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Accurate measurement and modeling of the snowpack energy balance are critical to

understanding the terrestrial water cycle. Most of the water resources in the western

US come from snowmelt, yet statistical runoff models that rely on the historical record

are becoming less reliable because of a changing climate. For physically based snow

melt models that do not depend on past conditions, ground based measurements of

the energy balance components are imperative for verification. For this purpose, the US

Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL)

and the University of California, Santa Barbara (UCSB) established the “CUES” snow

study site (CRREL/UCSB Energy Site, http://www.snow.ucsb.edu/) at 2940m elevation

on Mammoth Mountain, California. We describe CUES, provide an overview of research,

share our experience with scientific measurements, and encourage future collaborative

research. Snow measurements began near the current CUES site for ski area operations

in 1969. In the 1970s, researchers began taking scientific measurements. Today, CUES

benefits from year round gondola access and a fiber optic internet connection. Data

loggers and computers automatically record and store over 100 measurements from

more than 50 instruments each minute. CUES is one of only five high altitude mountain

sites in the Western US where a full suite of energy balance components are measured.

In addition to measuring snow on the ground at multiple locations, extensive radiometric

and meteorological measurements are recorded. Some of the more novel measurements

include scans by an automated terrestrial LiDAR, passive and active microwave imaging

of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a

multi-angle camera, fluxes from upward and downward looking radiometers, snow water

equivalent (SWE) from different types of snow pillows, snowmelt from lysimeters, and

concentration of impurities in the snowpack. We give an example of terrain-corrected

snow albedo measurements compared to several models and of sublimation measured

from lysimeter and snow pillow melt. We conclude with some thoughts on the future of

CUES.
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Introduction

The US Army Corps of Engineers Cold Regions Research
and Engineering Laboratory (CRREL) and the University of
California, Santa Barbara (UCSB) established a snow study
site (CRREL-UCSB Energy Site, CUES) midway up Mammoth
Mountain, California USA (37.643◦N, 119.029◦W, Figures 1, 2).
Mammoth Mountain is a silica dome cluster (Hildreth, 2004)
with a base elevation of 2424m and a summit of 3369m. It is
one of North America’s most visited ski areas and its gondola
operates year-round. CUES is located at 2940m, just below the
tree line and is one of only five full energy balance sites in the
Western US (Bales et al., 2006); the others are Reynolds Creek,
ID; Niwot Ridge, CO; Senator Beck basin, CO; and Mt. Bigelow,
AZ. Compared to these sites, CUES is unique for its combination
of location, altitude, and ease of access. Approximately 65% of
the water supply for Los Angeles comes from surface runoff
in the eastern Sierra Nevada (City of Los Angeles Department
of Water and Power, 2015), so accurate measurement of the
water in the snowpack at Mammoth Mountain and other sites
is important for downstream water demands and needs of
mountain ecosystems.

History of CUES

Snowfall records at Mammoth Mountain date back to 1928,
when the first snow course measurement was recorded at
Mammoth Pass by the Los Angeles Department of Water and
Power. Measurements near the current CUES site began in
November 1968, as part of the USDA Forest Service Snow Ranger

FIGURE 1 | CUES and Mammoth Mountain, CA USA. Elevation contours

are drawn in red, the interval is 60m.

Program. Snow Rangers took manual precipitation and other
meteorological measurements near the gondola mid station, now
called McCoy station. In the 1970s, researchers began taking
scientific measurements at a site 200m from the current CUES
location. These measurements focused on energy and mass
balance of the snowpack (Davis and Marks, 1980; Davis et al.,
1984), but also on snow textural properties and their relevance
for remote sensing, hydrology, and avalanches (Davis andDozier,
1984, 1989; Davis et al., 1985, 1987; Dozier et al., 1987).

