in the future (after present, AP).
This period of time corresponds to the time-scale of SV. The
appropriate parameter values of the LCS model which produce a
statistically similar time series with the SHA.DIF.14K time series,
found empirically are (Duka et al., 2015): γ = −2.1, λ = −2.0,
κ = 0.015, ε = 0.2, τ = 0.01, N = 10. The length of the
generated time series which is equivalent to a 100,000-years time
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series is chosen according to the time scale of LCS model. We
considered a set of initial values of angles θi, uniformly randomly
generated, such that their sum is equal to the initial value of
the magnetic dipolar moment (ADM) of the SHA.DIF.14K time

series. The initial angular velocities θ̇i, were uniformly randomly
generated and filtered until their sum was equal to the initial rate
of change of the magnetic dipolar moment. We must emphasize
that we do not pretend the set of parameter values we have chosen

FIGURE 8 | Short time series generated by LCS and IL models compared with the SHA.DIF.14K model time series.

A

B

FIGURE 9 | (A) The time series generated by the IL model which comprises 100,000 years, from −12,000 (or BCE) to 88,000 and (B) the Power Spectra of the same

time series.
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are unique. From the geodynamo perspective, the magnitudes of
the parameters of the “toy”models we study have no relation with
the magnitudes of certain quantities which describe the dynamics
of the fluid in the outer core. Although these parameters are
dimensionless, we do not offer here any theoretical way by which
these quantities are connected to other dimensionless quantities,
like the fluid dynamics numbers. The same argument is valid for
the IL model.

A similar approach is applied for the IL model. The set of
parameter values we used is µ = 0.8, m = 1.8, l = 1.9, r = 2.0,
c = 1.0, g = 0.25, N = 15. Again this set is found empirically
without exploiting large ranges of the whole parameter space. The

length of the generated time series spans periods of time as long as
14 millennia (the period of time comprised by the SHA.DIF.14K
model), and it is determined considering the time scale of the IL
model (see Section Inhomogeneous Lebovitz Model). The initial
non-dimensional current intensities and angular velocities of the
disks, all uniformly randomly generated, and the magnetisation
magnitude Equation (11) is filtered appropriately to fit the initial
values of the ADM according to the SV time series.

In both cases we obtained 30 time series respectively. Then we
calculated the averaged time series. The SHA.DIF.14K time series
and the averaged time series generated by LCS and IL models are
all shown in Figure 8.

A

B

FIGURE 10 | (A) The time series generated by the LCS model which comprises 100,000 years, from −12,000 (or BCE) to 88,000 and (B) the Power Spectra of the

same time series.
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The time series generated by the LCS model approximately
reproduces the patterns of SV not only from the statistics
point of view, but also by the time dependence of the ADM
magnitude. Despite of the quantitative differences, the series have
similar statistical behavior (Figures 6A,B). The LCSmodel seems
to nicely describe the SV of the last 14 Myr. The IL model
time series on the other hand has the eminent problem that
the magnetisation jumps to zero almost immediately from the
initial value (this happens in all the time series generated). This
discrepancy shows that the IL model is not reliable to reproduce
time series of SV that span short geological periods.

The long SV time series is practically a future extension of the
actual 14 kyr period initially based on the SHA.DIF.14K model.
We performed 30 runs to obtain the averaged long SV time
series. The series generated by both models and the respective
power spectra are shown in Figures 9A,B, 10A,B. As in Figure 8

it can be seen that the LCS model time series fulfills the non-
zero initial conditions, whilst the IL model time series shows
the same problem of abruptly jumping to zero ADM soon after
the simulation begins. In the IL model time series (Figure 9A),
actually occur several reversals that make this series not realistic.
In the LCS times series (Figure 10A) a reversal is observed nearly
78,000 years after the hypothetical present, preceded by several
millennia of low intensity geomagnetic field. Please note that the
exact time of the reversal after the start of the simulation is not
the most significant result: because of the high sensitivity of the
initial conditions of the system, this could occur at any time. The
comparison of power spectra of the SHA.DIF.14K model, LCS
and IL models (Figures 6A, 9B, 10B) show that the LCS model
(with the chosen parameters) is statistically closer to the paleo-SV
series despite the discrepancy in the highest frequencies. What is
the most important fact is that several millennia of low intensity
geomagnetic dipolar field precede the occurrence of the reversal.
This picture supports the idea that reversals might occur during
periods of low intensity of the geomagnetic field, as the present
feature of the real geomagnetic field. This seems to favor also the
view of reversals as outgrowth of SV.

Discussion and Conclusions

We studied the time series generated by two stochastic models,
the LCS model (a version of the “domino” model) and IL model
(an extended version of the Rikitake two disk dynamo model).
Thesemodels consider two distinct ways of dipolarmagnetic field
generation through collective interaction of dynamo elements: a

global interaction of macrospins (LCS model) and a one-sense
interaction among neighboring disk dynamos (IL model). In
the former case there are implemented secondary interactions
like friction and random forces, whilst in the latter case the
magnetic field generation is based on interactions among disk
dynamos including electric resistance that is analogous to the
dissipation in the LCS model. However based on the IL model,
more complicated systems including secondary interactions can
be explored. The statistical analysis of the magnetisation series
generated by both models suggests that the LCS model is
more appropriate than IL model to simulate the low frequency
processes of the geomagnetic field, i.e., reversals. On the other

hand, the power spectra study shows no significant difference
between the IL model and LCS model for higher frequency
variations. Despite of this, the time series generated by themodels
showed that the IL model, at least for the considered range
of parameters and periods of time of several millenia, is not
reliable because of the large discrepancies between the time series
of the IL model and paleomagnetic models like SHA.DIF.14K
model (Pavon-Carasco et al., 2014). This misfit likely comes
from the over simplicity of the IL model. The LCS model on
the other hand produces more SV-like time series. We cannot
pretend that the time series generated by the LCS and IL models
that span more than 86,000 in the Earth’s future show what
will really occur. However the simulations by both the LCS
model and IL model show that the field can be subject to a
reversal, when it is preceded by a period of several millennia of
low dipole field intensity. Translating these results to the actual
geomagnetic field, this conclusion would support the general
opinion that reversals occur during geological periods of weak
dipolar field, as the present state of the geomagnetic field. The
same results also support the view of reversals as outgrowth
of SV.
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