In 1987, the CUES site was moved to its current location
because Mammoth Mountain Ski Area planned to install a new
chair lift that would have compromised the original location.
Although the proposed chair lift was never built, the ski area
generously erected a new platform at the current site (Figure 2).
In 1991, a steel cargo container replaced the wooden “Santa
Shack” that had previously housed data loggers and laboratory
equipment on the ground (Painter et al., 2000).

In the late 1980s and 1990s, research from measurements
taken at CUES and the nearby Sierra Nevada Aquatic
Research Laboratory (SNARL) concentrated on snow chemistry,
specifically ion elution (Bales et al., 1989), processes removing
soluble tracers from snow (Bales et al., 1993), and theory of
the chemical behavior of these trace species (Harrington and
Bales, 1998). The latter work was integrated into the widely
used snowpack evolution model SNTHERM (Jordan, 1991;
Frankenstein et al., 2008). Studies during this time used newly
built snowmelt lysimeters, which measure liquid water drainage
from the snowpack. Other research at CUES focused on ground
verification for remotely-sensed snow properties including the
spectral reflectance of snow (Davis et al., 1993), coupled grain size
and fractional snow covered area (Nolin and Dozier, 1993; Nolin
et al., 1993; Painter et al., 1998), and liquid water in snow (Davis
et al., 1985; Green et al., 2006).

In the 2000s, research on remotely-sensed snow properties
continued at and around CUES (Painter et al., 2003; Painter and
Dozier, 2004; Dozier et al., 2009), as well as snow depth mapping
using a Frequency Modulated Continuous Wave (FMCW) radar
(Yankielun et al., 2004), and high resolution snow temperature
mapping (Tyler et al., 2008). In addition, studies on snow
metamorphism and the role of impurities (Rosenthal et al., 2007;
Bair et al., 2009) were conducted, as were studies on snow
avalanches (Rosenthal et al., 2002; Rosenthal and Elder, 2003;
Bair et al., 2008).

From 2010 to present, there has been ongoing research
into snow avalanches (Bair et al., 2010, 2012b; Bair, 2013),
a study on black carbon and dust concentrations in the
snowpack (Sterle et al., 2013), and a study on using an auto-
scanning LiDAR and snowflake camera to estimate mass flux
(Bair et al., 2012a). During this period, CUES benefitted from
networking improvements, including the Digital395 project
(http://digital395.com/) and networked lift terminals.

Measurements

Site Description
The majority of the instruments at CUES are mounted on
a 7.0m platform, and are thus 7.0–9.0m above the ground
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FIGURE 2 | Students exploring CUES. Visible instruments are labeled. Photo courtesy of Chris Heckman.

(Figure 2). Given the potential for deep snow accumulation
at the site, the height of the instruments above the snow
surface varies substantially throughout the year and between
years. Below the platform, an enclosed cargo container contains
data loggers, computing and networking equipment. Typically,
cables connected from the data loggers to the instruments run
through conduit up to the platform. For some instruments,
such as the Multi-Angle Snowflake Camera (MASC), these
cable runs are too long and cause signal degradation. Thus,
the MASC computer, mounted directly below it on the
platform inside a cooled and weather-proof housing, records its
measurements.

In the ground to the north and south of the site are lysimeters,
soil moisture and temperature probes, and snow pillows.
Mounted to a boom extending out from the platform about
3.0m are downlooking clear and near-infrared radiometers as
well as ultrasonic snow depth range finders. These downlooking
radiometers allow measurement of reflected solar radiation for
albedo computation.

Instrument Service
Radiometers and anemometers are generally calibrated annually
by the manufacturer. Snow pillows are calibrated with manual
pits annually. Other instruments such as temperature probes

Frontiers in Earth Science | www.frontiersin.org 3 September 2015 | Volume 3 | Article 58

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Bair et al. Measuring snow in the Sierra Nevada

are calibrated as needed according to the manufacturers
specifications. Typically maintenance occurs during the second
week of September, the only planned interruption to year-round
measurements.

Current Measurements
Today, two computers and three Campbell Scientific
CR3000 data loggers automatically record and store over
100 measurements from more than 50 instruments each minute.
Some of the novel instruments and measurements currently
include: a remotely operated LiDAR that scans the snow surface
every 15min (Figures 2, 3, and Supplementary Video Material);
a MASC that images snowflakes as they fall (Figure 4); perforated
solid state snow pillows that allow water drainage through the
pillow; and a triangular reflector for aerial and satellite-based
active radar snow depth measurement.

Long Term Measurements
We have several long term (10 years or longer at hourly or
finer sampling) automated measurement groups from CUES

FIGURE 3 | Still image from video of snowmelt, measured daily in 2011

by a LiDAR at CUES. Snow is shown in white and bare ground is shown in

green. The video was created by compositing snow free and snow covered

daily LiDAR scans during the melt season in 2011. The boxes in the ground

are lysimeters. The video is available as supplementary material or at: http://

www.snow.ucsb.edu/data/2011/lidar/.

FIGURE 4 | Snowflake images from CUES. Images were recorded by the

Multi Angle Snowflake Camera in 2015.

(summarized in Table 1). Some of the instruments have changed
over the years. The current instruments (Table 2) are state of the
art and have been procured based on our collective experience
with scientific monitoring in this harsh mountain environment.

Snowfall
Snowfall on Mammoth Mountain is generally heavy, but with
high interannual variability. Since 2001, maximum seasonal snow
depth at CUES (Figure 5) has averaged 3.6 m, but exceeded 6m
in 2006 when depth sensors were buried, and never got above
1.3m in 2015. Continuous snow cover typically exists from the
beginning of November to the end of May. Maximum snow
water equivalent (SWE), measured at the nearby snow pillow on
Mammoth Pass averages 1.21 m, but has been as low as 0.18m
(in 2015) and as high as 2.10m (in 1986). A manually measured
peak SWE of 2.20m occurred on April 1st 1969, but given the
potential for oversampling manual SWE cores (Farnes et al.,
1982), possibly this measurement overestimates SWE by about
10%. November-April snowfall, measured at a ski patrol study
plot near CUES at 2743 m, shows an average new snow density of
120 kg m−3.

Wind
Mammoth Mountain is exceptionally windy. Mean wind
speeds at the top of Mammoth Mountain are 12m s−1

TABLE 1 | Summary of long term measurements at CUES.

Group Water

years

General description Detailed information

Radiative

heat flux

1993-

present

Uplooking broadband,

global and diffuse;

uplooking near infrared;

uplooking thermal

infrared; downlooking

broadband and

near-infrared

Uplooking radiometers

are mounted on a 2m

mast above CUES

platform; Downlooking

radiometers are on a

remote boom that

extends over the snow

surface

Sensible

heat flux

1993-

present

Air temperature, relative

humidity, and winds

Radiation shielded

temperature/relative

humidity probes;

ultrasonic and

mechanical

anemometers

Precipitation 2001-

present

Snow depth and snow

pillows, Doppler radar

precipitation rate and

accumulated

precipitation,

disdrometer

Experimental snow

pillows with different

designs; ultrasonic

snow depth

Soil 1993-

present

Soil moisture or

conductance

Moisture and

conductance probes,

buried 10–100 cm in

the ground

Snowmelt 1993-

present

Lysimeter discharge 9 custom-built drains

and tipping buckets

These measurements have been made continuously at CUES for over 10 years at hourly

or finer temporal resolution. Metadata on measurements and instruments available at:

http://www.snow.ucsb.edu/metadata.
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TABLE 2 | Summary of current instruments at CUES as of May 2015.

Group Interval,

min

Instruments

Radiative

flux

1 Uplooking broadband, global and

diffuse—Delta-T Devices SPN1 Sunshine

Pyranometer, heated, 0.400–2.700µm

1 Uplooking near-infrared—Eppley Laboratory

Precision Spectral Pyranometer w/ Schott glass

RG8 hemispherical filter, 0.700–2.800µm,

ventilated with Eppley Ventilator

1 Uplooking thermal infrared—Eppley Laboratory

Precision Infrared Pyrgeometer, 3.5–50.0µm,

ventilated w/ Eppley Ventilator

1 Downlooking broadband—Eppley Laboratory

Precision Spectal Pyranometer w/ Schott glass

WG7 clear dome, 0.285–2.800µm

1 Downlooking near infrared—Eppley Laboratory

Precision Spectral Pyranometer w/ Schott

glass RG8 hemispherical filter, 0.700–2.800µm

Sensible

and latent

heat fluxes

1 Air temperature and relative humidity—Lufft WS

600 Ultrasonic Weather Sensor; Vaisala

HMP45AC w/ radiation shield

1 and

<1

Wind speed and direction—Lufft WS 600

Ultrasonic Weather Sensor; RM Young 81000

Ultrasonic Anemometer; RM Young 05103

Wind Monitor

Snow

temperature

1 Deployable probes—8 sensor thermistor string

custom built by CRREL using YSI thermistors,

laid on snow surface as it accumulates to track

layer temperatures

Precipitation 1 Traditional pillow—ethylene-glycol filled

stainless steel with bear net, custom built for

the California Department of Water Resources

60 Experimental pillows—3 fluid-less pillows

custom built by the Desert Research Institute

1 Snow Depth—2 Judd ultrasonic snow depth

sensors; 1 Campbell SR50-M ultrasonic

ranging sensor

<1 Doppler radar accumulation and rate—Lufft

WS 600 Ultrasonic Weather Sensor

<1 Disdrometer—Multi-angle Snowflake Camera

built by Fallgatter Technologies

Soil 15 Soil moisture probe—Delta-T PR2/6; 10–40 cm

depth in 10 cm increments, also 60 and

100 cm depth; 2 locations

15 Soil temperature probe—Delta ST-105 soil

temperature probes; 0–90 cm depth in 10 cm

increments; 2 locations

Snowmelt 15 Lysimeters—8 custom built drainage pans with

tipping gauges

Terrain 15 LiDAR—Riegl Z390i mounted in custom built

enclosure

Camera 60 Webcam—AXIS 232D+

and gusts as high as 80m s−1 have been reliably measured.
Winds speeds at CUES are lower (average 3m s−1, Figure 6)
but still create highly variable snow depths typical of sub-
alpine locations that characterize much of the Southern
Sierra Nevada. Wind directions from the southwest
predominate.

Temperature
The mean annual temperature at CUES is 4.2◦C. The highest
temperature recorded since 1992 is 26.7◦C on 1998-7-14; the
lowest is −24.4◦C on 2007-1-12 (Figure 7). The December to
March mean temperature of −2.7◦C is slightly colder than the
−2.0◦Cmean for coastal ski areas in theUS (Mock and Birkeland,
2000). The colder temperatures result from the higher elevation
of Mammoth Mountain and CUES (2940m) compared to the
average study plot elevation for the other ski areas (1753m).
Mammoth’s higher elevation, associated with colder temperatures
and absence of rain compared to most coastal ski areas, led Mock
and Birkeland (2000) to classify its snow avalanche climatology
as “intermountain” in about one third of the years and “coastal”
in about two thirds.

Solar Radiation
Daily solar radiation at CUES peaks at almost 1100Wm−2 under
clear skies near the summer solstice (Figure 8), similar to other
high altitude sites near this latitude (e.g., Landry et al., 2014).
From November through April, manually recorded weather
observations from the Mammoth Ski Patrol over 30 seasons
show clear or mostly clear conditions 50% of days; party cloudy
conditions 11% of days; and mostly cloudy or cloudy conditions
39% of days.

Data Management
The automated measurements are partitioned into three levels:
level 0—raw output from data loggers; level 1—normalized
(Codd, 2000) with limited filtering for errors; level 2—fully
filtered for errors. Level 1 filtering elides measurements outside
acceptable ranges for measurement times and values. Level 2
filtering omits measurements based on more advanced filters,
such as spikes or drops, spurious zero values, and radiation
measurements inconsistent with the known solar geometry
(occasionally at sun angles near the horizon). Level 0-2 CUES
measurements are stored in a relational MySQL database (http://
www.mysql.com/), along with measurement and instrument
metadata. Level 0 data are read into the database using
Bash (http://www.gnu.org/software/bash/manual/bashref.html)
shell scripts and formatted with Linux text stream editing tools,
such as sed.

In addition, mappings from the level 0 to level 1 data are
also stored. These mappings allow the database logger tables,
which are similar to a common spreadsheet format—with many
columns for each measurement date time—to be transformed
into a normalized transaction table. In the transaction table, each
measurement value, its date time, and foreign keys for instrument
and measurement identifiers are stored as separate rows.

The transaction table is far more flexible than the logger
table format. For instance, unlike the logger table, the format
of the transaction table does not change if a measurement
is added or removed. Above all, the normalized table makes
tasks such as multi-year queries, where logger tables may have
changed format several times, more efficient. Other benefits of
database normalization at CUES include the ability for complex
relational queries for data exploration, efficient updates formulti-
year datasets when errors are corrected, tractable changes in
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FIGURE 5 | Snow depth at CUES. April 1, 2001–2015 is marked on the horizontal axis. The plateau in 2006 is a result of the depth sensor being buried.

measurements and instrumentation, and optimized indexing for
large queries. CUES tables and queries are available freely and in
real-time at http://www.snow.ucsb.edu/.

Gap Filling
For the Level 3 data, we sometimes use nearby weather and
snow measurement station data to fill-in gaps. The source of the
fill-in data is recorded in the metadata. In cases where nearby
measurements are not available, e.g., for downlooking radiometer
measurements, we interpolate measurements when reasonable,
noting interpolated measurements in the metadata.

Snow Albedo Case Study

CUES has proven useful for verifying incoming and outgoing
radiation (e.g., Dozier et al., 2009), which have been shown to
be dominant energy balance terms in a similar location in the
Sierra (Marks and Dozier, 1992). As a case study, we show how
radiometric measurements and snow albedo measured at CUES
compare to several models. The amount of melt generated by a
snowmelt model is highly sensitive to the snow albedo, because
for bright surfaces (albedo in the range 0.7–0.9), a small error
in albedo causes a larger relative error in absorption. Snow
albedo is difficult to measure, perhaps because of poor cosine
response in radiometers, sensitivity to illumination angle, and
spatially varying impurities on the surface within the field of
view of the downlooking instrument (Warren and Wiscombe,
1980a,b). Additionally, snow albedo measurements may need
to be corrected for topography, since the snow surface is often
not flat, but incoming solar measurements are taken on a level
plane. The LiDAR scans at CUES, performed automatically
every 15min, provide an ideal method for correcting albedo
measurements. Point clouds from the scans can be used to
create local slope and aspect measurements for the area of snow
under the downlooking radiometers. Using this highly local
topographic information, we computed a correction factor c for
the incoming solar radiation using illumination angles for the
sloped snow surface (Painter et al., 2012a):

c =
cos θ

cos θ0
(1)

θ is the local illumination angle and θ0 is the illumination angle
on a flat surface. These angles were computed using equations
for solar geometry (Dozier and Frew, 1990). Then, the broadband
snow albedo α was computed as

α =
D↑

cB↓+D↓

(2)

D↑ is the reflected global radiation, and B↓ and D↓ are the direct
and diffuse downwelling global radiation. Using Equations (1)
and (2), we computed α at CUES near the overpass time of the
Moderate Resolution Imaging Spectrometer (MODIS) aboard
the Terra satellite for five dates in 2011. We then compared
these snow albedo measurements at CUES with those from four
models: MODSCAG/MODDRFS using Gardner-Sharp, BATS,
and a simple aging model (model acronyms are defined below
and shown in Figure 9). The MODIS overpass time was used
since it is the time of acquisition for the MODIS Snow Covered
Area and Grain Size (MODSCAG, Painter et al., 2009) and
MODIS Dust and Radiative Forcing in snow (MODDRFS,
Painter et al., 2012b) grain size estimates for the CUES pixel.
These grain size estimates and the local illumination angle θ were
then used in another model (Gardner and Sharp, 2010) to arrive
at a clean-snow albedo estimate aclean. Finally, half of the λvis term
from MODDRFS was subtracted from the clean-snow albedo to
account for albedo degradation from light absorbing impurities
at the surface of the snowpack.

a = aclean − λvis/2. (3)

The term λvis is an estimate of the difference between the dirty
and the clean snow albedo in the visible spectrum (0.350–
0.876µm), which is where light absorbing impurities have the
greatest impact for snow. Since is a is a broadband albedo and
about half of the sun’s energy is in the visible spectrum, we used
half of the λvis estimate.

The local illumination angle θ was also used in the Biosphere-
Atmosphere Transfer Scheme (BATS, Yang et al., 1997) albedo
model, along with the time t since the last snowfall. Last, a simple
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FIGURE 6 | Wind rose for CUES 2002–2015. The colors correspond to wind speeds while the polar plot shows both the direction and the frequency of the binned

wind speed/direction vectors.

albedo aging model (Riley et al., 1969) was used, with t as the sole
parameter.

As expected, none of the three models match the measured
albedo precisely. These errors highlight a need for improved
snow albedo models and continued careful ground measurement
from sites like CUES. During the time period show in Figure 9,
the mean absolute error in albedo of all the models compared to
the measurements is ae = 0.10. Given an average daily incoming
broadband solar ration S↓ = 365 Wm−2 during that time period

and a radiation to melt factor b = 0.26 mmW−1 m2 day−1,
the potential error in estimated melt is Me = ae × S↓ × b =

9.5 mmday−1.

Sublimation Case Study

In the Sierra Nevada, losses from evapotranspiration and
sublimation are 20–60% of total SWE (Kattelmann and Elder,
1991; Hunsaker et al., 2012). These losses are probably a
substantial component of the water balance at CUES, but
they have not been measured before, although they have been
estimated from the energy balance (Stewart, 1982). Using a snow
pillow that was installed at CUES by the California Department

of Water Resources in September 2012 and three lysimeters
located within a few m of the pillow, we estimate losses due to
sublimation, since there is no evapotranspiration from snow.

To estimate cumulative melt Mp from the pillow, we sum the
daily decreases in SWE rounded to the nearest centimeter when
△SWE is negative

Mp= −

N
∑

i=1

△SWEi
∣

∣

△SWEi<0
(4)

To estimate cumulative melt that reaches the lysimeters Ml, we
sum the daily tips T and multiply by the volume of the tipping
buckets v = 0.08 L.

Ml = v

N
∑

i=1

Ti (5)

Since the lysimeter pans are 1 m2, we convert to cm by dividing
by 10 since

L

m2
=

1/1000m3

m2
= 0.1 cm (6)
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FIGURE 7 | Monthly high and low temps at CUES 1992–2014. Missing values were filled with data from nearby sensors at similar elevations.

FIGURE 8 | Solar radiation at CUES. Mid month incoming solar radiation for calendar year 2012. The curves show the measured incoming radiation on the 15th

day of each month. The horizontal axis is truncated between each day. Direct and diffuse are measured over the solar spectrum. Longwave is measured over the

thermal infrared spectrum.

and round Ml to the nearest cm. Spatial variation in snow
accumulation and drainage characteristics (Kattelmann and
Dozier, 1999) are pronounced in wind affected areas like CUES.
Therefore, we compute high and low values for Ml using the
range of measurements from the three lysimeters nearest the
snow pillow. To estimate sublimation E we sum Mp during
periods whereMl = 0,

E = Mp

∣

∣

Ml=0
(7)

assuming that melt from the pillow that does not reach the
lysimeters sublimates. We compute a low estimate of E by
specifying that Ml = 0 for all lysimeters and a high estimate by
specifying thatMl = 0 for any lysimeter. Our results (Figure 10)
show that, for totals from 2012 to 2015, E is 100–186 cm, or
31–57% of total Mp = 325 cm. The mean sublimation value

E = 143 cm is 44% of total Mp. These values are within the 20–
60% range measured or estimated in previous studies (Stewart,
1982; Kattelmann and Elder, 1991; Hunsaker et al., 2012) and
confirm that a substantial portion of the water in the snowpack
is lost to sublimation.

Future of Cues

Over its four decades of existence, CUES has led to scientific
advances in the understanding and modeling of the alpine
snowpack and energy balance. The sensing infrastructure at
CUES has also provided the basis for contextual comparison
of new approaches to measuring snow mass budget in a windy
environment. The persistence of snowpack in the mountains of
California and elsewhere provides a storage capacity that greatly
exceeds the available surface water storage. For the Sierra Nevada,
Molotch and Meromy (2014) used regression tree models to
show that that elevation was the most important explanatory
variable regarding snow cover persistence over the last decade,
ranking first in the hierarchical models in 10 out of 13 watersheds
studied. The paper also brought to light the importance of other
variables that factor into the transitional nature of a subalpine
environment, from the forested broad slopes at low elevations to
the exposed bare terrain in the alpine zone. As climate warms,
the interplay among snow energy and mass transfer processes
in the subalpine region will figure prominently in manifesting
trends. CUES will continue to serve two primary roles: first,
to serve as a robust snow cover laboratory from which to test
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FIGURE 9 | Terrain corrected albedo at CUES in 2011. Measured (terrain

corrected) and modeled snow albedo at CUES for four dates during the melt

season in 2011. See Section Snow Albedo Case Study for further explanation.

FIGURE 10 | Sublimation measured from lysimeter and snow pillow

melt. The range of cumulative tipping bucket melt from three lysimeters is

shown in gray. The cumulative snow pillow melt is shown in orange.

Sublimation is shown in blue.

newmeasurement techniques and, seconds, tomake observations
supporting modeling and diagnostics for studies to increase our
understanding of mountain snow.

The ongoing drought, currently in its fourth year, is
unprecedented in California’s modern history. Unprecedented
events and a rapidly warming climate make statistical models,

which have been used to predict snowpack runoff for decades
by water managers, unreliable. Knowledge about the physical
processes that drive snow accumulation and melt is now more
valuable than ever. Because most of California’s water comes
from snowmelt, high-altitude mountain sites such as CUES will
become more important for monitoring and studying the water
cycle, in much the same way that long-term CO2 monitoring has
affected our view of climate (Keeling, 2008).

Conclusion

The CRREL/UCSB Energy Site (CUES) has been a working
site for snow study since the late 1970s. Snow research
ranging from remote sensing, to snow chemistry, to avalanche
studies have been performed there. Long term measurements
(more than 10 years) at CUES include incident and reflected
solar radiation, snow depth, air temperatures, wind speed and
direction, and lysimeter discharge. Experimental measurement
devices currently include a MASC, fluid-free snow pillows, and
an automatically operated scanning terrestrial LiDAR.

CUES epitomizes information-sharing based science. All
measurements and associated metadata are freely available at
http://www.snow.ucsb.edu/. The website’s backend is powered
by a relational database that allows multi-year queries (despite
instrument changes) and other advanced features. The location,
networking and computing facilities, buried bunker, and ease of
access to CUES make it a unique high altitude snow research
site. We welcome and encourage future collaborative projects
at CUES from other research groups that pertain to snow
study.
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